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Abstract. The Feistel-network is a popular structure underlying many
block-ciphers where the cipher is constructed from many simpler rounds,
each defined by some function which is derived from the secret key.

Luby and Rackoff showed that the three-round Feistel-network – each
round instantiated with a pseudorandom function secure against adap-
tive chosen plaintext attacks (CPA) – is a CPA secure pseudorandom
permutation, thus giving some confidence in the soundness of using a
Feistel-network to design block-ciphers.

But the round functions used in actual block-ciphers are – for efficiency
reasons – far from being pseudorandom. We investigate the security
of the Feistel-network against CPA distinguishers when the only secu-
rity guarantee we have for the round functions is that they are secure
against non-adaptive chosen plaintext attacks (nCPA). We show that in
the information-theoretic setting, four rounds with nCPA secure round
functions are sufficient (and necessary) to get a CPA secure permutation.
Unfortunately, this result does not translate into the more interesting
pseudorandom setting. In fact, under the so-called Inverse Decisional
Diffie-Hellman assumption the Feistel-network with four rounds, each
instantiated with a nCPA secure pseudorandom function, is in general
not a CPA secure pseudorandom permutation.

We also consider other relaxations of the Luby-Rackoff construction and
prove their (in)security against different classes of attacks.
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1 Introduction

Feistel-network. The Feistel-network is a popular design approach for block-
ciphers where the cipher over {0, 1}2n is constructed by cascading simpler per-
mutations, each constructed from a round function f : {0, 1}n → {0, 1}n. The
secret key of the cipher is only used to choose the particular round functions.

Luby-Rackoff Ciphers. In their celebrated paper [LR86] Luby and Rackoff
prove that the three-round Feistel-network is an adaptive chosen plaintext (CPA)
secure block-cipher – i.e. a pseudorandom permutation (PRP) – if each round
is instantiated with an independent CPA secure pseudorandom function (PRF),
and with one extra round even adaptive chosen ciphertext (CCA) security is
achieved. Besides reducing PRPs to PRFs, this result also gives some confidence
in the soundness of using a Feistel-network to design block-ciphers. But unlike
in the Luby-Rackoff ciphers, in most block-ciphers based on Feistel-networks the
round functions are not independent (in order to keep the secret key short) and
also far from being pseudorandom (for efficiency reasons). Instead, the number
of rounds is much larger than four (which was sufficient for the Luby-Rackoff
constructions).

In order to achieve more efficient constructions of PRPs from PRFs, many
researchers have investigated the security of weakened versions of the Luby-
Rackoff ciphers. Several variations of the ciphers were proven to be pseudoran-
dom where for example the round functions were not required to be independent
[Pie90], some round functions were replaced by weaker primitives than PRFs
[Luc96,NR99] or the distinguisher was given direct oracle access to some of the
round functions [RR00]. These results further fortify the confidence in using
Feistel-networks to design block ciphers.

All these relaxed constructions need at least some of the round functions
to be CPA secure PRFs in order to get a CPA secure PRP. In this paper, we
investigate for the first time – to the best of our knowledge – the CPA secu-
rity of the permutation one gets by a Feistel-network where none of the round
functions is guaranteed to be CPA secure. In particular, we investigate the secu-
rity of the Feistel-network where each round is instantiated with a non-adaptive
chosen plaintext (nCPA) secure round function. Although nCPA security is still
a strong requirement, this was the weakest natural class of attacks we could
imagine which does not make the Feistel-network trivially insecure against CPA

attackers. For example round functions which are only secure against known-
plaintext attacks (KPA), i.e. look random on random inputs, are too weak.1

Pseudo- and Quasirandomness. Informally, a pseudorandom function PRF
is a family of functions which can be efficiently computed, and where a random
member from the family cannot be distinguished from a uniform random func-

1 Just consider a function f which satisfies f(0 . . . 0) = 0 . . . 0 but otherwise looks
random. This f is KPA secure as a random query is unlikely to be the all zero
string. But a Feistel-network build from such functions will output 0 . . . 0 on input
0 . . . 0 and thus is easily seen not to be CPA (or even nCPA) secure.



tion (URF) by any efficient adversary. Pseudorandom permutations (PRP) are
defined analogously. As usual in cryptography, an adversary is efficient if he is
in P/poly, i.e. in non-uniform polynomial time (but almost all our results also
hold when considering uniform adversaries; the only exception is addressed in
Footnote 13). A quasirandom function (QRF) (similarly for a quasirandom per-
mutation (QRP)) is defined similar to a pseudorandom one but where one does
not require the distinguisher or the function to be efficient, only the number of
queries the distinguisher is allowed to make is bounded. Quasirandomness can be
seen as an extension of the concept of statistically close distributions to systems
which can be queried interactively.

In order to prove that some system – which is built from pseudorandom com-
ponents – is pseudorandom itself, it is often enough to prove it to be quasirandom
when the components are replaced by the corresponding ideal systems. In par-
ticular, to prove the security of the original three-round Luby-Rackoff cipher it
is enough to prove – the purely information-theoretic result – that the network
instantiated with URFs is a CPA secure QRP. It then immediately follows that
the construction is a CPA secure PRP when the URFs are replaced by CPA se-
cure PRFs, since if it was not a CPA secure PRP, we could use the distinguisher
for it to build a distinguisher for the CPA secure PRF (via a standard hybrid
argument). Similarly one can easily show that if the round functions are only
nCPA or only KPA secure PRFs, the construction is a secure PRF, but only
against the class of attacks nCCA (hence also nCPA) and KPA, respectively.

2 Contributions

Our results and related work are summarized in Fig. 2 on page 5.

(In)secure Relaxations of the Three-Round Luby-Rackoff Cipher.
In the pseudo- and quasirandom setting, the three-round Feistel-network is – as
mentioned above – ATK ∈ {CPA, nCPA,KPA} secure, when the round functions
are ATK-secure. Moreover it is known that one can replace the first round with
a pairwise independent permutation [Luc96,NR99].2 We further relax this by
showing that the function in the last round only needs to be secure against known
plaintext attacks (KPA). This resolves an open question posed by Minematsu and
Tsunoo in [MT05]. Furthermore, for ATK = KPA we show that the first round
is not necessary – as opposed to when ATK ∈ {CPA, nCPA} – and that it is
sufficient to instantiate the (two) round functions with a single instantiation of
a KPA secure function.

But the second round seems to be the crucial one for ATK ∈ {CPA, nCPA}.
We show that for constructing a CPA secure permutation – i.e. PRP or QRP
depending on the setting – one cannot in general instantiate the second round
with a function which is only nCPA secure by constructing a counter-example,

2 In fact, the permutation must only be such that on any two values, the collision
probability on one half of the domain is small. For example one can use one normal
Feistel round instantiated with an almost XOR-universal function.



i.e. a nCPA secure function such that the three-round Feistel-network with this
function in the second, and any random functions in the first and third round
can easily be distinguished from a uniformly random permutation (URP) with
only three adaptively chosen queries. Similarly, if one instantiates the second
round with a KPA secure function, then the construction will in general not even
be nCPA secure.

Four Rounds with non-adaptive Round Functions. As a consequence,
three rounds with nCPA secure round functions are not enough to get CPA secu-
rity. On the positive side, we show that one extra nCPA secure round is sufficient
(and necessary) in the quasirandom setting. Note that for the translation of a
security proof from quasi- to pseudorandom systems – as described at the end
of the previous section – it is crucial that we can construct a distinguisher for
the components from a distinguisher for the whole system. But here the com-
ponents have a weaker security guarantee (i.e. nCPA) than what we prove for
the whole system (i.e. CPA). So even when we have a CPA distinguisher for the
four-round Feistel-network, we cannot construct a nCPA distinguisher for any
round function. This is not just a shortcoming of the used approach, but indeed,
in the pseudorandom setting the situation is different: we show that here four
rounds are not enough to get CPA security. To show this we construct a nCPA

secure PRF, such that the four-round Feistel-network with such round functions
can easily be distinguished from URP with only three adaptive queries.

This phenomenon – i.e. that some construction implies adaptive security
for quasirandom but not for pseudorandom systems – has already been proven
[MP04,MPR06,Pie05] for two simple constructions: the sequential composition

f.g(.)
def

= g(f(.)) and the parallel composition f?g(.)
def

= f(.)?g(.) (where ? stands
for any group operation). The security proofs from [MP04] in the quasirandom
setting crucially use the fact that the sequential composition of two permutations
is a URPs whenever at least one of the permutations is a URP, similarly the par-
allel composition of two functions is a URF whenever one of the components is a
URF. The Feistel-network does not have this nice property of being ideal when-
ever one of the components is ideal, and we have to work harder here (using a
more general approach from [MPR06]). Our counter-example for the pseudoran-
dom setting – i.e. a four-round Feistel-network with nCPA secure PRFs as round
functions that is not a CPA secure PRP – is similar to the counter-examples for
sequential and parallel composition shown in [Pie05,Ple05]. In [Ple05], it is shown
that the sequential composition of arbitrarily many nCPA secure PRFs will not
be a CPA secure PRF in general, whereas for the parallel composition only a
counter-example with two components is known [Pie05]. For the Feistel-network
we also could only find a counter-example for four rounds. So we cannot rule out
the possibility that five or more rounds imply adaptive security. However, if this
was the case, then it seems likely that – like for sequential composition [Mye04]
– there is no black-box proof for this fact.3

3 Myers [Mye04] constructs an oracle relative to which there exist PRPs that are
nCPA secure, but for which their sequential composition is not a CPA secure PRP.



Construction Quasirandom Pseudorandom Reference

ψ[RRR] CPA, nCCA, ¬ CCA [LR86,Mau02]

H . ψ[RR] CPA, ¬ nCCA [Luc96,NR99]

H . ψ[RK] CPA , ¬ nCCA §4

ψ[RNR] ¬ CPA §5

ψ[NNNN ] CPA ¬ CPA (under IDDH) §6 and §7

ψ[RRRR] CCA [LR86,Mau02]

H . ψ[RR] . H−1 CCA [Luc96,NR99]

ψ[NNNNN ] CCA ? §8

ψ[RR] KPA, ¬ nCPA [MT05]

ψ[K2] KPA, ¬ nCPA §4

ψ[NNN ] nCCA, ¬ CPA §4

H . ψ[NK] nCPA, ¬ nCCA §4

ψ[RKR] ¬ nCPA §5

Fig. 1. Security of the Feistel-network ψ with various security guarantees on the round
functions. Here ψ[f1 · · · fk](·) denotes the k-round Feistel-network with fi in the i’th

round, and ψ[f2]
def
= ψ[ff ] – i.e. the same function f in both rounds. Each occurrence

of R, N , and K stands for an independent CPA, nCPA, and KPA secure function (i.e. a
PRF or a QRF depending on the setting) respectively. The same holds for H which is
any “lightweight” permutation from which we only require that the collision probability
be small on the left half of the output, an almost pairwise independent permutation or
a Feistel round instantiated with an almost XOR-universal function is thus sufficient.
The results in gray are implied by other results in the table.

What about CCA Security? While it seems unlikely in the pseudorandom
setting to achieve CPA security (and hence also CCA security) of the Feistel-
network with nCPA secure round functions, we show that (even) CCA security
can be achieved in the quasirandom setting. In particular, we show that the
five-round Feistel-network with nCPA secure QRFs is a CCA secure QRP.

Unconditional vs. Conditional Counter-examples. The counter-example
showing that the three-round Feistel-network with a nCPA secure PRF F in the
second round is not adaptively secure is unconditional4 and black-box; with this
we mean that we can construct F starting from any (nCPA secure) PRF via a

The idea behind this oracle is quite general, and we see no reason (besides being
technically challenging) why one should not be able to construct a similar oracle for
the Feistel-network, and thus also rule out a black-box proof for showing that the
Feistel-network with nCPA secure PRFs as round functions is a CPA secure PRP.

4 I.e. we make no other assumption besides the trivially necessary one that pseudo-
random functions – which are equivalent to one-way functions [HILL99,GGM86] –
exist at all.



reduction which uses this PRF only as a black-box.5 As four rounds are enough
to get adaptive security for quasirandom systems, there cannot be a black-box
counter-example (like for three rounds) for the four (or more) round case. Thus it
is not surprising that our counter-example for four rounds is not unconditional.
It relies on the so-called Inverse Decisional Diffie-Hellman assumption. The fact
that there is no black-box counter-example can be used to show that there is
in some sense no “generic” adversary which breaks the adaptive security of the
four-round Feistel-network with non-adaptive round functions. What “generic”
actually means will not be the topic of this paper, but see Sect. 4 from [Pie06]
for the corresponding statement for sequential composition.

3 Basic Definitions and Random Systems

We use capital calligraphic letters like X to denote sets, capital letters like X to
denote random variables and small letters like x denote concrete values. To save
on notation we write X i for (X1, X2, . . . , Xi).

For x ∈ {0, 1}2n we denote with Lx and Rx the left and right half of x
respectively, so x = Lx‖Rx. Similarly for any function f with range {0, 1}2n, we
denote with Lf (Rf) the function one gets by ignoring the right (left) half of the

output of f . For two functions f(.) and g(.) we denote with f .g(.)
def

= g(f(.)) the
sequential composition of f and g.6 For a (randomized) function f we denote
with collk(f) the collision probability of any fixed k-tuple of distinct inputs, i.e.

collk(f) = max
x1,...,xk

P(∃i, j; 1 ≤ i < j ≤ k : f(xi) = f(xj)).

If f denotes a uniform random function with range {0, 1}n, then collk(f) ≤
k2/2n+1, this is called the birthday bound which we will use quite often.

Definition 1 (Feistel-network) The (one-round) Feistel-network ψ[f ] :
{0, 1}2n → {0, 1}2n is a permutation based on a function f : {0, 1}n → {0, 1}n,
and is defined as follows

ψ[f ](x)
def
= (f(Lx)⊕ Rx)‖Lx.

With ψ[f1 · · · fk]
def

= ψ[f1].ψ[f2].· · ·.ψ[fk] we denote the k-round Feistel-network
based on (randomized) round functions f1, . . . , fk, here the randomness used by
any function is always assumed to be independent of the randomness of the other
round functions. The k round Feistel-network where the same instantiation of a

function f is used for all rounds is denoted by ψ[f k]
def

= ψ[f · · · f︸ ︷︷ ︸
k times

].

5 We build F from a pseudorandom involution (PRI), how to construct a PRI from a
PRP (via a black-box reduction) has been shown in [NR02].

6 Note that f . g is usually denoted with g ◦ f .



Random Systems: Many results from this paper are stated and proven in the
random systems framework of [Mau02]. A random system is a system which takes
inputs X1, X2, . . . and generates, for each new input Xi, an output Yi which de-
pends probabilistically on the inputs and outputs seen so far. We define random
systems in terms of the distribution of the outputs Yi conditioned onX iY i−1 (i.e.
the actual query Xi and all previous input/output pairs X1Y1, . . . , Xi−1Yi−1).

Definition 2 (Random systems) An (X ,Y)-random system F is a sequence
of conditional probability distributions PF

Yi|XiY i−1 for i ≥ 1. Here we denote by

PF

Yi|XiY i−1(yi, x
i, yi−1) the probability that F will output yi on input xi condi-

tioned on the fact that F did output yj on input xj for j = 1, . . . , i− 1.

As special classes of random systems we will consider random functions (which
are exactly the stateless random systems) and random permutations.

Definition 3 (Random functions and permutations) A random function
X → Y (random permutation on X ) is a random variable which takes as values
functions X → Y (permutations on X ).

A uniform random function (URF) R : X → Y (A uniform random permu-
tation (URP) P on X ) is a random function with uniform distribution over all
functions from X to Y (permutations on X ). Throughout, the symbols R and P
are used for the systems defined above (X ,Y to be understood).

Indistinguishability of random systems. The distinguishing advantage of
a computationally unbounded distinguisher for two random variables A and B is
simply the statistical distance of A and B. It is more intricate to define what we
mean by the indistinguishability of random systems as here one must specify how
the systems can be accessed. For this we define the concept of a distinguisher.

Definition 4 A (Y ,X )-distinguisher is a (Y ,X )-random system which is one
query ahead; i.e. it is defined by PD

Xi|Y i−1Xi−1 instead of PD

Xi|Y iXi−1 for all i. In

particular the first output PD

X1
is defined before D is fed with any input.

We can now consider the random experiment where a (Y ,X )-distinguisher queries
a (X ,Y)-random system

Definition 5 With D♦F we denote the random experiment where a distin-
guisher D interactively queries a compatible random system F.

We divide distinguishers into classes by posing restrictions on how the distin-
guisher can access its inputs and produce its queries. In particular the following
attacks will be of interest to us:

– CPA: Adaptively Chosen Plaintext Attack; here the adversary can choose
the i’th query after receiving the (i− 1)’th output.

– nCPA: Non-Adaptively Chosen Plaintext Attack; here the distinguisher must
choose all queries in advance.

– KPA: Known Plaintext Attack; the queries are chosen uniformly at random.



If F is a permutation, its inverse F−1 is well-defined and we can consider the
attacks

– CCA: Adaptively Chosen Ciphertext Attack
– nCCA: Non-Adaptively Chosen Ciphertext Attack

which are defined like a CPA and nCPA, respectively, but where the attacker can
additionally make queries from the inverse direction.

Definition 6 For k ≥ 1, the two random experiments D♦F and D♦G define a
distribution over X k×Yk. The advantage of D after k queries in distinguishing
F from G, denoted ∆D

k (F,G), is the statistical difference between those distri-
butions7

∆D

k (F,G)
def

=
1

2

∑

Xk×Yk

∣∣PD♦F

XkY k − PD♦G

XkY k

∣∣ . (1)

The advantage of the best ATK-distinguisher making k queries for F and G is

∆ATK
k (F,G)

def

= max
ATK−distinguisher D

∆D

k (F,G).

Informally, a family of random functions indexed by a security parameter (γ ∈ N)
is ATK-secure QRF, if for any polynomial p(.) the distinguishing advantage
∆ATK
p(γ)(F,R) is negligible (in γ). QRPs are defined similarly but using P instead

of R, and where we additionally require that F (for any value of the security
parameter) is a permutation.

Pseudorandomness. We denote with AdvATK
t,k (F,G) the distinguishing advan-

tage of the best oracle circuit for random systems F and G where the circuit
must be of size at most t and make at most k ATK-queries to its oracle. So Adv
is defined similarly to ∆ but with an additional restriction on the size of the
distinguisher. In particular AdvATK

∞,k(F,G) = ∆ATK
k (F,G).

Informally, a family of keyed functions F indexed by a security parame-
ter γ ∈ N is an ATK-secure pseudorandom function (PRF) if F (with security
parameter γ) can be computed in uniform polynomial (in γ) time, and for any
polynomial p(.) the distinguishing advantage AdvATK

p(γ),p(γ)(F,R) is negligible in
γ (for a key chosen uniformly at random). Pseudorandom permutations (PRP)
are defined similarly but using P instead of R, and where we additionally require
that F (for any value of the security parameter and key) is a permutation.

We usually use sans-serif fonts like F to denote systems which can be effi-
ciently computed (in particular pseudorandom systems), and bold fonts like F
to denote quasirandom and ideal systems.

7 This definition has a natural interpretation in the random experiment where we
first toss a uniform random coin C ∈ {0, 1}. Then we let D (which has no a priori
information on C) make k queries to a system H where H ≡ F if C = 0 and H ≡ G
if C = 1. Here the expected probability that an optimal guess on C based on the k
inputs and outputs of H will be correct is 1/2 +∆D

k (F,G)/2.



4 Relaxations of the Three-Round Luby-Rackoff Cipher

Let us first state some results for the three-round Feistel-network.

Proposition 1 For any (ATK,ATK′)∈{(CPA,CPA), (nCCA,nCPA), (KPA,KPA)}
and random function F

∆ATK
k (ψ2n[FFF],P) ≤ 3 ·∆ATK′

k (F,R) + 2 ·
k2

2n+1
. (2)

The analogous statement also holds in the computational case – i.e. for any
efficient random function F

AdvATK
t,k (ψ2n[FFF],P) ≤ 3 ·AdvATK′

t′,k (F,R) + 2 ·
k2

2n+1
, (3)

where t′ = poly(t, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.

The classical result of Luby and Rackoff [LR86], states that the Feistel-network
with three independent PRF rounds is a CPA secure PRP – i.e (3) for (ATK,ATK′) =
(CPA,CPA).

Luby and Rackoff proved this result directly. One gets a simpler proof by
first showing that the three-round Feistel-network with URFs R is a CPA secure
QRP as this is a purely information-theoretic statement. In particular it was
shown in [Mau02] that8

∆CPA
k (ψ2n[RRR],P) ≤ 2 ·

k2

2n+1
. (4)

This bound also holds for nCCA distinguishers (as we show in Appendix B).
These results directly imply Proposition 1 by a standard hybrid argument.9

Lucks showed [Luc96] (see also [NR99]) that the first round in the three-round
Luby-Rackoff cipher can be replaced with a much weaker primitive which only
must provide some guarantee on the collision probability on the left half of the
output (for any two fixed inputs). In particular, an almost pairwise independent
permutation or a Feistel-round with an almost XOR-universal function will do.

8 This bound has been improved – using larger number of rounds – in a series of
papers. The latest [Pat04] by Patarin claims (optimal) security up to k � 2n (and
not just k � 2n/2) queries, using five rounds (five rounds are also necessary to get
such optimal security).

9 The argument goes as follows for pseudorandom systems: let (ATK,ATK′) ∈
{(CPA,CPA), (nCCA,nCPA), (KPA,KPA)} and suppose there is an efficient ATK-
distinguisher A for ψ2n[FFF] and P. Then by (4) this A will also distinguish ψ2n[FFF]
from ψ2n[RRR]. Consider the hybrids H0 = ψ2n[FFF], H1 = ψ2n[RFF], . . . , H3 =
ψ2n[RRR]. By the triangle inequality there is an 0 ≤ i ≤ 2 (say i = 1) such that A
can distinguish Hi from Hi+1. Now, the distinguisher which – with access to an oracle
G (implementing either F or R) – simulates A♦ψ2n[RGF] and outputs the output of
A is an efficient ATK′-distinguisher for F with the same advantage as A’s advantage
for H1 and H2. The corresponding argument also holds in the quasirandom setting.



Proposition 2 For any ATK ∈ {CPA, nCPA,KPA}, any random functions F,
G, and any permutation H

∆ATK
k (H . ψ2n[FG],P) ≤ ∆ATK

k (F,R)+2 ·∆KPA
k (G,R)+collk(LH)+

k2

2n
. (5)

The analogous statement also holds in the computational case: for any ATK ∈
{CPA, nCPA,KPA}, any efficient random functions F,G, and any efficient per-
mutation H

AdvATK
t,k (H . ψ2n[FG],P) (6)

≤ AdvATK
t′,k (F,R) + AdvKPA

t′,k (G,R) + collk(LH) +
k2

2n+1
,

where t′ = t+poly(n, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.

Let us stress that (6) does not directly follow from (5).10 The proof of Proposi-
tion 2 is given in Appendix C.

We relax the construction further for ATK = KPA by showing that the first
round can be removed completely (as opposed to when ATK ∈ {CPA, nCPA}11).
Moreover, the round functions can be replaced by a single instantiation of a
KPA secure function. Note that if one in addition interchange the left and the
right part of the output, the resulting construction is an involution, i.e. has
the structural property of being self inverse. This result also generalizes Lemma
2.2 of [MT05] which states that the two round Feistel-network with CPA secure
PRFs is a KPA secure PRP.

Proposition 3 For any random function F

∆KPA
k (ψ2n[F2],P) ≤ ∆KPA

2k (F,R) + 4 ·
k2

2n+1
. (7)

The analogous statement also holds in the computational case: for any (in par-
ticular efficient) random function F

AdvKPA
t,k (ψ2n[F2],P) ≤ AdvKPA

t′,2k(F,R) + 4 ·
k2

2n+1
, (8)

where t′ = t+poly(n, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.

The proof is given in Appendix C. Note that unlike in the previous propositions,
here we do not require the round function F to be efficient in the computational
case (the reason is that in the proof we do not need the distinguisher to simulate
any round function).

10 The reason why a reduction – like the simple argument to show that Proposition 1
follows from (4) – fails here, is that the KPA security guarantee for one of the com-
ponents is weaker than the CPA security for the whole construction. But fortunately
the proof of (5) is such that it easily translates to the pseudorandom setting.

11 ψ2n[RR] can be distinguish from P with two non-adaptively chosen queries: query
0n‖0n 7→Ly‖Ry and 0n‖1n 7→Ly

′‖Ry
′, and output 1 if Ry⊕Ry

′ = 1n and 0 otherwise.



5 The Second Round is Crucial

In the previous section we have seen that in the classical three-round Luby-
Rackoff cipher the first and third round function need not be CPA secure. In this
section we will see that the security requirements for the second round cannot
be relaxed. We only give proof sketches for the propositions of this section.

The following proposition states that to achieve CPA security in general it is
not sufficient that the second round function is nCPA secure. There exists a nCPA

secure function, such that the three-round Feistel-network with this function in
the second, and any random functions in the first and third round, is not CPA

secure.

Proposition 4 There exists a random function F such that for any random
functions G and G′ (in particular for G = R and G′ = R)

∆nCPA
k (F,R) ≤

k2

2n−1
and ∆CPA

2 (ψ2n[GFG′],P) ≥ 1− 2−n+1.

The analogous statement also holds in the computational case: (informal) there
is a nCPA secure PRF F such that ψ2n[GFG′] is not a CPA secure PRP for any
(not necessarily efficient) functions G and G′.

Proof. Let us first consider the quasirandom statement. Let I be a uniform
random involution, i.e. I(I(x)) = x for all x. Now, F is simply defined as F(x) =
x⊕ I(x), note that this F satisfies F(x) = F(x⊕ F(x)) for all x.

The nCPA security of F (which is simply the nCPA security of I) can be
bounded as stated in the proposition by standard techniques (see Appendix C).
Furthermore, ψ2n[GFG′] can easily be distinguished from P with two adaptively
chosen queries as follows. After a first query 0n‖0n, the output LY ‖Z contains
the output Z of the internal function F. Now make a second query 0n‖Z. If the
(unknown) input to F in the first query was some value V , then in this query it
will be V ⊕Z, and as F satisfies F(V ) = F(V ⊕F(V )) = F(V ⊕Z), the output of
F will again be Z, and the overall output will be (LY ⊕ Z)‖Z. The proposition
follows as the output of P will satisfy such a relation with probability at most
1
2n + 2n−1

22n−1 ≤ 2−n+1.
The corresponding statement for the pseudorandom setting is proven almost

identically. The only difference is that we need to use a CPA secure pseudorandom
involution I instead of the uniform random involution I. It is shown in [NR02]
how to construct a pseudorandom involution from any CPA secure PRF. ut

The next proposition states that the network will in general not (even) be
nCPA secure when the second round function is only secure against KPAs.

Proposition 5 There exists a random function F such that for any random
functions G and G′

∆KPA
k (F,R) ≤

k2

2n+1
, and ∆nCPA

2 (ψ2n[GFG′],P) ≥ 1− 2−n.



The analogous statement also holds in the computational case: (informal) there
is a KPA secure PRF F such that ψ2n[GFG′] is not a nCPA secure PRP for any
(not necessarily efficient) functions G and G′.

Proof. Let us first consider the statement in the quasirandom setting. Let F
be a URF which ignores the first input bit, i.e. for all x ∈ {0, 1}n−1 we have
F(0‖x) = F(1‖x). The KPA security of F follows from the fact that F looks
completely random unless we happen to query two queries of the form 0‖x and
1‖x. By the birthday bound the probability that this happens after k queries is

at most k2

2n+1 (see Appendix C). Furthermore, ψ2n[GFG′] can be distinguished
from P with two non-adaptively chosen queries. For instance on input 0n‖0n

and 0n‖(1‖0n−1), the right half of the output will be identical. However, for P
this only happens with probability at most 2n−1

22n−1 ≤ 2−n.
The corresponding statement in the pseudorandom setting is proven exactly

as above, except that we have to use a PRF F instead of F. ut

6 Four nCPA Secure Rounds, the Quasirandom Case

In this section we will show that the four-round Feistel-network with nCPA secure
QRFs is a CPA secure QRP. This is also the best possible as in Sect. 5 we showed
that four rounds are also necessary. The theorem is even stronger as the third
and fourth round function must only be KPA secure QRFs.

Theorem 1 For any random functions F and G

∆CPA
k (ψ2n[FFGG],P) ≤ 3 ·

(
∆nCPA
k (F,R) +∆KPA

k (G,R)
)

+
k2

2n−2
.

To prove this theorem we use Theorem 2 from [MPR06] which, for the special
case of the four-round Feistel-network, is given as Proposition 6 below. The
proposition bounds the security of a composition against a “strong” attacker
sATK (in particular CPA) in terms of the security of the components against
“weak” attackers wATKi (in particular nCPA or KPA).

The proposition uses the concept of conditions defined for random systems as
defined in Appendix A, for now we only give an informal definition: With FA we
denote the random system F, but which additionally defines an internal binary
random variable after each query (called a condition). Let Ai ∈ {0, 1} denote
the condition after the i’th query. We set A0 = 0 and require the condition to be
monotone which means that Ai = 1⇒ Ai+1 = 1 (i.e. when the condition failed,
it will never hold again). Let ai denote the event Ai = 1, then with

νATK(FA, ak)
def

= max
ATK−distinguisher D

PD♦F
A

ak
, (9)

we denote the advantage of the best ATK distinguisher to make the condition
fail after at most k queries to FA.



Proposition 6 If for any ({0, 1}n, {0, 1}n)-random system with a condition FA

νsATK(ψ2n[F
ARRR], ak) ≤ ν

wATK1(FA, ak) + α1 (10)

νsATK(ψ2n[RFARR], ak) ≤ ν
wATK2(FA, ak) + α2 (11)

νsATK(ψ2n[RRFAR], ak) ≤ ν
wATK3(FA, ak) + α3 (12)

νsATK(ψ2n[RRRFA], ak) ≤ ν
wATK4(FA, ak) + α4 (13)

for some attacks wATK1, wATK2, wATK3, wATK4, sATK and some α1, α2, α3,
α4 ≥ 0, then for any F1,F2,F3,F4

∆sATK
k (ψ2n[F1F2F3F4], ψ2n[RRRR]) ≤

4∑

i=1

(∆wATKi

k (Fi,R) + αi).

To apply this proposition we must show that equations (10), (11), (12) and (13)
hold for some attack wATKi and αi for i = 1, 2, 3, 4.

In Appendix D we prove the following claim, from which Theorem 1 now
follows.

Claim 1 Equation (10) - (13) are satisfied for any random function with a
condition FA, sATK = CPA, and

(
wATKi, αi

)
=





(
nCPA, 2 · k2

2n+1

)
if i = 1

(
nCPA, 2 · k2

2n+1 +∆nCPA
k (F,R)

)
if i = 2

(
KPA, 2 · k2

2n+1 +∆KPA
k (F,R)

)
if i = 3

(
KPA, 2 · k2

2n+1

)
if i = 4 .

7 Four nCPA Secure Rounds, the Pseudorandom Case

In this section we again investigate the CPA security of the four-round Feistel-
network with nCPA secure round functions, but this time for pseudorandom
systems. We show that here the situation is dramatically different from the
quasirandom setting by constructing a nCPA secure PRF where the four-round
Feistel-network with this PRF as round function is not CPA secure.

This PRF is defined over some group (of prime order), and to prove the
nCPA security we assume that the so-called inverse decisional Diffie-Hellman
(IDDH) is hard in this group. Informally, the IDDH assumption requires that
for a generator g and random x, y it is hard do distinguish the triple (g, gx, gy)

from (g, gx, gx
−1

).

Theorem 2 (Informal) Under the IDDH assumption there exists a nCPA secure
PRF F such that the four-round Feistel-network where each round is instantiated
with F (with independent keys) is not a CPA secure pseudorandom permutation.



This theorem follows from Lemma 1 below which states that there exist nCPA

secure PRFs F1,F2,F3 such that the left half of the three round Feistel-network

Lψ2n[F1F2F3] is not a CPA secure PRF. This implies that also ψ2n[F1F2F3G] is
not a CPA secure PRP for any G (and thus proves Theorem 2) as follows. By
the so-called PRF/PRP Switching Lemma any CPA secure PRP P is also a CPA

secure PRF. Clearly, then also LP must be a CPA secure PRF. Now, by Lemma 1

Lψ2n[F1F2F3] = Lψ2n[F1F2F3G] is not a CPA secure PRF, so ψ2n[F1F2F3G] can-
not be a CPA secure PRP.12

Lemma 1 Under the IDDH-assumption there exist nCPA secure PRFs F1,F2,F3

such that Lψ2n[F1F2F3] is not a CPA secure PRF: it can be distinguished effi-
ciently from a URF with only three (adaptive) queries with high probability.

Outline For this Section. In §7.1 we give a more formal definition of the
IDDH assumption. Then, in §7.2 we first show the construction from [Ple05] of
a nCPA secure PRF whose sequential composition will not be CPA secure. This
extremely simple and intuitive construction is the basis for the (more involved)
counter-example for the Feistel-network (i.e. Lemma 1) given in §7.3.

7.1 The Non-uniform IDDH Assumption

Below we define the IDDH assumption which is similar (and easily seen to im-
ply) the well known decisional Diffie-Hellman assumption. Throughout, we will
work with hardness assumptions in a non-uniform model of computation (i.e. we
require hardness against polynomial size circuit families and not just any fixed
Turing machine).13

Let G denote an efficiently computable family of groups indexed by a security
parameter n ∈ N. By efficiently computable we mean that one can efficiently (i.e.
in time polynomial in n) sample a group (together with a generator) from the
family, and efficiently compute the group operations therein. Abusing notation
we denote with (G, g) = G(n) any group/generator pair for security parameter n.

The IDDH assumption is hard in G if for (G, g) = G(n) polynomial size
circuits have negligible advantage guessing whether for a given triple (g, gx, gy)
the y is random or computed as y = x−1, more formally

12 The lemma talks about three different Fi’s (and in the proof we really construct a
different Fi for every round), but the theorem is stated for a single F. This does
not really make a difference. For example this single F can be defined as behaving
like Fi with probability 1/3 for i ∈ {1, 2, 3}. Then with constant probability 3−3 the
ψ2n[FFF] behaves like ψ2n[F1F2F3].

13 In cryptography security usually means security against non-uniform (and not just
uniform) adversaries, and thus also the hardness assumptions used are usually non-
uniform, though this is sometimes not explicitly stated as the security proofs work
in both settings – i.e. a uniform (non-uniform) assumption implies hardness against
uniform (non-uniform) adversaries. But here this is not quite the case, we do not
know how to prove a uniform version of Lemma 1. (But one can do so under a
somewhat stronger assumption than IDDH. Informally, this assumption is IDDH
but where the attacker can also choose the generators to be used in the challenge.)



Definition 7 (non-uniform IDDH) For a group G and a generator g of G

AdvIDDHs (G, g)
def
= max
C,|C|≤s

∣∣∣∣Pr
x

[
C(g, gx, gx

−1

)= true
]
− Pr
x,y

[C(g, gx, gy)= true]

∣∣∣∣ ,

where the probability is over the random choice of x, y ∈ [1, . . . , |G|]. We say that
IDDH is hard in G if for any polynomial p(.)

AdvIDDHp(n) (G(n)) = negl(n).

7.2 Counter-example for Sequential Composition from [Ple05]

In this section we construct a simple PRF F, but where the sequential composi-
tion of (arbitrary many) such F (with independent keys) is not CPA secure.

F is based on some prime order cyclic group (G, g) = G(n) where the IDDH
problem is hard and where the elements of the group can be efficiently and
densely encoded into {0, 1}n (with dense we mean that all but a negligible frac-
tion of the strings should correspond to an element of the group).14 For example
we can let G be a subgroup of prime order q of Z

∗
p, where p is a safe prime (i.e.

2q + 1) and q is close to 2n ([Dam04] describes how to embed such a G into
{0, 1}n).

Let [.] : G(n) → {0, 1}n denote an (efficient) embedding of G into bitstrings
(to save on notation we let [a, b] denote the concatenation of [a] and [b]). Let
R : K × {0, 1}4n → Z

4
q be any nCPA secure PRF. Now consider the following

definition of a nCPA secure PRF F : {0, 1}4n → {0, 1}4n with secret key (κ ∈
K, x ∈ Z

∗
q).

The first thing F does on input (α, β, γ, δ) ∈ {0, 1}4n is to generate some
pseudorandom values using R, i.e.

(r1, r2, r3, r4)← R(κ, α, β, γ, δ). (14)

Further, if there exists (a, b, c, d) ∈ G4 s.t. α = [a], β = [b], γ = [c], δ = [d] then F

outputs (here x−1 is the inverse of x in Z
∗
q)

F([a, b, c, d])→ ([axr1 , br1 , cx
−1r2 , dr2 ]), (15)

with r1, r2 generated as in (14). On the remaining inputs (which are a negligible
fraction of {0, 1}4n) F outputs just the pseudorandom values [gr1 , gr2 , gr3 , gr4 ].

Now consider the cascade F′ . F′′ . F′′′ of three independent F’s (with corre-
sponding keys (x1, κ1), (x2, κ2), and (x3, κ3)). Make a first query [g, g, g, g]

F′ . F′′ . F′′′([g, g, g, g])→ [gx1x2x3r, gr, gx
−1
1 x

−1
2 x

−1
3 r′ , gr

′

].

14 For this construction we actually do not need this embedding, we could define F

directly over the group. But we will need it (or more precisely, the fact that if X
is in the range of F, also X ⊕ R for a random bitstring R is in the range with
overwhelming probability) when we extend this construction to get the counter-
example for the Feistel-network in the next section.



Then the output will have the form gx1x2x3r, gr, gx
−1
1 x

−1
2 x

−1
3 r′ , gr

′

for some r, r′.
Now exchange the right and the left half of this output and use it as the second
query

F′ . F′′ . F′′′([gx
−1
1 x

−1
2 x

−1
3 r′ , gr

′

, gx1x2x3r, gr])→ [gr
′′

, gr
′′

, gr
′′′

, gr
′′′

]

so the output is of the form [u, u, v, v] for some u, v and thus can be distinguished
from random. Therefore F′ . F′′ . F′′′ is not a CPA secure PRF. This proves that
the sequential composition of nCPA secure PRFs does not yield a CPA secure
function in general. Note that this distinguishing attack works for any number
of rounds, not just three. The following lemma states that F is an nCPA secure
PRF if IDDH is hard in G, R is a nCPA secure PRF and the encoding [.] is dense
(as then (2n − |G|)/2n is negligible).

Lemma 2 For F over (G, g) = G(n) we have

AdvnCPA
k,s (F,R) ≤ 6 ·k ·AdvIDDHs′ (G, g)+AdvnCPA

k,s′ (R,R)+4 ·k ·
2n − |G|

2n
, (16)

where s′ = s+ poly(k, n) for some polynomial poly which accounts for the over-
head implied by the reduction we make.

Proof. The Lemma follows from the Lemmata 3 and 4 below. ut

Instead of proving this lemma directly, we consider a function F̃R
′

: Z|G|×G
4 →

G4 (defined below) which will be easier to analyze. F̃R
′

is defined almost like F

but with two differences. First, the PRF R used by F is replaced by a uniformly
random function R′, and second we do not embed the output of F̃R

′

into {0, 1}n

as in F (using the embedding [.]).

We define F̃R
′

, with key x ∈ Z|G| and oracle access to R′ : G4 → Z2
|G| as

F̃R
′

(x, a, b, c, d)→ (axr, br, cx
−1r′ , dr

′

) where R′(a, b, c, d)→ (r, r′).

By the following lemma, distinguishing F̃R
′

from a URF is basically as hard as
distinguishing F.

Lemma 3 For URFs R : G4 → G4, R′ : G4 → Z2
|G|, R′′ : {0, 1}4n → {0, 1}4n

and R from the definition of F,

AdvnCPA
k,s (F,R′′) ≤ AdvnCPA

k,s′ (F̃R
′

,R) + AdvnCPA
k,s′ (R,R′) + 4 · k ·

2n − |G|

2n
,

where s′ = s+ poly(k, n) for some polynomial poly which accounts for the over-
head implied by the reduction we make.

Proof. Let FR
′

be F, but where one uses the URF R′ instead of R. Then

AdvnCPA
k,s (F,R′′) ≤ AdvnCPA

k,s (FR
′

,R′′) + AdvnCPA
k,s′ (R,R′).



FR
′

only differs from F̃R
′

by the use of the embedding [.], as for a random x ∈ G,
[x] is |G|/2n close to uniform we further get

AdvnCPA
k,s (FR

′

,R′′) ≤ AdvnCPA
k,s′ (F̃R

′

,R) + 4 · k ·
2n − |G|

2n
.

ut

We will now bound the indistinguishability of F̃R
′

from random in terms of the
hardness of the IDDH problem.

Lemma 4

AdvnCPA
k,s (F̃R

′

,R) ≤ 6 · k ·AdvIDDHs+poly(k,n)(G, g).

Proof. First we observe that for any nCPA and non-uniform distinguishers C,
there is a distinguisher C ′ with15 |C ′| ≤ |C|+ O(k · log(|G|)) = |C| + poly(k, n)
which behaves exactly as C, but which additionally “knows” all the discrete
logarithms to basis g of its inputs, i.e. when C ′ makes a query (a1, a2, a3, a4)
where ai = gzi , then the z1, . . . , z4 are somehow hardwired into C ′.16

The task of our distinguisher C ′ is to distinguish k quadruples with uniform
distribution over G4 from k quadruples of the form

(axr1 , ar2, a
x−1r′

3 , ar
′

4 ) = (gz1xr, gz2r, gz3x
−1r′ , gz4r

′

). (17)

where (a1, . . . , a4) is a query chosen (non-adaptively) by C ′ and x, r, r′ are uni-

formly random (note that x, which is part of the key of F̃R
′

, is the same for all
k quadruples, but the r, r′ are independently generated by R′ for each of the k
quadruples). As we do assume that C ′ knows the z1, . . . , z4, this is equivalent17

to distinguish

(gxr, gr, gx
−1r′ , gr

′

) from (gr, gr
′

, gr
′′

, gr
′′′

), (18)

where x and r, r′, r′′, r′′′ are uniformly random.

We make the task for C ′ even simpler and additionally provide gx and gx
−1

,
i.e. C ′ must distinguish

(gx, gx
−1

, gxr, gr, gx
−1r′ , gr

′

) from (gx, gx
−1

, gr, gr
′

, gr
′′

, gr
′′′

). (19)

15 As we require that group operations can be done in time polynomial in n, the rep-
resentation of elements of |G| — which is at least log(|G|) bits long — must also be
polynomial (as otherwise one could not even read an element in polynomial time).

16 This observation may seem silly, but this “knowledge” seems necessary in the fol-
lowing reduction. This is also the reason why we can only prove this lemma in the
non-uniform setting.

17 Here and below with problem A being “equivalent” or “easier” than problem B,
we mean that if there is a distinguisher C with advantage ε for B, then there’s a
distinguisher C̃ with the same advantage ε for A, where |C̃| ≤ |C| + poly(k, n).



Clearly the task given by (19) is at most as difficult as (18) as one can always
ignore the first two elements. We call the corresponding problem EDDH, i.e.

AdvEDDHs (G, g) = max
C,|C|≤s

∣∣∣∣ Pr
x,r,r′

[
C(gx, gx

−1

, gxr, gr, gx
−1r′ , gr

′

) = true
]
−

Pr
x,r,r′,r′′,r′′′

[
C(gx, gx

−1

, gr, gr
′

, gr
′′

, gr
′′′

) = true
] ∣∣∣∣.

Thus distinguishing F̃R
′

from R is at most as hard as distinguishing

(gx, gx
−1

, gxr1 , gr1 , gx
−1r′1 , gr

′

1), . . . , (gx, gx
−1

, gxrk , grk , gx
−1r′k , gr

′

k) (20)

from
(gx, gx

−1

, gr1 , gr
′

1 , gr
′′

1 , gr
′′′

1 ), . . . , (gx, gx
−1

, grk , gr
′

k , gr
′′

k , gr
′′′

k ), (21)

where x and all the ri, . . . , r
′′′
i are uniformly random. We can use a hybrid

argument to bound this distinguishing advantage in terms of the hardness of
the EDDH problem. Let Hi denote the i’th hybrid given by

(gx, gx
−1

, gxr1 , gr1 , gx
−1r′1 , gr

′

1)

...

(gx, gx
−1

, gxri , gri , gx
−1r′i , gr

′

i)

(gx, gx
−1

, gri+1 , gr
′

i+1 , gr
′′

i+1 , gr
′′′

i+1)

...

(gx, gx
−1

, grk , gr
′

k , gr
′′

k , gr
′′′

k ).

Note that the distribution (21) is just H0 and the distribution (20) is Hk. Thus
there is a j such that C ′ can distinguish Hj−1 from Hj with advantage at least
ε/k. Now consider the following distinguisher C ′′ for EDDH: on input (a1, . . . , a6)

(which always satisfies a1 = gx and a2 = gx
−1

for a random x) C ′′ generates the
distribution

(gx, gx
−1

, gxr1 , gr1 , gx
−1r′1 , gr

′

1)

...

(gx, gx
−1

, gxrj−1 , grj−1 , gx
−1r′j−1 , gr

′

j−1)

(gx, gx
−1

, a3, a4, a5, a6)

(gx, gx
−1

, grj+1 , gr
′

j+1 , gr
′′

j+1 , gr
′′′

j+1)

...

(gx, gx
−1

, grk , gr
′

k , gr
′′

k , gr
′′′

k )

and runs C ′ on this input.18 As the above distribution is equivalent to Hj if
(a1, . . . , a6) is of the form as shown by the left side of (19), and Hj−1 if it’s of

18 Note that C′′ really can efficiently sample this distribution as it knows gx and gx−1

(which are given by a1 and a2 respectively).



the form on the right side of (19), we conclude that C ′′ has the same advantage
ε/k for EDDH as C ′ had in distinguishing Hj−1 from Hj , so

AdvnCPA
k,s (F̃R

′

,R) ≤ k ·AdvEDDHs+poly(k,n)(G, g).

To conclude the proof of the lemma, we must now reduce IDDH to EDDH

Claim 2
AdvEDDHs (G, g) ≤ 6 ·AdvIDDHs′ (G, g),

where s′ = s+ poly(k, n) for some polynomial poly which accounts for the over-
head implied by the reduction we make.

Proof. First we show that EDDH is equivalent to deciding whether z = xy
or z = r in the tuple (g, gx

−1

, gx, gy, gz), referred to as DDH- (up to a factor
of 2). Reducing EDDH to DDH- is trivial, as we can ignore the unnecessary
components from an EDDH tuple. For the reverse direction, we examine the
following distributions:

H0 = (g, gx
−1

, gx, gy, gxy, gy
′

, gx
−1y′)

H1 = (g, gx
−1

, gx, gy, gc, gy
′

, gc
′

)

H2 = (g, gx
−1

, gx, gy, gr, gy
′

, gr
′

),

where x, y, y′, r, r′ are chosen uniformly at random and with probability 1/2
(c = xy∧c′ = r′). In the other half of the cases (c = r∧c′ = x−1y′). Let AdvA,Bs

denote the maximum advantage – over any circuit of size s – for distinguishing
the distributions A and B. We can write

AdvEDDHs (G, g) ≤ AdvH0,H2

s (22)

≤ AdvH0,H1

s + AdvH1,H2

s (23)

≤ 2 ·AdvDDH−s′ (G, g). (24)

Step (23) follows by applying the triangle inequality. Given a distinguisher
D0,1, that is able to distinguish between H0 and H1, we can build a distin-

guisher for DDH. To decide for a tuple (g, ga
−1

, ga, gb, gc) if c = ab or c = r, it

first generates gr, ga
−1r. Then with probability 1/2 it returns the answer D0,1

gives to the input (g, ga
−1

, ga, gb, gc, gr, ga
−1r) and otherwise D0,1’s response to

(g, ga, ga
−1

, gr, ga
−1r, gb, gc, ). Hence AdvH0,H1

s ≤ AdvDDH−s′ (G, g). An analo-
gous argument can be used to tell D1 and D2 apart and therefore (24) follows.

In our next step we bound the distinguishing advantage of DDH- by demon-
strating that

AdvDDH−s (G, g) ≤ AdvDDHs′ (G, g) + 2 ·AdvIDDHs′ (G, g). (25)

Consider the following distributions

D0 = (g, ga
−1

, ga, gb, gab)

H0 = (g, gr, ga, gb, gab)

H1 = (g, gr, ga, gb, gc)

D1 = (g, ga
−1

, ga, gb, gc).



We want to bound the distinguishing advantage of D0 and D1. To this pur-
pose we use the triangle inequality

AdvDDH−s (G, g) = AdvD0,D1

s

≤ AdvD0,H0

s + AdvH0,H1

s + AdvH1,D1

s . (26)

When distinguishing H0 from H1, we have to solve a plain DDH problem, as
gr carries no information on a and b. Hence

AdvH0,H1

s ≤ AdvDDHs′ (G, g). (27)

Moreover gb, gc do not help distinguishing H1 from D1, and thus

AdvH1,D1

s ≤ AdvIDDHs′ (G, g). (28)

We encounter a similar situation comparing the first two distributions. Since
gb, gab can be generated easily when knowing ga, it follows that

AdvD0,H0

s ≤ AdvIDDHs′ (G, g). (29)

Combining equations (26) – (29) proves (25). Equations (22) – (25) conclude
the proof of the claim. 4

ut

7.3 Proof of Lemma 1

The Feistel-network can be seen as a sequential composition of the round func-
tions, but where one additionally XORs the input to the i’th round function to
the output of the (i + 1)’th round function. So it is not surprising that we can
use Fi’s similar to the F from the previous section to prove Lemma 1. But the
F1,F2, and F3 (from the statement of the lemma) are a bit more complicated as
we have to “work around” this additional XORs. Like F, each Fi has a κi ∈ K
as part of its secret key. Moreover F1 has a x ∈ Z

∗
q and s, t ∈ {0, 1}n, F2 has a

y ∈ Z
∗
q , and F3 a z ∈ Z

∗
q as keys. On input (α, β, γ, δ) = [a, b, c, d] the Fi’s are

defined as (with the ri’s generated as in (14))

F1([a, b, c, d])→





[gxr1 , gr1 ], s, t if [a, b, c, d] = [0, 0, 0, 0];
[0, 0, 0, 0] elseif c = dx;

[gxr1 , gr1 , ([γ ⊕ s]−1)x
−1r2 , ([δ ⊕ t]−1)r2 ] elseif [a, b] = [0, 0];

[gr1 , gr2 , gr3 , gr4 ] otherwise.

F2([a, b, c, d])→ [cy
−1r1 , dr1 , ayr2 , br2 ]

F3([a, b, c, d])→

{
[0, 0, 0, 0] if bz = a;

[az
−1r1 , br1 , czr2 , dr2 ] otherwise.

Proof (of Lemma 1). The lemma follows from Claim 3 and 4 below. ut

Claim 3 One can distinguish Lψ2n[F1F2F3] from a URF with three adaptively
chosen queries with advantage almost 1.



LQ1 : [0, 0, 0, 0] RQ1 : [0, 0, 0, 0]

R2
1 : [gxr′1 , gr′1 ], s, t

R3
1 : ∗, ∗, [gxyr′2 , gr′2 ]

O1 : ∗, ∗, [gxyzr′3 ] ⊕ s, [gr′3 ] ⊕ t

LQ2 : [0, 0], [gxyzr′3] ⊕ s, [gr′3 ] ⊕ t RQ2 : [0, 0, 0, 0]

R2
2 : [gxr′4 , gr′4 , gyzr′5, gr′5 ]

R3
2 : [gzr′6 , gr′6 ], ∗, ∗

O2 : [gxr′4 , gr′4 , gyzr′5, gr′5 ]

LQ3 : [0, 0, gxr′4 , gr′4 ] RQ3 : [0, 0, gyzr′5, gr′5 ]

R2
3 : [0, 0, gyzr′5 , gr′5 ]

R3
3 : [gzr′7 , gr′7 ], ∗, ∗

O3 : [0, 0, gyzr′5 , gr′5 ]

LQi RQi

F1 ⊕

R2
i F2 ⊕

R3
i F3 ⊕

Oi

Fig. 2. An adaptive three query distinguishing attack for Lψ2n[F1F2F3].

Proof (sketch). In Fig. 2 we demonstrate an adaptive three query distinguishing
attack on Lψ2n[F1F2F3]. In the figure, values which are not relevant for the attack
are denoted by ∗. All r′i values are random, but not necessarily equal to a random
value generated by a round function (i.e. as in (14)).19 To see that this is a legal
attack note that every query Qi can be computed from the previous output
Oi−1. That the values will really have the form as described in the attack can
be verified from the definition of the Fi’s.

20 Since the third output starts with
[0, 0] it can be distinguished from a random output with high probability. ut

Claim 4 F1,F2, and F3 are nCPA secure PRFs if IDDH is hard in G.

Proof (sketch). The nCPA security of the Fi’s follows from the nCPA security
of F from the previous section as stated in Lemma 2: F2 is exactly F, so there
is nothing else to prove here. The function F3 behaves exactly as F unless it
is queried on an input [a, b, c, d] which satisfies bz = a for a random z. The
probability that this happens on any (non-adaptive) query is just |G|−1 (and
thus exponentially small even after taking the union bound over all polynomially
many queries).

To prove that F1 is non-adaptively secure, we show how to turn any distin-
guisher D for F1 into one for F3 whose distinguishing advantage differs only by a
negligible amount. First, below we completely ignore the cases where c = dx for

19 For instance, r′1 is the first random value generated by F1 and r′2 is the product of
r′1 and the second random value generated by F2.

20 Actually, there is an exponentially small probability that the values will not have
that form, namely when the input to some round function “by chance” satisfies a
condition that is checked. E.g. when R3

1 is of the form [bz, b, c, d], then the “bz = a”
case of F3 applies, which is only supposed to happen in the second and third query.



F1 and a = bz for F3 as they only happen with exponentially small probability.
Further, as whenever [a, b] 6= [0, 0] the output of F1 is pseudorandom, we can
assume that the non-adaptive distinguisher D for F1 only makes queries where
[a, b] = [0, 0].

Now consider the following distinguisher D′ for F3. First D′ picks some uni-
formly random s, t ∈ {0, 1}n. D′ basically simulates D, but when the query was
[0, 0, 0, 0] then the right half of the output is replaced with s, t. On all other
queries (chosen by D) of the form [0, 0], γ, δ, D′ invokes the system at hand by
[0, 0], γ ⊕ s, δ ⊕ t. Finally D′ outputs the decision bit of the simulated D.

If the system queried by D′ is F3 (with secret key x) then the output distri-
bution that the simulated D gets to see is exactly as if it was generated by F1

(with secret key x, s, t). Also note that when the system queried by D′ is a URF,
then also the output that D sees is uniformly random. Thus the distinguishing
advantage of D′ for F1 (from a URF) is the same as the advantage of D for F3. ut

8 Some Remarks on CCA Security

We have shown that the four-round Feistel-network with nCPA secure round
functions is CPA secure in the information-theoretic, but in general not in the
computational setting. A natural question to ask is how many rounds are nec-
essary/not sufficient to achieve CCA security.

In order to get a CCA secure QRP, it is enough – by the following statement
(taken from [MPR06]) – to cascade two nCPA secure QRPs (the second in inverse
direction)

∆CCA
k (F .G−1,P) ≤ ∆nCPA

k (F,P) +∆nCPA
k (G,P).

With this and Proposition 1 we directly get that six rounds with nCPA secure
QRFs give a CCA secure QRP, i.e.

∆CCA
k (ψ2n[FFFFFF],P) ≤ 6 ·∆nCPA

k (F,R) +
k2

2n−1
.

So six nCPA secure round functions are sufficient to get CCA security, and by
Proposition 4 we know that at least four rounds are necessary. Next we show
that the five-round Feistel-network with nCPA secure QRFs is a CCA secure QRP.
The theorem, which is proved in Appendix E, is stated even more generally.

Theorem 3 For any random functions F and G

∆CCA
k (ψ2n[FFGFF],P) ≤ 8 ·∆nCPA

k (F,R) + 2 ·∆KPA
k (G,R) + 12 ·

k2

2n+1
.

It remains an open question whether four rounds are sufficient.
As to the (in)security of the Feistel-network with nCPA secure round-functions

in the computational setting, we do not know anything beyond what is already
implied by CPA security alone, i.e. four rounds are not enough to get CCA secu-
rity (as it is not enough to get CPA security by Theorem 2).
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A Monotone Conditions for Random Systems

Monotone Conditions for Random Systems. We now define the concept
of monotone conditions for random systems and show how they can be used to
prove bounds on the indistinguishability of random systems.

A monotone condition A for a (X ,Y)-random system F is an event sequence
A1, A2, . . ., where Ai ∈ {ai, ai}. Here ai (ai) denotes the event that the condition
is satisfied (failed) after the i-th query to F has been processed. Monotone means
that if the condition failed, it will never hold again (i.e. ai ⇒ ai+1). So the event
ai immediately implies aj for all j > i.

We denote a (X ,Y)-random system F with a monotone condition A as FA,
and model the monotone condition by an extra binary output of the system Ai
(where Ai = 0 indicates the event ai and Ai = 1 the event ai). As this output Ai
is never used as an input to a distinguisher or another system, it is convenient
to think of FA as of F with a lamp. This lamp is initially off (A0 = 0), but may
turn on at some point to indicate that the condition failed, i.e. the lamp is on
after the i’th query iff Ai = 1.

Definition 8 A (X ,Y)-random system F with a monotone condition A, denoted
FA, is the same random system but with an additional monotone binary variable
sequence A1, A2, . . . defined on it. The value of Ai ∈ {0, 1} is determined after the
i’th query. Monotone means FA is given by the infinite sequence of conditional
probability distributions PF

AiYi|XiY i−1Ai−1
for i ≥ 1 (or equivalently by PF

AiY i|Xi

for i ≥ 1). Ai = 0 means that the condition holds after the i’th query, this event
is denoted by ai, the event Ai = 1 is denoted with ai.

Let F and G be random systems and A be a condition defined for F. We
define three relations for random systems with conditions

FA ≡ GB ⇐⇒ ∀i ≥ 1 : PF

aiY i|Xi = PG

biY i|Xi

F|A ≡ G ⇐⇒ ∀i ≥ 1 : PF

Y i|Xiai
= PG

Y i|Xi

FA �G ⇐⇒ ∀i ≥ 1 : PF

aiY i|Xi ≤ PG

Y i|Xi .

It is not hard to see that F|A ≡ G implies FA � G but not vice versa. Propo-
sition 7 below states that if FA � G, then distinguishing F from G is at least
as hard as making the condition fail.



Definition 9 For a random system F with a condition A we denote with

νD(FA, ak)
def

= PD♦F
A

ak
(30)

the probability that the distinguisher D can make A fail with k queries. The
probability of the best ATK-distinguisher is denoted by

νATK(FA, ak)
def

= max
ATK−distinguisher D

PD♦F
A

ak
. (31)

Proposition 7 If FA � G (which is implied by F|A ≡ G or FA ≡ GB) then
for any distinguisher D

∆D

k (F,G) ≤ νD(FA, ak),

and if FA ≡GB

νD(FA, ak) = νD(GB, bk).

By this proposition we can bound ∆ATK
k (F,G) by first finding a condition A

for F which satisfies FA � G and then trying to prove an upper bound on
νATK(FA, ak).

The next proposition states that if F|A is itself a random system, then adap-
tivity is of no use when one want to make A fail. We will use this proposition
many times as dealing with non-adaptive distinguishers is usually much easier
than to handle adaptive ones.

Proposition 8 For any i ∈ N, if for a random system F with a condition A
there exists a random system G such that F|A ≡ G, i.e. for all i ≥ 1

PF

Y i|Xiai
≡ PG

Y i|Xi , (32)

then adaptivity does not help in provoking ai, i.e.

νCPA(FA, ai) = νnCPA(FA, ai). (33)

In the sequel we make use of a random system called beacon, denoted by B.

Definition 10 (Beacon) An X → Y-beacon B is a random system for which
Y1, Y2, . . . are independent and uniformly distributed over the range Y (and in
particular independent of the inputs).



Note that R|A ≡ B, if A denotes the condition that the inputs to the URF
R are distinct. Hence, by Proposition 7 it follows that

∆KPA
k (F,B)−∆KPA

k (F,R)
tri. ineq.

≤ ∆KPA
k (R,B)

Prop. 7

≤ νKPA(R, ak)
b-bound
≤

k2

2n+1
. (34)

In the sequel we will frequently make use the following two arguments:

(i) Consider a monotone condition A, defined for E(·). Then it follows (which
we show below) that

νATK(EA(F), ak)− ν
ATK(EA(G), ak) ≤ ∆

ATK
k (EA(G), EA(F)). (35)

Consider the ATK-distinguisher D for which it holds that

νD(EA(F), ak) = νATK(EA(F), ak),

and the distinguisher D′ that simply runs D and outputs 1 if ak is provoked
and else 0. Clearly, D′ distinguishes EA(G) from EA(F) with advantage
νD(EA(F), ak)− ν

D(EA(G), ak), from which (35) follows.

(ii) Suppose there is an ATK-distinguisher D for E(F) and E(G), from which we
can construct a distinguisher D � E(·) for F and G.

Let ATK′ = {D �E(·)|D ∈ ATK}, for some random system E(·). Let k′ = c ·k
where c is the number of invocations that E(E) makes to its component E
on every invocation. Then it holds that

∆ATK
k (E(F), E(G)) ≤ ∆ATK′

k′ (F,G)

and

νATK(E(FA), ak) ≤ ν
ATK′(FA, ak′ ).

B Original Luby-Rackoff under nCCA

In this section we show that

∆nCCA
k (ψ2n[RRR],P) ≤ 2 ·

k2

2n+1
.

Let Q→i and O→i denote the set of queries and outputs in the forward direction
(after i queries), respectively. Similarly, let Q←i and O←i denote the queries and
outputs in the reverse direction (after i queries in total), respectively.



– Let c↔i denote the event that the input to the second round function are all
distinct (after i queries).

– Let c→i denote the event that there exist distinct x, x′ ∈ O→i or (x, x′) ∈
O→i ×Q

←
i such that Lx = Lx

′.

– Let c←i denote the event that there exist distinct x, x′ ∈ O←i or (x, x′) ∈
O←i ×Q

→
i such that Lx = Lx

′.

It holds that ψ2n[R
C←RC

↔

RC
→

] ≡ ψ2n[RC
←

BC
↔

RC
→

] � P.

∆nCCA
k (ψ2n[RRR],P)

Prop. 7

≤ νnCCA(ψ2n[R
C←BC

↔

RC
→

], c←k ∨ c
↔
k ∨ c

→
k )

union bound

≤ νnCCA(ψ2n[R
C←BR], c←k ) +

νnCCA(ψ2n[RBRC
→

], c→k ) +

νnCCA(ψ2n[RBC
↔

R], c↔k )

union bound

≤
|Q←k |

2

2n+1
+ |Q←k | ·

|O→k |

2n+1
+

|Q→k |
2

2n+1
+ |Q→k | ·

|O←k |

2n+1
+

(|Q→k |+ |Q
←
k |)

2

2n+1

≤ 2 ·
k2

2n+1
,

where the last inequality follows from the fact that |Q←|+ |Q→| ≤ k.

C Proof of Propositions 2 - 5

Without loss of generality (since we are dealing with stateless systems) we as-
sume that the distinguisher only makes distinct queries. Let C (C ′) denote a
monotone condition for any function defined by letting ci (c′i) denote the event
that the first i inputs of the function are distinct.

Proof (of Proposition 2). Let A denote a monotone condition for any function
defined by letting ai denote the event that the first i outputs of the function are
distinct. Let ATK ∈ {CPA, nCPA,KPA}, from H . ψ2n[R

CG] ≡ H . ψ2n[BCG],



H . ψ2n[BB] ≡ B, B|A ∧ C ≡ P, and BC ≡ RC it follows that

∆ATK
k (H . ψ2n[FG],P)

tri. ineq.

≤ ∆ATK
k (H . ψ2n[FG],H . ψ2n[RG]) +

∆ATK
k (H . ψ2n[RG],H . ψ2n[BG]) +

∆ATK
k (H . ψ2n[BG],H . ψ2n[BB]) +

∆ATK
k (H . ψ2n[BB],P)

(ii), Prop. 7

≤ ∆ATK
k (F,R) + νATK(H . ψ2n[BCG], ck) +

∆KPA
k (G,B) +∆ATK

k (B,P)

(i), (ii)

≤ ∆ATK
k (F,R) + νATK(H . ψ2n[BCB], ck) +∆KPA

k (G,B) +

∆KPA
k (G,B) +∆ATK

k (B,P)
Prop. 8, tri. ineq.

≤ ∆ATK
k (F,R) + νnCPA(H . ψ2n[B

CB], ck) +

2 ·
(
∆KPA
k (G,R) +∆KPA

k (R,B)
)

+∆ATK
k (B,P)

Prop. 7

≤ ∆ATK
k (F,R) + collk(LH) +

2 ·∆KPA
k (G,R) + 2 · νKPA(RC , ck) + νATK(BA∧C , ak ∨ ck)

union bound

≤ ∆ATK
k (F,R) + collk(LH) + 2 ·∆KPA

k (G,R) +

2 · νKPA(RC , ck) + νATK(BA, ak) + νATK(BC , ck)
b-bound
≤ ∆ATK

k (F,R) + collk(LH) +

2 ·∆KPA
k (G,R) + 2 ·

k(k − 1)

2n+1
+ 2 ·

k(k − 1)

22n+1
.

We omit the proof of the analogous statement in the pseudorandom setting,
since the corresponding arguments (in the above proof) easily translates to the
pseudo random setting. ut

Proof (Proposition 3). Let C ′′ denote the monotone condition defined by let-
ting c′′i denote the event that all values at the left half of the inputs and the right

half of the outputs are all distinct (up to the i-th query). From ψ2n[R
2]C
′′

≡ PC
′′

it follows that

∆KPA
k (ψ2n[F2],P)

tri. ineq.

≤ ∆KPA
k (ψ2n[F

2], ψ2n[R
2]) +∆KPA

k (ψ2n[R2],P)
Prop. 7

≤ ∆KPA
k (ψ2n[F

2], ψ2n[R
2]) + νKPA(PC

′′

, c′′k)

(ii)

≤ ∆KPA
2k (F,R) + νKPA(PC

′′

, c′′k)

b-bound
≤ ∆KPA

2k (F,R) +
(2k)2

2n+1
.

In the third inequality, we used the fact that a KPA-distinguisher D for ψ2n[F
2]

and ψ2n[R
2] implies a KPA-distinguisher D′ for F and R with the same distin-

guishing advantage. D′ simply runs D and answers its oracle queries with help



of its own oracle. Note that given two random input-output pairs of any function
f one can easily construct a random input output pair of ψ2n[f

2], and hence D′

needs twice as many oracle queries than D.
We omit the proof of the analogous statement in the pseudorandom setting,

since the corresponding arguments (in the above proof) also hold in the pseudo
random setting. ut

Proof (of Proposition 4, continued). Since F(x) := x ⊕ I(x) it follows that

∆nCPA
k (F,R)

(ii)
= ∆nCPA

k (I,R), and hence it remains to show that

∆nCPA
k (I,R) ≤

k2

2n−1
. (36)

Let A denote the monotone condition that all outputs are distinct and no input
is equal to a previous or subsequent output, i.e. formally

ak ⇐⇒ ∃i, j ≤ k, i 6= j : [xi = yj ] ∨ [yi = yj ].

Clearly, R | A ≡ I and thus

∆nCPA
k (I,R)

Prop. 7

≤ νnCPA(R, ak).

Since we assume (with out loss of generality) that the distinguishers only issue
distinct queries to R, it follows that both xi = yj and yi = yj occurs with
probability 1

2n , respectively. Hence, by the union bound we get

νnCPA(R, ak)
union bound

≤ 2 · k(k − 1) ·
1

2n
,

which concludes the proof. ut

Proof (of Proposition 5, continued). Recall that F be is a uniform random
function which ignores the first bit (so the output does not change if one flips
the first bit). Let A denote the monotone condition, where ak is the event that
there exists two inputs xi and xj (with i < j ≤ k) for which the first bit differs
and the latter n− 1 bits are the same. As F | A ≡ R, it follows that

∆KPA
k (F,R)

Prop. 7

≤ νKPA(R, ak)
b-bound
≤

k2

2n+1
,

which concludes the proof. ut

D Proof of Claim 1

Proof (Claim 1). Without loss of generality (since we are dealing with stateless
systems) we assume that the distinguisher only makes distinct queries. Let C (C ′)
denote a monotone condition for any function defined by letting ci (c′i) denote



the event that the first i inputs of the function are distinct.

(i = 1) Since ψ2n[F
A] .P | A ≡ P it follows that

νCPA(ψ2n[FARRR], ak) = νCPA(ψ2n[FA] . ψ2n[RRR], ak)

(i)

≤ νCPA(ψ2n[FA] .P, ak) +∆CPA
k (ψ2n[FA] . ψ2n[RRR], ψ2n[F

A] .P)

(ii)

≤ νCPA(ψ2n[FA] .P, ak) +∆CPA
k (ψ2n[RRR],P)

Prop. 8

≤ νnCPA(ψ2n[FA] .P, ak) +∆CPA
k (ψ2n[RRR],P)

(ii), (4)

≤ νnCPA(FA, ak) + 2 ·
k2

2n+1
.

(i = 2) From ψ2n[RFARCRC
′

] ≡ ψ2n[RFABCBC
′

], ψ2n[RFBCB] | C ≡ B,
and ψ2n[RFABB] | A ≡ B it follows that

νCPA(ψ2n[RFARR], ak)

≤ νCPA(ψ2n[RFARCRC
′

], ak ∨ ck ∨ c
′
k)

Prop. 7

≤ νCPA(ψ2n[RFABCBC
′

], ak ∨ ck ∨ c
′
k)

union bound

≤ νCPA(ψ2n[RFABB], ak) + νCPA(ψ2n[RFBCB], ck) +

νCPA(ψ2n[RFBBC
′

], c′k)
Prop. 8

≤ νnCPA(ψ2n[RFABB], ak) + νnCPA(ψ2n[RFBCB], ck) +

νCPA(ψ2n[RFBBC
′

], c′k)

(i)

≤ νnCPA(ψ2n[RFABB], ak) +∆nCPA
k (F,R) +

νnCPA(ψ2n[RRBCB], ck) + νnCPA(ψ2n[RFBBC
′

], c′k)

(ii), b-bound

≤ νnCPA(FA, ak) +∆nCPA
k (F,R) + 2 ·

k2

2n+1
.

(i = 3) Clearly ψ2n[RRCFAR] ≡ ψ2n[RBCFAR] and thus

νCPA(ψ2n[RRFAR], ak)

≤ νCPA(ψ2n[RRCFAR], ck ∨ ak)
Prop. 7

≤ νCPA(ψ2n[RBCFAR], ck ∨ ak)
union bound

≤ νCPA(ψ2n[RBFAR], ak) + νCPA(ψ2n[RBCFR], ck)

(i)

≤ νCPA(ψ2n[RBFAR], ak) +∆KPA
k (F,B) + νCPA(ψ2n[RBCBR], ck)

(ii), (34), b-bound

≤ νKPA(FA, ak) +∆KPA
k (F,R) + 2 ·

k2

2n+1



(i = 4) From ψ2n[RRCRC
′

FA] ≡ ψ2n[RBCBC
′

FA] and ψ2n[RBCBF] | C ≡ B
it follows that

νCPA(ψ2n[RRRFA], ak)

≤ νCPA(ψ2n[RRCRC
′

FA], ck ∨ c
′
k ∨ ak)

Prop. 7

≤ νCPA(ψ2n[RBCBC
′

FA], ck ∨ c
′
k ∨ ak)

union bound

≤ νCPA(ψ2n[RBBFA], ak) + νCPA(ψ2n[RBCBF], ck) +

νCPA(ψ2n[RBBC
′

F], c′k)
Prop. 8

≤ νCPA(ψ2n[RBBFA], ak) + νnCPA(ψ2n[RBCBF], ck) +

νCPA(ψ2n[RBBC
′

F], c′k)

(ii), b-bound

≤ νKPA(FA, ak) + 2 ·
k2

2n+1
.

ut

E Proof of Theorem 3

To prove this Theorem 3 we use Theorem 2 from [MPR06] which, for the special
case of the five-round Feistel-network, is given as Proposition 6 below.

Proposition 9 If for any ({0, 1}n, {0, 1}n)-random system with a condition FA

νsATK(ψ2n[FARRRR], ak) ≤ ν
wATK1(FA, ak) + α1 (37)

νsATK(ψ2n[RFARRR], ak) ≤ ν
wATK2(FA, ak) + α2 (38)

νsATK(ψ2n[RRFARR], ak) ≤ ν
wATK3(FA, ak) + α3 (39)

νsATK(ψ2n[RRRFAR], ak) ≤ ν
wATK4(FA, ak) + α4 (40)

νsATK(ψ2n[RRRRFA], ak) ≤ ν
wATK5(FA, ak) + α5 (41)

for some attacks wATK1, wATK2, wATK3, wATK4, wATK5, sATK and some
α1, α2, α3, α4, α5 ≥ 0, then for any F1,F2,F3,F4,F5

∆sATK
k (ψ2n[F1F2F3F4F5], ψ2n[RRRRR]) ≤

5∑

i=1

(∆wATKi

k (Fi,R) + αi).

To apply this proposition we must show that (37), (38), (39), (40), and (41) hold
for some attack wATKi and αi for i = 1, 2, 3, 4, 5. This we do next.

Claim 5 Equation (37) - (41) are satisfied for any function with a condition
FA, sATK = CCA, and

(
wATKi, αi

)
=





(
nCPA, 3 · k2

2n+1 +∆nCPA
k (F,R)

)
if i = 1, 5

(
nCPA, 2 · k2

2n+1 +∆nCPA
k (F,R)

)
if i = 2, 4

(
KPA, 2 · k2

2n+1 +∆KPA
k (F,R)

)
if i = 3 .



Proof (Claim 5). Without loss of generality (since we are dealing with stateless
systems) we assume that the distinguisher only makes distinct queries. Let C
(resp. C′ and C′′) denote a monotone condition for any function defined by letting
ci (resp. c′i and c′′i ) denote the event that the first i inputs of the function are
distinct.

For a random permutation Q over X , let 〈Q〉 denote the (X × {0, 1},X )-
random system defined as follows

〈Q(xi, bi)〉 =

{
Q(xi) if bi = 0

Q−1(xi) if bi = 1.

Note that a CCA (nCCA) attack on Q is now the same as a CPA (nCPA) attack
on 〈Q〉.

Let us consider the following facts that we will frequently use in the sequel:

νCCA(ψ2n[FABB], ak) = νnCCA(ψ2n[FABB], ak)
(ii)

≤ νnCPA(FA, ak), (42)

where the equality follows from Theorem 2 in [Mau02] and the fact that the
outputs of 〈ψ2n[FBB]〉 are completely independent of A (due to the B’s), i.e.

P
〈ψ2n[FBB]〉
ai|XiY i−1ai−1

= P
〈ψ2n[FBB]〉
ai|Xiai−1

for i ≥ 1.

Furthermore, there are random systems G and G′ such that21

〈ψ2n[FBCB]〉 | C ≡G (43)

〈ψ2n[RBCB]〉 | C ≡ G′ (44)

and hence by Proposition 8 it holds that

νCCA(ψ2n[FBCB], ck)
Prop. 8, (43)

= νnCCA(ψ2n[FBCB], ck)

(i)

≤ νnCCA(ψ2n[RBCB], ck) +∆nCPA
k (F,R)

≤
k2

2n+1
+∆nCPA

k (F,R) (45)

and equivalently that

νCCA(ψ2n[RBCB], ck)
Prop. 8, (44)

= νnCCA(ψ2n[FBCB], ck) ≤
k2

2n+1
. (46)

21 G(Lxi‖Rxi, bi) := (Lyi‖Ryi), where Lyi‖Ryi is chosen uniformly at random from
{0, 1}2n if bi = 0 (or i > 2n), and otherwise Ly is chosen uniformly at random from
{0, 1}n and Ryi = F(Ly)⊕P(〈i〉n), where 〈i〉n is the n-bit standard binary encoding
of the integer i. G′ is defined similarly, but with F replaced by R.



(i = 1,5) Since ψ2n[F
ARCRC

′

RC
′′

R] ≡ ψ2n[FABCBC
′

BC
′′

R] it follows that

νCCA(ψ2n[RRRRFA], ak)
sym.
= νCCA(ψ2n[F

ARRRR], ak)

≤ νCCA(ψ2n[F
ARCRC

′

RC
′′

R], ak ∨ ck ∨ c
′
k ∨ c

′′
k)

Prop. 7
= νCCA(ψ2n[F

ABCBC
′

BC
′′

R], ak ∨ ck ∨ c
′
k ∨ c

′′
k)

union bound

≤ νCCA(ψ2n[F
ABBBR], ak) + νCCA(ψ2n[FBCBBR], ck) +

νCCA(ψ2n[FBBC
′

BR], c′k) + νCCA(ψ2n[FBBBC
′

R], c′′k)

(ii)

≤ νCCA(ψ2n[F
ABB], ak) + νCCA(ψ2n[FBCB], ck) +

νCCA(ψ2n[BBC
′

R], c′′k) +
k2

2n+1

(42), (45), (46)

≤ νnCPA(FA, ak) +∆nCPA
k (F,R) + 3 ·

k2

2n+1

(i = 2,4) Clearly, ψ2n[RFARCRC
′

R] ≡ ψ2n[RFABCBC
′

R] and thus

νCCA(ψ2n[RRRFAR], ak)
sym.
= νCCA(ψ2n[RFARRR], ak)

≤ νCCA(ψ2n[RFARCRC
′

R], ak ∨ ck ∨ c
′
k)

Prop. 7
= νCCA(ψ2n[RFABCBC

′

R], ak ∨ ck ∨ c
′
k)

union bound

≤ νCCA(ψ2n[RFABBR], ak) +

νCCA(ψ2n[RFBCBR], ck) + νCCA(ψ2n[RFBBC
′

R], c′k)

(ii)

≤ νCCA(ψ2n[F
ABB], ak) + νCCA(ψ2n[FBCB], ck) +

νCCA(ψ2n[BBC
′

R], c′k)

(42), (45), (46)

≤ νnCPA(FA, ak) +∆nCPA
k (F,R) + 2 ·

k2

2n+1
.

(i = 3) As ψ2n[RRCFARC
′

R] ≡ ψ2n[RBCFABC
′

R] it follows that

νCCA(ψ2n[RRFARR], ak)

≤ νCCA(ψ2n[RRCFARC
′

R], ck ∨ ak ∨ c
′
k)

Prop. 7
= νCCA(ψ2n[RBCFABC

′

R], ck ∨ ak ∨ c
′
k)

union bound

≤ νCCA(ψ2n[RBFABR], ak) + νCCA(ψ2n[RBCFBC
′

R], ck ∨ c
′
k)

(i), (ii)

≤ νKPA(FA, ak) +∆KPA
k (F,B) + νCCA(ψ2n[RBCBBC

′

R], ck ∨ c
′
k)

sym., union bound

≤ νKPA(FA, ak) +∆KPA
k (F,B) + 2 · νCCA(ψ2n[RBCBBR], ck)

(ii)

≤ νKPA(FA, ak) +∆KPA
k (F,B) + 2 · νCCA(ψ2n[RBCB], ck)

(34), (46)

≤ νKPA(FA, ak) +∆KPA
k (F,R) + 2 ·

k2

2n+1
.

ut

Proof (of Theorem 3). Simply apply the above claim and proposition. ut


