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Abstract—We consider the general setting where users need
to provide a secret code c to a verifying entity 1V in order to
obtain access to a resource. More generally, the right to access
the resource could, for example, be granted if one knows one of
two codes c; and cz. For privacy reasons, a party P may want
to hide which of the two codes it knows and only prove that it
knows at least one of them. For example, if the knowledge of a
code corresponds to membership in a certain society, one may
want to hide which society one belongs to. In cryptography, such
a proof is called a witness-hiding proof of knowledge. How can
P prove such a statement to V'?

This paper is concerned with witness-hiding proofs of knowl-
edge using simple mechanical tools. Specifically, we consider cable
(or bicycle) locks, where the codes of the locks correspond to the
secret codes. The above example of proving knowledge of either
c1 or cz in a witness-hiding fashion can be achieved simply as
follows. When given the two locks closed and unlinked (by V),
P presents the configuration of the two locks interlocked, which
can be generated if and only if P knows at least one of the codes.

In the most general case with n codes ci,...,c,, the ac-
cess right is characterized by a so-called knowledge structure
I € P{1,...,n}), a subset of the power set of {1,... n}.
Access is granted if a user knows the codes corresponding to any
of the subsets of I". We present lock-based protocols for witness-
hiding proofs of knowledge for any such monotone knowledge
structure, and investigate the efficiency (i.e., in particular, the
number of lock configurations that P must present) in several
settings such as the availability of solid rings or the availability
of multiple locks for a given code.

The topic of this paper is similar in spirit to other works, such
as the picture hanging puzzles by Demaine et al., which explore
connections between topology and real-world applications, where
the motivation arises also, or even primarily, from mathematical
curiosity.

I. INTRODUCTION

A similar protocol to the one in the abstract works in the
case where P wants to prove that he knows eithe a code ¢y,
or both codes c; and c3. In this case, V' gives P the three
locks closed and unlinked, and P presents the configuration
of the first lock interlocked with the other two. Since such a
configuration can be generated if and only if P either knows
c1, or both ¢y and c3, V is convinced. However, V' does not
learn which set of locks P can actually open.

An interesting question for this type of protocols is: how
can P prove that he knows the code to open at least one out
of three locks? And k out of n? In this paper, we settle these
questions in the general case. We consider a set of n locks
L={Ly,...,L,} and a knowledge structure I' C P(L). We

Inote that either is considered to be non-exclusive

provide protocols that allow P to convince V' that he can open
all the locks in some set WW € I' without revealing W itself.

A. Related Work

An interactive proof [GMRR89] is a protocol which allows
a prover P to convince a verifier V' of some statement. An
interactive proof has to be complete and sound. Completeness
means that an honest prover succeeds in convincing an honest
verifier, and soundness means that a dishonest prover does
not succeed in convincing V' of a false statement. A proof
of knowledge is a special type of interactive proof where the
prover shows knowledge of a witness (e.g., keys for locks)
for some statement. Such a protocol is called witness-hiding
if the verifier does not learn the witness from the protocol
execution [ES90]. A stronger notion is zero-knowledge. Here,
the interactive proof is performed in such a way that the
protocol transfers only the fact that the claimed statement is
true but does not leak any further information. More precisely,
in a zero-knowledge proof the verifier is able to simulate the
entire protocol transcript by himself without interacting with
the prover. In particular, this implies that the transcript is not
convincing for any other party [GMRS89], [GMWO91].

In our proofs of knowledge, V' first gives P a configuration
of locks. Then, P proves his knowledge by altering this
configuration in a specific way. Similar ideas where used in
[DDM™12]| for the picture hanging problem. There, the goal
is to wrap a rope around n nails so that a picture hung at the
rope falls whenever certain subsets of the nails get removed.

B. Contributions and Outline

In this work, we define an efficiency notion and provide
witness-hiding proofs of knowledge for cable locks in the
described setting. Our protocols operate under various assump-
tions such as availability of solid rings (locks where the key
is unknown), or ability to clone locks (to obtain locks that can
be opened using the same key).

We proceed as follows. We first introduce the basic concepts
and techniques necessary for the rest of the paper. Then, we
formalize the notion of a witness-hiding proof of knowledge
and define a complexity notion. In the second part, we present
four witness-hiding proofs of knowledge. The first protocol
assumes that locks can be copied and that solid rings are
available. The second protocol assumes that locks can be
copied. The third protocol assumes the availability of solid
rings. The last protocol assumes neither the possibility to copy
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Figure 1: Basic Knots

locks, nor the availability of solid rings. Finally, we compare
the described protocols in terms of the complexity notion and
discuss briefly a stronger definition for the proof of knowledge.

II. PRELIMINARIES
A. Knot Theory

A knot is a closed curve (a closed tangled string) in the
three-dimensional Euclidean space R3. A trivial knot (or an
unknot) is a closed curve without a knot in it. This means
it is a (possibly deformed) closed circle. A trefoil knot is
the simplest example of a nontrivial knot. Both unknot and
trefoil knot are depicted in Figure [I} One cannot obtain the
trefoil knot from the unknot without opening it. A link is the
union of some mutually disjoint knots. A Brunnian link is a
nontrivial link which becomes a collection of unlinked circles
if any component is removed. We denote a Brunnian link that
consists of n unknots as an n-component Brunnian link.

Theorem 1 ([Bru92|)). There exists an n-component Brunnian
link for any n > 2.

B. Boolean Formulas

A Boolean formula over atomic formulas Aj,..., A, is
monotone if it does not contain any negation. More formally,
monotone Boolean formulas are defined inductively as follows.
Any atomic formula A; is a monotone Boolean formula. If
Fi, ..., F, are monotone Boolean formulas, then also the
conjunction /\f:1 F; and disjunction \/f:1 F}; are monotone
Boolean formulas. A monotone Boolean formula can be seen
as a rooted tree, where every leaf corresponds to an atomic
formula, and each of the inner nodes corresponds to the
conjunction or the disjunction of the children nodes.

A monotone Boolean formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses, where a clause
is a disjunction of atomic formulas. Similarly, a monotone
Boolean formula is in disjunctive normal form (DNF) if it is
a disjunction of clauses, where each clause is a conjunction
of atomic formulas.

For a monotone Boolean formula F' we denote by |F| the
number of atomic formulas in F' and by || F'|| the number of
distinct atomic formulas in F'. For example, a formula F' with
|F| = 3 and |[F||] = 2is F = (A1 A Ay) V Ay, If F is
in CNF, then ~vcne(F') stands for the number of disjunctive

clauses of F' and if F is in DNF, then vypng(F) stands for the
number of conjunctive clauses of F.

III. LoCcKS AND PROOF OF KNOWLEDGE

In this work we consider a finite set £ = {Lq,...,L,}
of idealized cable locks. We assume that such locks can be
bent or stretched arbitrarily but are otherwise unbreakable.
In particular, a lock L; can only be opened using the cor-
responding key k;. A lock is called a clone or copy of another
lock if they can be opened using the same key. We assume
that one can determine whether two locks are clones without
having access to their keys. For instance, locks with different
keys could be colored differently. Furthermore, we consider
solid rings which one can bend or stretch arbitrarily but are
otherwise unbreakable. They correspond to locks where the
corresponding keys are unknown. We assume that solid rings
come in the form of unknots.

Let I' C P(L) be a collection of subsets of £. The goal of
prover P is to convince verifier V that he can open all the
locks in some set W € T, i.e., that he knows all the keys
for the locks in WW. However, P does not want V' to learn W
itself.

Definition 1. A protocol m between a prover P and a veri-
fier V is a witness-hiding proof of knowledge for (L,T") if the
following three conditions are satisfied:

Completeness: If P knows all the keys for some VW € I" and
follows the protocol, then P can convince the verifier V.

Soundness: Any prover who does not know all the keys for
any set in I' does not succeed in convincing the verifier.

Witness-Hiding: Let W, W' € T and W # W'. The view of
V' in a protocol execution where P knows the keys for
W is indistinguishable from the view of V in a protocol
execution where P knows the keys for W'.

The first condition ensures that an honest P can convince
V' that he knows the keys of some set VW € I'. The second
condition ensures that a dishonest P who does not know all
the keys of any W does not succeed in convincing V. The
third condition ensures that a dishonest V' cannot extract any
information about P’s set of keys from the protocol execution
except what is given by (£, T).

Observe that a proof of knowledge for I' is also a proof
of knowledge for the set (W' C L|IWeTl W CW'}
which is its monotone closure with respect to taking super-
sets. That comes from the fact that if P knows all the
keys of locks in W/, then he also knows all the keys
of locks in the set W C W'. Given a collection T, it
is thus enough to prove knowledge for its minimal sets
T:={WeT | el : W C W}. In the following we as-
sume that ' =T, i.e., that I" does not contain any unnecessary
sets. To compare different proofs of knowledge, we use the
following complexity notion.

Definition 2. A witness-hiding proof of knowledge  for (L,T")
has complexity (£, s,r) if it requires € locks, s solid rings, and
runs for r rounds.



In each round the verifier gives the prover a link. The prover
alters the link and gives it back to the verifier. This means that
the number of rounds equals the total number of links which
are successively given to the verifier. To express the complexity
of our protocols, we associate I' with a monotone Boolean
formula. We define for every lock L; € £ the atomic formula
A; which stands for the statement “P knows the key of lock
L;”. This allows to represent the statement “P knows all keys
of some set WV in I'"” as the following monotone Boolean

formula
Fr = \/ (/\ Ai>. (1)

WeT \L;ew
IV. PROOF OF KNOWLEDGE PROTOCOLS

In this section, we present witness-hiding proofs of knowl-
edge for some given (£,T") under different assumptions such
as the availability of lock copies or solid rings.

A. Multiple Lock Copies and Solid Rings

We show a witness-hiding proof of knowledge under the
assumption that P and V may use an arbitrary amount of
copies of each lock in L. It is also assumed that both parties
have access to a link that consists of two interlocked solid
rings. P and V both consider a single monotone Boolean
formula F' which is equivalent to Fr. First, V Construct
the link Lr using Algorithm 1 and gives the link to P. The
link Lz has the shape of an unknot and can be opened if and
only if a party has knowledge of a set of keys WW € I'. P then
proves his knowledge by transforming the link into a trefoil
shape.

Algorithm 1: Link Ly for F

Require: Monotone Boolean formula F' (seen as a tree).
L is initialized as the set of unlinked and unknotted
cable locks corresponding to the individual occurrences
of atomic formulas in F'.
for each level i of F starting from the leaves to the root
do

for each conjunction at level i do
Place all children links in parallel in any order.

for each disjunction at level ¢ do
Link all children links as a chain in any order.
Form a closed unknot-shaped structure with Ly by
connecting each extreme of Ly with one of the two
interlocked solid rings, respectively.
return Lp

The resulting link L has the shape of an unknoﬂ Observe
that by construction, if P knows a set of keys that correspond
to a satisfying assignment of F', then P is able to open Lg
(the solid rings cannot be opened). An example of the link L
for a given formula is depicted in Figures [2] and [3]

2This assumes that V' can open all locks in L.
30bserve that the two solid rings ensure that L is a link with the structure
of an unknot.
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Figure 2: The link created by Vic in protocol Trefoil for the
formula (A; V (Az A Ag)) A Ay.
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Figure 3: The link transformed by Peggy

Protocol Trefoil(L, F)

Require: F' is a monotone Boolean formula over L.

1: V creates link L according to Algorithm 1, which
has the shape of an unknot, and gives it to P.

2: P transforms (in the absence of V') L into a trefoil-
shaped structure, and gives the resulting link to V.

3: V checks if the received link is a trefoil-shaped
modification of the L. If so, V' accepts. Otherwise,
V rejects.

Lemma 1. Let L be a nonempty set of locks and T' C P(L).
Let F' be a monotone Boolean formula which is equivalent to
Fr from . Then Trefoil(L, F) is a witness-hiding proof of
knowledge for (L,T) with complexity (|F|,2,1).

Proof. Completeness: Assume that P knows all the keys
for some W € I'. This implies that the set of keys P
knows corresponds to a satisfying assignment of Fp. As F
is equivalent to Fr, P knows the keys to open L, and hence
he is able to construct a trefoil-shaped knot with it. Soundness:
Assume that a (dishonest) P does not know all the keys for
any W € I'. In this case he cannot open L. Thus he cannot
construct a trefoil-shaped structure with it and fails to convince
V. Witness-Hiding: The protocol is witness-hiding since the
link constructed by P is fully defined by F' which is known to
V' in advance. It does not depend on the actual witness WV of
P. Complexity: The protocol has complexity (|F|,2,1) since
it uses |F'| locks, two solid rings, and it is executed in one
round. O

B. Multiple Lock Copies

In this section, we assume the availability of an arbi-
trary amount of copies of each lock in £. In the protocol



BrunnianLinkDNF, P and V consider a single monotone
Boolean formula F' in DNF which is equivalent to Fr. For
instance, they could use F' = Fr. If P is honest, he is able to
open all locks corresponding to a clause of F'. P proves his
knowledge by constructing a Brunnian link which contains a
component for each clause of F'. An example for such a link
is depicted in Figure (4).

Protocol BrunnianLinkDNF (L, F)

Require: F' =\/; \; A;; is a monotone Boolean for-
mula in DNF over L.

1: For each individual occurrence of an atomic formula
Aj;; in the formula F’, V' gives P a copy of the lock
Lij. The locks P receives are closed, unlinked, and
unknotted.

2: P constructs (in the absence of V') a Brunnian
link with ypnge(F') components, i.e., one component
per conjunctive clause. The component for a clause
A, A--- N A;, consists of the locks L;,, ..., L;,
placed parallel to each other. Finally, P gives the
constructed link to V.

3: If the received link is constructed as required by the
protocol, V' accepts. Otherwise, V rejects.

Lemma 2. Let £ be a nonempty set of locks and T' C P(L).
Let F' be a monotone Boolean formula in DNF which is equiv-
alent to Fy from (). Then BrunnianLinkDNF (L, F) is a
witness-hiding proof of knowledge for (L,T') with complexity
(IF],0,1).

Proof. Completeness: Assume that P knows all the keys for
some W € I'. Then P can open all locks corresponding to
at least one conjunctive clause of I, i.e., all locks of one
component of the considered Brunnian link. This is enough
to construct the Brunnian link from the unlinked components
and thus to convince V. Soundness: Assume that a (dishonest)
P does not know all the keys for any W € I'. In this case he
cannot open all the locks corresponding to any conjunctive
clause of F. Thus he cannot build the required Brunnian
link and fails to convince V. Witness-Hiding: The protocol
is witness-hiding since the Brunnian link constructed by P is
fully defined by F' which is known to V' in advance. It does
not depend on the actual witness W of P. Complexity: The
link contains |F'| locks, and it does not contain solid rings. [J

C. Solid Rings

In this section, we assume that each lock is unique, i.e.,
there are no copies of locks available. Instead, both parties
have access to arbitrarily many solid rings. For the following
protocol, P and V use a monotone Boolean formula F' in
CNF which is equivalent to F1. The idea is to construct a link
which contains a Brunnian link for each disjunctive clause in
F. An example construction is depicted in Figure (/5)).
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Figure 4: The link constructed in BrunnianLinkDNF for
the formula (A1 A AQ) \ (A2 AN A3 AN A4) V (Al AN A4)

Protocol BrunnianLinkCNF (L, F')

Require: I = A\;\/; A;; is a monotone Boolean for-
mula in CNF over L.

1: For each atomic formula A; which occurs at least
once in F', V gives P the lock L. The locks P
receives are closed, unlinked, and unknotted. For
each disjunctive clause in F, V gives P a solid
ring.

2: P arranges the locks concentrically and constructs
(in the absence of V) a Brunnian link for each
disjunctive clause in F' using solid rings. More
specifically, the Brunnian link for a clause of the
form A;, Vv A;, V---V A, is a Brunnian link of
the locks L;,, L;,,...,L; and a fresh solid ring.
Finally, P gives the constructed link to V.

3: If the received link is constructed as required by the
protocol, V' accepts. Otherwise, V' rejects.

Lemma 3. Let L be a nonempty set of locks and T' C P(L).
Let F' be a monotone Boolean formula in CNF which is equiv-
alent to Fy from (). Then BrunnianLinkCNF (L, F) is a
witness-hiding proof of knowledge for (L,T") with complexity
(17l venr (F), 1).

Proof. Completeness: Assume that P can open all the locks
in some W € I'. This implies that the set of keys P
knows corresponds to a satisfying assignment of Fr. As F'
is equivalent to Fr, it follows that for each clause in F', P is
able to open at least one lock. This is enough to construct all
Brunnian links, and thus to convince V. Soundness: Assume
that a (dishonest) P cannot open all locks of any W & I'. This
implies that there exists a clause in F' where he cannot open
any lock. Thus he is not able to construct the corresponding
Brunnian link, and thus fails to convince V. Witness-hiding:
The constructed link only depends on F' which is known to
V' in advance. It does not depend on the actual witness WV of
P. Complexity: The link consists of || F|| locks and vyene(F)
solid rings. O

D. Multiple rounds

In this setting, we assume that solid rings and copies
of locks are unavailable. This means that the locks are
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Figure 5: The link constructed in BrunnianLinkCNF for
the formula (A; V A4) A (A2 V Ay). The solid rings are drawn
in black.

unique. The following protocol is similar to the protocol
BrunnianLinkCNF'. As there are no solid rings available,
the Brunnian links for the clauses in F' are shown in successive
rounds.

Protocol BrunnianLinkCNF2(L, F)
Require: I = /\;\/; A;; is a monotone Boolean for-
mula in CNF over L.

1: For each atomic formula A; which occurs at least
once in F, V gives P the lock Lg. The locks P
receives are closed, unlinked, and unknotted.

2: In successive rounds P constructs for each disjunc-
tive clause A;, V ---V A; of F a Brunnian link
consisting of locks L;,, ..., L; , and shows it to V.

3: If all the shown links have been constructed as
required by the protocol, V' accepts. Otherwise, V'
rejects.

Lemma 4. Let L be a nonempty set of locks and T C P(L).
Let F' be a monotone Boolean formula in CNF which is equiv-
alent to Fy. from (1]). Then BrunnianLinkCNF2(L, F) is a
witness-hiding proof of knowledge for (L,T) with complexity
([[E']], 0, venr (F))-

Proof. Completeness, Soundness, Witness-hiding: The proof is
similar to that of Lemma [3] Complexity: The number of locks
that are used is equal to ||F||, i.e., the number of distinct
atomic formulas in F'. Also, for each clause in F', P shows a
link to V. Hence, the number of rounds is vyeng(F). O

E. Summary of Complexity

To conclude this section, we summarize the complexity of
our protocols in the following table.

no. locks | no. solid rings | no. rounds
Lemma 1 |F| 2 1
Lemma 2 | |Fpnr| 0 1
Lemma 3 | ||[Fenr| | Yenr(Fonr) 1
Lemma 4 | [[Fonr| 0 Yene(Fon )

In the above table, F' denotes a monotone Boolean formula
which is equivalent to F from , Fppnr denotes a monotone
Boolean formula in DNF which is equivalent to Fr from
, and Fonp denotes a monotone Boolean formula in CNF
which is equivalent to Fr from .

V. DESIGNATED VERIFIER ZERO-KNOWLEDGE

The protocols from the previous section ensure that a
dishonest V' does not obtain information about the set of
locks that P actually knows beyond what is given by the
knowledge P wants to prove, i.e., (£,T"). This witness-hiding
property is a natural definition for security against a dishonest
V' in our physical setting. In some contexts one could require
an even stronger notion of security. For example, one might
want to ensure that V' cannot secretly film the protocol
execution and use the recording to convince other people about
P’s knowledge of opening the locks (cf. [QQQ™89]). This
type of security is called designated verifier zero-knowledge
and ensures that the proof of knowledge only convinces the
designated verifier even if the verifier is dishonest [JSI96]. We
can easily modify our protocols to satisfy this property. We
assume that there is a designated lock Ly ¢ £ which can be
opened by V, but not by (honest) P. The idea is that P shows
that he can open all locks of some W & I' or that he can open
Ly . This will still convince an honest V' since he is sure that
P cannot open his lock. However, any other party will not be
convinced as P and V can easily simulate a protocol execution
even if they cannot open any lock in L. In the protocols that
assume solid rings, the solid rings can trivially be replaced by
(copies of) V’s private lock Ly, whereas in the other protocols
P can directly prove (LU {Ly},TU{{Lv}}).
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