
Topology-Hiding Computation for Networks with Unknown
Delays

Rio LaVigne1⋆, Chen-Da Liu-Zhang2, Ueli Maurer2, Tal Moran3⋆⋆, Marta Mularczyk2⋆ ⋆ ⋆, and Daniel
Tschudi4†

1 rio@mit.edu, MIT
2 {lichen,maurer,mumarta}@inf.ethz.ch, ETH Zurich

3 talm@idc.ac.il, IDC Herzliya
4 dt@concordium.com, Concordium

Abstract. Topology-Hiding Computation (THC) allows a set of parties to securely compute a
function over an incomplete network without revealing information on the network topology. Since
its introduction in TCC’15 by Moran et al., the research on THC has focused on reducing the
communication complexity, allowing larger graph classes, and tolerating stronger corruption types.
All of these results consider a fully synchronous model with a known upper bound on the maximal
delay of all communication channels. Unfortunately, in any realistic setting this bound has to be
extremely large, which makes all fully synchronous protocols inefficient. In the literature on multi-
party computation, this is solved by considering the fully asynchronous model. However, THC is
unachievable in this model (and even hard to define), leaving even the definition of a meaningful
model as an open problem.
The contributions of this paper are threefold. First, we introduce a meaningful model of unknown
and random communication delays for which THC is both definable and achievable. The probability
distributions of the delays can be arbitrary for each channel, but one needs to make the (necessary)
assumption that the delays are independent. The existing fully-synchronous THC protocols do
not work in this setting and would, in particular, leak information about the topology. Second,
in the model with trusted stateless hardware boxes introduced at Eurocrypt’18 by Ball et al., we
present a THC protocol that works for any graph class. Third, we explore what is achievable in
the standard model without trusted hardware and present a THC protocol for specific graph types
(cycles and trees) secure under the DDH assumption. The speed of all protocols scales with the
actual (unknown) delay times, in contrast to all previously known THC protocols whose speed is
determined by the assumed upper bound on the network delay.

1 Introduction

In the wake of GDPR and other privacy laws, companies need ways to process data in a way such that the
trust is distributed among several parties. A fundamental solution to this problem is secure multiparty
computation. Here, one commonly assumes that all parties have pairwise communication channels. In
contrast, for many real-world scenarios, the communication network is not complete, and parties can
only communicate with a subset of other parties. A natural question is whether a set of parties can
successfully perform a joint computation over an incomplete communication network while revealing no
information about the network topology.

The problem of topology-hiding computation (THC) was introduced by Moran et al. [MOR15], who
showed that THC is possible in the setting with passive corruptions and graphs with logarithmic diameter.
Further solutions improve the communication efficiency [HMTZ16] or allow for larger classes of graphs
⋆ This material is based upon work supported by the National Science Foundation Graduate Research Fellowship

under Grant No. 1122374. Any opinion, findings, and conclusions or recommendations expressed in this
material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.
Research also supported in part by NSF Grants CNS-1350619 and CNS-1414119, and by the Defense Advanced
Research Projects Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226
and W911NF-15-C-0236.

⋆⋆ Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-center.
⋆ ⋆ ⋆ Research supported by the Zurich Information Security and Privacy Center (ZISC).

† Work was done while author was at Aarhus University, supported by advanced ERC grant MPCPRO.

[AM17, ALM17]. Recent results [BBMM18, LLM+18] even provide THC for fail-stop or semi-malicious
adversaries (although at the price of leaking some small amount of information about the topology).

However, all those results consider the fully synchronous model, where a protocol proceeds in rounds.
This model makes two assumptions: first, the parties have access to synchronized clocks, and second,
every message is guaranteed to be delivered within one round. While the first assumption is reasonable
in practice, as nowadays computers usually stay synchronized with milliseconds of variation, the second
assumption makes protocols inherently impractical. This is because the running time of a protocol is
always counted in the number of rounds, and the round length must be chosen based on the most
pessimistic bound on the message delivery time. For concreteness, consider a network where most of the
time messages are delivered within milliseconds, but one of the connections, once in a while, may slow
down to a couple of hours. In this case, a round would have to take a couple of hours.

1.1 Contributions

This motivates the goal of this work, which is to construct THC protocols for more realistic settings,
where messages are not guaranteed to be delivered within a fixed time bound.

Model. A natural starting point would be to consider the strongest possible adversary, i.e. one who fully
controls message delivery (this is the standard setting considered by asynchronous MPC, e.g. [BOCG93,
Can01]). First, note that this standard model is not well suited for our setting, since in order to decide
when messages are delivered, the adversary must know the network, which we attempt to hide. The next
logical step is to consider a model where the adversary can only interfere with delays between parties
he controls, but unfortunately, even this grants the adversary too much power. In fact, we prove in
Appendix A that it is impossible to get a topology-hiding broadcast in this model.

This forces us to define a slightly weaker model. We call it the Probabilistic Unknown Delay Model
and we formally define it in Section 2. In this model the messages are delayed independently of the
adversary, but different connections have different, unbounded probabilistic delays. This means that we
throw off the assumption that makes the synchronous protocols impractical. Still, parties have access to
synchronized clocks.

Protocols. We remark that it is not easy to modify synchronous THC protocols (even those tolerating
fail-stop adversaries) to remain secure in the Probabilistic Unknown Delay Model. For example, consider
the standard technique of letting each party attach to each message a round number r, and then wait
until it receives all round-r messages before proceeding to the next round. This seems to inherently leak
the topology, as the time at which a party receives a message for round r reveals information about the
neighborhood of the sender (e.g., that it contains an edge with very long delays).

This forces us to develop new techniques, which result in three new protocols, secure in the Proba-
bilistic Unknown Delay Model against any number of passive corruptions. We require a setup, but this
setup is independent of the network topology (it only depends on the number of parties), and it can be
used to run multiple instances of the protocols, with different communication graphs.

Our first two protocols (Section 3) implement topology-hiding broadcast (any functionality can then
be realized using standard techniques, by executing a sequence of broadcasts). The protocols are based
on standard assumptions, but can only be used in limited classes of graphs (the same ones as in [AM17]):
cycles and trees, respectively.5 Furthermore, observe that the running time of a protocol could itself leak
information about the topology. Indeed, this issue seems very difficult to overcome, since, intuitively,
making the running time fully independent of the graph delays conflicts with our goal to design protocols
that run as fast as the actual network. We deal with this by making the running time of our protocols
depend only on the sum of all the delays in the network.

Then, in Section 4, we introduce a protocol that implements any functionality, works on arbitrary
connected graphs, and its running time corresponds to (one sample of) the sum of all delays. On the
other hand, we assume stateless secure hardware. Intuitively, a hardware box is a stateless program with
an embedded secret key (the same for all parties). This assumption was introduced in [BBMM18] in
order to deal with fail-stop adversaries in THC. Similar assumptions have also been considered before,
5 Our second protocol works for any graphs, as long as we agree to reveal a spanning tree: the parties know

which of their edges are on the tree and execute the protocol, ignoring other edges. See also [AM17].

2

for example, stateless tamper-proof tokens [CGS08, GIS+10, CKS+14]6, or honestly-generated secure
hardware [HMQU05, CT10].

While secure hardware is a very strong assumption, the paradigm of constructing protocols with
the help of a hardware oracle and then replacing the hardware oracle by more standard assumptions
is common in the literature (see for example the secure hardware box assumption for the case of syn-
chronous topology-hiding computation (with known upper bounds on the delays) for fail-stop adversaries
[BBMM18], which was later relaxed to standard assumptions [LLM+18], or the Signature Card assump-
tion for proofs-carrying-data schemes [CT10]). We hope that the techniques presented in this paper can
be useful to construct protocols in more standard models.

1.2 Related Work

Topology-hiding computation was introduced by Moran et al. in [MOR15]. The authors propose a broad-
cast protocol tolerating any number of passive corruptions. The construction uses a series of nested
multi-party computations, in which each node is emulated by its neighbors. This broadcast protocol can
then be used to achieve topology-hiding MPC using standard techniques to transform broadcast chan-
nels into secure point-to-point channels. In [HMTZ16], the authors provide a more efficient construction
based on the DDH assumption. However, both results are only feasible for graphs with logarithmic diam-
eter. Topology-hiding communication for certain classes of graphs with large diameter was described in
[AM17]. This result was finally extended to arbitrary (connected) graphs in [ALM17]. These results were
extended to the fail-stop setting in [BBMM18] based on stateless secure hardware, and [LLM+18] based
on standard assumptions. All of the results mentioned above are in the cryptographic setting. Moreover,
all results are stated in the synchronous communication model with known upper bounds on the delays.

In the information-theoretic setting, the main result is negative [HJ07]: any topology-hiding MPC
protocol inherently leaks information about the network graph. This work also shows that if the routing
table is leaked, one can construct an MPC protocol which leaks no additional information.

2 The Probabilistic Unknown Delay Model

At a high level, we assume loosely synchronized clocks, which allow the parties to proceed in rounds.
However, we do not assume that the messages are always delivered within one round. Rather, we model
channels that have delays drawn from some distributions each time a message is sent along (a different
distribution for each channel). These delays are a property of the network. As already mentioned, this
allows to achieve a significant speedup, comparable to that of asynchronous protocols and impossible in
the fully synchronous model.

2.1 Impossibility of Stronger Models

Common models for asynchronous communication [BOCG93, Can01] consider a worst-case scenario
and give the adversary the power to schedule the messages. By scheduling the messages, the adversary
automatically learns which parties are communicating. As a consequence, it is unavoidable that the
adversary learns the topology of the communication graph, which we want to hide.

A natural definition, then, would be to give the adversary control over scheduling on channels from
his corrupted parties. However, any reasonable model in which the adversary has the ability to delay
messages for an unbounded amount of time allows him to learn something about the topology of the
graph. In essence, a very long delay from a party behaves almost like an abort, and an adversary can
exploit this much like a fail-stop adversary in the impossibility result of [MOR15]. We formally prove
this in a very weak adversarial model in Appendix A.

Since delays cannot depend on the adversary without leaking topology, delays are an inherent property
of the given network, much like in real life. As stated before, we give each edge a delay distribution, and
the delays of messages traveling along that edge are sampled from this distribution. This allows us to
6 The difference here is that a token typically needs to be passed around during the protocol and the parties can

embed their own programs in it, whereas a secure hardware box is used only by one party and is initialized
with the correct program.

3

model real-life networks where the adversary cannot tamper with the network connections. For example,
on the Internet, delays between two directly connected nodes depend on their distance and the reliability
of their connection.

2.2 Adversary

We consider an adversary, who statically and passively corrupts any set Z ⊆ P = {P1, . . . , Pn} of parties,
with |Z| < n. Static corruptions mean that the set Z is chosen before the protocol execution. Passively
corrupted parties follow the protocol instructions, but the adversary can access their internal states
during the execution.

The setting with passive corruptions and secure hardware boxes is somewhat subtle. In particular,
the adversary is allowed to input to the box of a corrupted party any messages of his choice, even based
on secret states of other corrupted parties; he can even replay messages from honest parties with different
corrupted inputs. This will be why we need authenticated encryption, for example. Importantly, in the
passive model, the messages actually sent by a corrupted party are produced using the box with valid
inputs.

2.3 Communication Network and Clocks

Clocks. Each party has access to a clock that ticks at the same rate as every other clock. These ticks are
fast; one can think of them as being milliseconds long or even faster (essentially, the smallest measurable
unit of time).

We model the clocks by the clock functionality Fclock of [KMTZ13], which we recall here for com-
pleteness. The functionality keeps the absolute time τ , which is just the number of ticks that have passed
since the initialization. Every single tick, a party is activated, given the time, and runs a part of the
protocol. To ensure that honest parties are activated at least once every clock tick, the absolute time is
increased according to “Ready” messages from honest parties.

Functionality Fclock

The clock functionality stores a counter τ , initially set to 0. For each honest party Pi it stores a flag di,
initialized to 0.

ReadClock: On input (ReadClock) from party Pi return τ .

Ready: On input (Ready) from honest party Pi set di = 1.

ClockUpdate: On every activation the functionality runs this code before doing anything else.
1: if for every honest party Pi it holds di = 1 then
2: Set di = 0 for every honest party Pi.
3: Set τ = τ + 1.

Because clocks wait for “Ready” messages, computation is instant, happening within a single clock-
tick. While this is not exactly what happens in the real world, our protocols do not abuse this property.
In particular, they proceed in rounds, where each round takes a number (e.g., one million) clock-ticks.
Parties process and send messages only once in a round, and remain passive at other times (in real world,
this would be the time they perform the computation).
Network. The (incomplete) network with delays is modeled by the network functionality Fnet. Similar
to the synchronous models for THC, the description of the communication graph is inputted before the
protocol execution by a special party Psetting. In our case, this description also contains a (possibly differ-
ent) probability distribution for each edge indicating its delay. Each party can ask the functionality for
its neighborhood in the communication graph and the delay distributions on the edges to its neighbors.7

7 In fact, our hardware-based protocol does not use this information, and our protocols for cycles and trees only
need upper bounds on the expected values of the delays. This bound can be easily established, e.g. by probing
the connection.

4

During the protocol execution, at every clock tick, parties can send to each neighbor a message, which
is delivered after a delay sampled from a given distribution.

Functionality Fnet

The functionality is connected to a clock functionality Fclock. The functionality stores a communication
graph G and, for each edge e, a distribution De from which delays are sampled. Initially, G contains no
edges. The functionality also stores the current time τ and a set of message tuples buffer which initially
is empty.

Clock Update: Each time the functionality is activated, it first queries Fclock for the current time and
updates τ accordingly.

Initialization Step: // This is done at most once, before the protocol starts.
The party Psetting inputs a communication graph G and, for each edge e, a distribution De. The functionality
stores G and De.

Graph Info: On input (GetInfo) from an honest party Pi, the functionality outputs to Pi its neighborhood
NG(Pi) and the delay distribution D(i,j) for all j ∈ NG(Pi).

Communication Step:

– On input (Send, i, j, m) from party Pi, where Pj ∈ NG(Pi), Fnet samples the delay dij for the edge
(i, j) from D(i,j) and records the tuple (τ + dij , Pi, Pj , m) in buffer. 8

– On input (FetchMessages, i) from Pi, for each message tuple (T, Pk, Pi, m) from buffer where T ≤ τ ,
the functionality removes the tuple from buffer and outputs (k, m) to Pi.

Leakage in the ideal world. During the protocol execution the adversary can learn local neighborhoods
from Fnet. Therefore, any ideal-world adversary should also have access to this information. This is
ensured by the ideal-world functionality FL

info, which has the same initialization step and the same graph
information as Fnet, but does not allow for actual communication.

Moreover, in any protocol it is unavoidable that the adversary learns the time at which the output
is revealed. In previous synchronous THC protocols, this quantity corresponded to a fixed number of
rounds (depending on an upper bound on the graph size or its diameter). This can no longer be the
case in our model, where the number of rounds it takes to deliver a message is unbounded. Hence, it
is necessary to parameterize FL

info by a leakage function L, that allows the adversary to compute the
output time. L depends on the set D of all delay distributions in the network, but it does not on the
communication graph itself. Additionally, we allow the adversary to pass to L an auxiliary input, that
will accommodate any protocol parameters that influence the output time.

For example, in our protocol based on secure hardware, L will return the distribution of the sum of
all network delays, rounded to the next multiple of the round length R (where R is provided as auxiliary
input by the adversary).

Functionality FL
info

Initialization Step: // This is done at most once, before the protocol starts.
The party Psetting inputs a communication graph G and, for each edge e, a distribution De. The functionality
stores G and De.

Graph Info:
– On input (GetInfo) from an honest party Pi, the functionality outputs to Pi its neighborhood NG(Pi)

and the delay distribution D(i,j) for all j ∈ NG(Pi).

8 Technically, our model allows to send in one round multiple independent messages. However, our protocols do
not exploit this property; we only assume that messages are independent if they are sent in different rounds.

5

– On the first input (GetInfo, aux) from the adversary the functionality outputs: the neighborhood of
all corrupted parties, the delay distribution of every edge where at least one of the nodes is corrupted,
and the leakage L(aux, D), where D is the set of all delay distributions in the network.

2.4 Additional Related Work

Katz et al. [KMTZ13] introduce eventual-delivery and channels with a fixed known upper bound. These
functionalities implement communication between two parties, where the adversary can set, for each
message, the delay after which it is delivered. For reasons stated at the beginning of this section, such
functionalities cannot be used directly to model topology-hiding computation. Instead of point-to-point
channels we need to model the whole communication network, and we cannot allow the adversary to set
the delays. Intuitively, Fnet implements a number of bounded-delay channels, each of which is modified
so that the delay is chosen once and independently of the adversary. If we did not consider hiding the
topology, our modified channels would be a stronger assumption.

Cohen et al. [CCGZ16] define different channels with probabilistic delays, for example point-to-point
channels (the SMT functionalities) and an all-to-all channel (parallel SMT, or PSMT). However, their
PSMT functionality cannot be easily modified to model THC, since the delivery time is sampled once
for all parties. One could modify the SMT functionalities and use their parallel composition, but we find
our formulation simpler and much better suited for THC.

3 Protocols for Restricted Classes of Graphs

This section considers protocols that realize topology-hiding broadcast in the Probabilistic Unknown
Delay Model under standard assumptions (in particular, we give an instantiation based on DDH), but
in the limited setting where graphs are trees or cycles. We stress that we can deal with any graphs if a
spanning tree is revealed. In the following, we first recall the known technique to achieve fully-synchronous
THC using random walks and so-called PKCR encryption [ALM17]. Then, we extend PKCR by certain
additional properties, which allows us to construct a broadcast protocol for cycles in the Probabilistic
Unknown Delay Model. Finally, we extend this protocol to trees.

3.1 Synchronous THC from Random Walks

Currently, the most efficient fully-synchronous THC protocols are based on the technique of correlated
random walks, introduced in [ALM17]. Intuitively, a PKCR scheme is assumed, which is an enhanced
public-key encryption scheme on group elements, where the public keys come with a group operation:
we write pk12 = pk1 ~ pk2. The encryption and decryption algorithms are denoted PKCR.Enc(m, pk)
and PKCR.Dec(c, sk), respectively. Additionally, a party can add a layer of encryption to a ciphertext c
encrypted under pk1, using the algorithm PKCR.AddLayer(c, sk2), which outputs an encryption c′ under
the combined key pk12. This operation can be undone with PKCR.DelLayer(c′, sk2). We also require that
PKCR is homomorphic and rerandomizable (note that the latter is implied).

The goal is to broadcast one bit. However, we instead realize the OR functionality, which can then
be used for broadcast (in the semi-honest setting) by having the sender input his bit, and all other
parties input 0. The protocol proceeds as follows. A party starts by encrypting 0 if its input bit is 0,
and a random group element otherwise, under a fresh key. In the first, so-called aggregate phase, this
ciphertext travels along a random walk for a fixed number of rounds R (collecting the input bits of each
party until it has traversed the whole graph with high probability). In each round, each party adds a
layer of encryption to the received ciphertext (using a freshly generated key) and homomorphically adds
its input. After R rounds, the parties start the decrypt phase, in which they send the final ciphertext
back through the same walk it traversed in the first phase, and the layers of encryption are removed
(using the secret keys stored during the aggregate phase). It is important that the ciphertext is sent
via the same walk, to remove exactly the same layers of encryption that were added in the first phase.
The parties determine this walk based on how they routed the ciphertext in the corresponding round of
the aggregate phase. After another R rounds, each party interprets the group element as a 0-bit (the 0
element) or as a 1-bit (any other element).

6

This technique breaks down in the Probabilistic Unknown Delay Model. For example, it is not clear
how to choose R such that the walk traverses the whole graph since it would depend on an upper
bound on the delays. Moreover, in the decrypt phase, parties no longer know how to route a ciphertext
back via the same walk it took in the aggregate phase. This is because they do not know the number
of steps it already made in the backward walk (this depends on the actual delays). Furthermore, it is
not straightforward to modify the random walk technique to deal with this. For instance, the standard
method of attaching a round number to every message (to count the number of encryption layers) reveals
information about the topology.

3.2 Protocol for Cycles

We assume an enhanced PKCR scheme, denoted PKCR*. The main differences from PKCR are as follows.
First, the message space in PKCR* is now the set {0, 1}, and it is disjoint from the ciphertext space.
This allows to distinguish between a layered ciphertext and a plaintext. Moreover, we no longer require
explicit homomorphism, but instead use the algorithm PKCR*.ToOne(c) that transforms an encryption
of 0 into an encryption of 1 without knowing the public key9. We formally define PKCR* and give an
instantiation based on the DDH assumption in Appendix B.

Rounds. Although we are striving for a protocol that behaves in a somewhat asynchronous way, we still
have a notion of rounds defined by a certain number of clock ticks. Even though each party is activated in
every clock tick, each party receives, processes and sends a message only every R clock ticks — this keeps
parties in sync despite delays, without clogging the network. Even if no message is received, a message
is sent10.This means that at time τ , we are on round rτ = ⌊τ/R⌋; the τ parameter will be dropped
if obvious from context. Moreover, observe that the message complexity increases as R decreases. For
reference, R can be thought of as relatively large, say 1,000 or more; this is also so that parties are able
to completely process messages every round.

A protocol with constant delays. To better explain our ideas, we first describe our protocol in the
setting with constant delays, and then modify it to deal with any delay distributions.

The high-level idea is to execute directly the decrypt phase of the random-walk protocol, where the
walk is simply the cycle traversal, and the combined public key corresponding to the ciphertext resulting
from the aggregate phase is given as the setup (note that this is independent of the order of parties on
the graph). More concretely, we assume that each party Pi holds a secret key ski and the combined
public key pk = pk1 ~ . . . ~ pkn. Assume for the moment that each party knows who the next clockwise
party is in the cycle. At the beginning, a party Pi, every round (i.e., every R clock ticks), starts a new
cycle traversal by sending to the next party a fresh encryption of its input PKCR*.Enc(bi, pk). Once
Pi starts receiving ciphertexts from its neighbor (note that since the delays are fixed, there is at most
one ciphertext arriving in a given round), it instead continues the cycle traversals. That is, every time
it receives a ciphertext c from the previous neighbor, it deletes the layer of encryption using its secret
key: PKCR*.DelLayer(c, ski). It then rerandomizes the result and sends it to the next party. The sender
additionally transforms the ciphertext it receives to a 1-ciphertext in case its bit is 1. After traversing
the whole cycle, all layers of encryption are removed and the parties can recognize a plaintext bit. This
happens at the same time for every party.

In order to remove the assumption that each party knows who the next clockwise party is, we simply
traverse the cycle in both directions.

A protocol accounting for variable delays. The above approach breaks down with arbitrary delays,
where many messages can arrive at the same round. We deal with this by additionally ensuring that
every message is received in a predictable timely manner: we will be repeating message sends. As stated
in Section 2, the delays could be variable, but we make the assumption that if messages are sent at least
R clock-ticks from each other, then the delay for each message is independent. We also assume that the
9 Its functionality does not matter and is left undefined on encryptions of 1.

10 If the parties do not send at every round, the topology would leak. Intuitively, when a party Pi sends the initial
message to its right neighbor Pj , the right neighbor of Pj learns how big the delay from Pi to Pj was. We
can extend this to larger neighborhood, eventually revealing information about relative positions of corrupted
parties.

7

median value of the delay along each edge is polynomial, denoted as Med[De]. Now, since the protocol
will handle messages in rounds, the actual values we need to consider are all in rounds: ⌈Med[De]/R⌉.

Now, if over κ rounds, P1 sends a message c each round, the probability that none of the copies arrives
after κ + ⌈Med[De]/R⌉ rounds is negligible in terms of κ, the security parameter (see Lemma 1 for the
proof). Because we are guaranteed to have the message by that time (and we believe with reasonable
network delays, median delay is small), we wait until time (κ + ⌈Med[De]/R⌉) · R has passed from when
the original message was sent before processing it.11

For the purposes of this sketch, we will just consider sending messages one way around the protocol.
We will also focus on P1 (with neighbors Pn and P2) since all parties will behave in an identical manner.
First, the setup phase gives every party the combined public key pk = pk1 ~ . . . ~ pkn. At each step,
processing a message will involve using the PKCR.DelLayer functionality for their key.

In the first round, P1 sends its bit (0 if not the source node, bs if the source node) encrypted under
pk to P2, let’s call this message c

(1)
1 . P1 will wait w = κ + ⌈Med[De]/R⌉ rounds to receive Pn’s first

message during this time. Now, because P1 needs to make sure c
(1)
1 makes it to P2, for the next κ rounds,

P1 continues to send c
(1)
1 . However, because P1 also needs to hide w (and thus cannot reveal when it

starts sending its processed message from Pn), P1 starts sending a new ciphertext encrypting the same
message, c

(1)
2 (again κ times over κ rounds), until it has waited w rounds — so, P1 is sending c

(1)
1 and c

(1)
2

in the second round, c
(1)
1 , c

(1)
2 and c

(1)
3 the third round and so forth until it sends c

(1)
1 , . . . c

(1)
κ in round κ.

Then it stops sending c
(1)
1 and starts sending c

(1)
κ+1. P1 will only ever send κ messages at once per round.

Once it has waited w rounds, P1 is guaranteed to have received the message from Pn and can process
and forward that message, again sending it κ times over κ rounds. In the next round, P1 will then be
guaranteed to receive the next message from Pn, and so on.

Denote the median-round-sum as MedRSum[D] =
∑n

i=1
⌈
Med[D(i,(i+1 mod n)+1)]/R

⌉
. Because each

party waits like this, the protocol has a guaranteed time to end, the same for all parties:

R ·
n∑

i=1
wi = R (nκ + MedRSum[D]) .

This is the only information ‘leaked’ from the protocol: all parties learn the sum of ceiling’d medians,
MedRSum[D]. Additionally, parties all know the (real, not a round-delay) distribution of delays for
messages to reach them, and thus can compute ⌈Med[De]/R⌉ for their adjacent edges.

Formally, the protocol CycleProt is described as follows.

Protocol CycleProt

// The common input of all parties is the round length R. Additionally, the sender Ps has the input bit bs.
Setup: For i ∈ {1, . . . , n}, let (pki, ski) = PKCR*.KGen(1κ). Let pk = pk1 ~ . . . ~ pkn. The setup outputs

to each party Pi its secret key ski and the product public key pk.

Initialization for each Pi:

– Send (GetInfo) to the functionality Fnet and assign randomly the labels P 0, P 1 to the two neighbors.
– Let Rec0, Rec1 be lists of received messages from P 0 and P 1 respectively, both initialized to ⊥ . Let

Send0 and Send1 be sets initialized to ∅; these are the sets of messages that are ready to be sent.
– For each ℓ ∈ {0, 1}, D(i,ℓ) is the delay distribution on the edge between Pi and P ℓ, obtained from Finfo.
– Let wℓ = κ +

⌈
Med[D(i,ℓ)]/R

⌉
be the time Pi waits before sending a message from P ℓ to P 1−ℓ

Execution for each Pi:

1: Send (ReadClock) to the functionality Fclock and let τ be the output. If τ mod R ̸= 0, send (Ready)
to the functionality Fclock. Otherwise, let r = τ/R be the current round number and do the following:

2: Receive messages: Send (FetchMessages, i) to the functionality Fnet. For each message (rc, c) received
from a neighbor P ℓ, set Recℓ[rc + wℓ] = c.

3: Process if no messages received: For each neighbor P ℓ such that Recℓ[r] = ⊥, start a new cycle traversal
in the direction of P 1−ℓ:

11 Note that delays between rounds are independent, but not within the round. This means we need to send
copies of the message over multiple rounds for this strategy to work.

8

– If Pi is sender (i.e. i = s) then add (κ, r,PKCR*.Enc(bs, pk)) to Send1−ℓ.
– Otherwise, add (κ, r,PKCR*.Enc(0, pk)) to Send1−ℓ.

4: Process received messages: For each P ℓ such that Recℓ[r] ̸= ⊥ (we have received a message from P ℓ), set
d = PKCR*.DelLayer(Rℓ[r], ski), and do the following:

– If d ∈ {0, 1}, output d and halt (we have decrypted the source bit).
– Otherwise, if i = s and bs = 1, then set d = PKCR*.ToOne(d). Then, in either case, add

(κ, r,PKCR*.Rand(d)) to Send1−ℓ.
5: Send message: For each ℓ ∈ {0, 1}, let Sendingℓ = {(k, rc, c) ∈ Sendℓ : k > 0}. For each (k, rc, c) ∈

Sendingℓ, send (rc, c) to P ℓ.
6: Update Send set: For each (k, rc, c) ∈ Sendingℓ, remove (k, rc, c) from Sendℓ and insert (k − 1, rc, c)

to Sendℓ.
7: Send (Ready) to the functionality Fclock.

In Appendix C we prove the following theorem. (FBC denotes the broadcast functionality.)

Theorem 1. The protocol CycleProt UC-realizes (Fclock, FLmedian
info , FBC) in the (Fclock, Fnet)-hybrid model

with an adversary who statically passively corrupts any number of parties, where the leakage function is
defined as Lmedian(R, D) = MedRSum[D].12

3.3 Protocol for Trees
We show how to modify the cycle protocol presented in the previous section to securely realize the
broadcast functionality FBC in any tree. As observed in [AM17], given a tree, nodes can locally compute
their local views of a cycle-traversal of the tree. However, to apply the cycle protocol to this cycle-
traversal, we would need as setup a combined public key that has each secret key ski as many times
as Pi appears in the cycle-traversal. To handle that, each party simply removes its secret key from the
ciphertexts received from the first neighbor, and we can assume the same setup as in the cycle protocol.

In Appendix D we give a formal description of the protocol TreeProt. The proof of the following
theorem is a straightforward extension of the proof of Theorem 1.

Theorem 2. The protocol TreeProt UC-realizes (Fclock, FLmedian
info , FBC) in the (Fclock, Fnet)-hybrid model

with an adversary who statically passively corrupts any number of parties, where the leakage function is
defined as Lmedian(R, D) = MedRSum[D].

4 Protocol for General Graphs

We present a protocol that allows us to securely realize any functionality in any connected communication
graph with unknown delay distributions on the edges. For that, we use the same setup as [BBMM18]:
we assume that the parties have access to secure hardware boxes, initialized with the same secret key,
and executing the same functionality FHW, independent of the graph and the realized functionality (see
[BBMM18] for details of this model).

Our protocol is divided into two sub-protocols: preprocessing and computation. Both sub-protocols
do not terminate on their own. Rather, we assume that each party gets a signal when it can finish each
sub-protocol.13 The preprocessing is executed only once, before any input is specified and can be re-used.
Intuitively, it outputs, for each party, an encryption of the entire communication graph under the secret
key embedded in the hardware boxes. The computation allows to evaluate any function, with the help
of the encrypted information outputted by the preprocessing. One output of preprocessing can be used
to execute the computation any number of times, each time with different function and different inputs.

In the following, we formally describe both protocols. To make the exposition easier to follow, we
postpone the precise definition of the functionality FHW executed by the hardware boxes, to Appendix E,
and for now only give an informal description of its behavior whenever FHW is invoked.
12 Note that the round length R is a parameter of the protocol, so we allow the adversary to provide it.
13 In practice, this is not an unrealistic assumption. It would be enough, for example, if each party was given

a very rough upper bound on the time it takes to flood the network and traverse all edges of the graph (for
instance, a constant number proportional to the sum of delays on all edges). This is still faster than assuming
worst-case upper bounds on the delays along edges, as one would need to do to adapt a fully synchronous
protocol.

9

4.1 Preprocessing

The preprocessing is executed without any inputs. The output is a pair (idi, c), where idi is a (secret)
random string used to identify a party, and c is a ciphertext that contains an encrypted state with the
whole graph. This output pair will be inputted to the computation protocol.

At a high level, the protocol floods the network with encrypted partial images of the graph, until
the signal to terminate occurs. We assume that the signal occurs late enough for all parties to collect all
information. In more detail, throughout the protocol, a party Pi keeps an encrypted state c, containing
information about the graph and parties’ id’s, that it collected up to a given point. Initially, c contains
only the local neighborhood and idi chosen at random by Pi. Then, every round, Pi sends c to all its
neighbors. When it receives a state cj from a neighbor Pj , it uses the functionality FHW box to update c
with the information from cj . That is, FHW gets as input two encrypted states containing partial images
on the graph, respectively, decrypts both states and merges the information into a new state, which is
encrypted and output.

Protocol Hw-Preprocessing

// The common input of all parties is the round length R.

Setup: Each party Pi has access to a secure hardware box functionality FHW.

Initialization for each Pi: Choose an identifier idi at random and send (GetInfo) to Fnet, to obtain
the neighborhood NG(Pi). Input (i, idi, NG(Pi)) to FHW and store the resulting encrypted state c.

Execution for each Pi at every round (every R clock ticks):
1: Send c to each Pj ∈ NG(i).
2: Send (FetchMessages, i) to Fnet. For each received message c′, input (idi, c, c′) to FHW and set the

updated state c to the result.

Termination for each Pi: Upon receiving the signal, output (idi, c).

4.2 Computation

The inputs to the computation protocol are, for every Pi, its input xi, a description of the function fi that
evaluates Pi’s output of the computed function, and the values idi and ci, outputted by preprocessing.

The high-level idea is that the hardware box FHW gets as part of its input the value ci, containing,
among others, the encrypted communication graph. This allows it to deterministically compute an Eu-
lerian cycle, which visits every edge exactly twice. Then, every party starts a traversal of the Eulerian
cycle, in order to collect the inputs from all parties. Once all inputs are collected, the box computes the
function and gives the output to the party. Traversing each edge exactly twice allows all parties to learn
the output at a time that does not depend on the graph topology but (roughly) on the distribution of the
sum of the delays. Of course, all messages are encrypted under the secret key embedded in the hardware
boxes.

This means that at any time during the protocol there are n cycle traversals going through the graph
(one per a starting party). Each of the traversals visits all edges in the graph twice. So in each round
a party Pi processes messages for up to n traversals. To hide the number of actual traversal processed
Pi sends n messages to each each of its neighbors. This means that each round, Pi receives from each
neighbor n messages. It inputs all of them to its hardware box (together with its input to the computed
function) and receives back, for each neighbor, a set of n messages that it then sends to him.

A party receives the output once the cycle has been traversed, which takes time proportional to
the sum of the rounded delays. Once the parties receive output, they continue executing the protocol
until they receive the termination signal, which we assume occurs late enough for all parties to get their
outputs.

There are still some subtle issues, that the above sketch does not address. First, the adversary could
try to tamper with the ciphertexts. For example, in our protocol a message contains a list of id’s that
identifies the path it already traversed. This is done so that the adversary cannot extend the traversal

10

on behalf of an honest party Pi without knowing its secret idi. Now the adversary could try to extend
this list nevertheless, by copying part of the encrypted state of a corrupted party — recall that this state
contains all idi’s. To prevent such situations, we use authenticated encryption.

Second, we need to specify when the parties input the function they are evaluating into the box. Doing
this at the very end would allow the adversary to evaluate many functions of her choice, including the
identity. So instead, in our protocol the function is inputted once, when the cycle traversal is started, and
it is always a part of the message. This way, when the output is computed, the function is taken from a
message that has been already processed by all honest parties. Since honest parties only process messages
that are actually sent to them, and even corrupted parties only send correctly generated messages, this
function must be the correct one. In some sense, when sending the first message to an honest party, the
adversary commits herself to the correct function.

A similar problem occurs when the parties input to their boxes the inputs to the computed function.
A sequence of corrupted parties at the end of the traversal can emulate the last steps of the protocol
many times, with different inputs. To prevent this, we traverse the cycle twice. After the first traversal,
the inputs are collected and the function is evaluated. Then, the (still encrypted) output traverses the
cycle for the second time, and only then is given to the parties.

Finally, we observe that at the end of the protocol, a graph component of neighboring corrupted par-
ties learns where the traversal enters their component (this can be done by fast-forwarding the protocol).
Depending on how the eulerian cycle is computed, this could leak information about the topology. To
address this, we introduce in Section 4.3 an algorithm for computing the traversal that does not have
this issue (formally, the last part of the cycle can be simulated).

Protocol Hw-Computation

// The common input of all parties is the round length R. Additionally, each Pi has input (xi, fi, idi, ci),
where idi is the identifier chosen in Hw-Preprocessing, and ci is the encrypted state outputted by
Hw-Preprocessing.

Setup: Each party Pi has access to a secure hardware box functionality FHW.

Initialization for each Pi: For each neighbor Pj , let Ej = ∅.

Execution for each Pi at every r clock ticks:
1: Send (FetchMessages) to Fnet and receive the messages (E1, . . . , Eν).
2: Choose r at random and input (i, idi, ci,

∪
j

Ej , xi, fi, r) to FHW. Get the result (val, {(E′
1, next1), . . . ,

(E′
k, nextk)}). If val ̸= ⊥, output val, but continue running.

3: For each (E′
j , nextj), for each e ∈ E′

j , send e to nextj via (Send, i, nextj , e).14

Termination for each Pi: Upon receiving the signal, terminate.

Realizing reactive functionalities. Reactive functionalities are those which require explicit interaction
between parties, e.g. if the function we realize is very simple but we want to evaluate a complex function,
parties may need to run this protocol multiple times in sequence, using previous outputs to generate
the next inputs. Our current hardware protocol allows us to realize secure function evaluation. In the
synchronous setting, this can be easily extended to reactive functionalities by invoking many function
evaluations in sequence. However, in the setting with unknown delays this is no longer clear. For example,
if our protocol is composed sequentially in the naive way, then parties start the second execution at
different times, which leaks topology.

So, to get reactive functionalities or composition to work for this hardware protocol we can do one
of two things. First, we could add a synchronization point before each ‘round’ of the reactive function.
Second, we could employ the same trick as for the cycle/tree protocol in Section 3, sending the same
message many times so that with high probability it arrives to the next node within some reasonable
14 We will assume that every message sent in this round is independent. In this case this is equivalent to assuming

only independence between rounds — since there is an upper bound n on the number of messages sent at once,
one can always make the round longer, partition it into slots separated by a sufficient time interval, and send
one message in every slot.

11

time interval. With this method, every party ends the protocol at exactly the same time, and so can
start the next protocol at the same time, despite the delays.

The running time of the protocol Hardware depends only on the sum of all delays in the network,
each rounded to the next multiple of the round length R, which is the only information leaked in the
ideal world. In Appendix F we prove the following theorem.

Theorem 3. For any efficiently computable and well-formed15 functionality F , the protocol Hardware
UC-realizes (Fclock, FLsum

info , F) in the (Fclock, Fnet, FHW)-hybrid model with an adversary who statically
passively corrupts any number of parties, where Lsum := R

∑
De∈D⌈De/R⌉.

Remark. One can observe that in our protocol the hardware boxes must be able to evaluate a complex
function. This can be resolved at the cost of efficiency, by computing the functionality by many calls to
the simple broadcast functionality. Note that even if we require one synchronization point per broadcast,
this still seems reasonable, since it is possible to evaluate any function with constant number of broadcasts
[DI05, LPSY15].

4.3 Computing the Eulerian Cycle

It turns out that not every algorithm computing an Eulerian cycle can be used in FHW to achieve THC.
In particular, during the execution of our protocol the adversary learns some information about a part
of the cycle, which for some algorithms depends on the graph. More technically, during the simulation,
it is necessary to compute the time when the adversary learns the output, and this happens as soon
as the Eulerian cycle traversal enters a fragment of consecutive corrupted parties containing the output
party. This is because it can “fast-forward” the protocol (without communication). Hence, we need an
algorithm for computing such a cycle on a graph with doubled edges, for which the “entry point” to a
connected component (of corrupted parties) can be simulated with only the knowledge of the component.

Common algorithms, such as Fleury or Hierholzer [Fle83, Fle91], check a global property of the graph
and hence cannot be used without the knowledge of the entire graph topology. Moreover, a distributed
algorithm in the local model (where the parties only have knowledge of its neighbors) such as [Mak97] is
also not enough, since the algorithm has to be executed until the end in order to know what is the last
part of the cycle.

We present the algorithm EulerianCycle, which, if executed from a node u on a connected neigh-
borhood containing u, leads to the same starting path as if it was executed on the whole graph. This
property is enough to simulate, since the simulator can compute the last fragment of the Eulerian Cycle
in the corrupted neighborhood. We note that the start of the cycle generated by our algorithm can be
simulated, however, the simulator needs to compute the end. Hence, the hardware boxes will traverse
the path outputted by EulerianCycle from the end.

The idea is to generate a tree from the graph, in such a way that the generated tree contains exactly
the same edges as the graph. To do that, the tree is generated in a DFS-manner from a source u. At every
step, a new edge (the one that leads to the smallest id according to a DFS order, and without repeating
nodes) is added to the tree. Since the graph is connected, all edges are eventually added. Moreover, each
edge is added exactly once, since no repeated nodes are expanded. See Figure 1 for an example execution.

Algorithm EulerianCycle(u, G = (E, V))

// Computes an eulerian cycle on the graph G with the set of nodes V and the set of edges E (where each
edge is considered doubled), starting at node u ∈ V . We assume some ordering on V .
1: Let T be the tree with a single root node u.
2: while E ̸= ∅ do
3: if there is no v ∈ V such that (u, v) ∈ E then
4: Set u = parent(T , u)
5: else
6: Pick the smallest v such that (u, v) ∈ E and append v to the children of u in T .
7: Set E = E \ {(u, v)}.

15 Intuitively, a functionality is well-formed if its code does not depend on the ID’s of the corrupted parties. We
refer to [CLOS02] for a detailed description.

12

8: If v /∈ nodes(T), then set u = v.
9: Output the path corresponding to the in-order traversal of T .

1

2 3

4

5

1

2

4

3

1 5

1

Fig. 1. An example of a graph G (on the left) and the corresponding tree T , computed by EulerianCycle(1, G)
(on the right). The eulerian cycle (on the graph with doubled edges) is (1, 2, 4, 1, 3, 1, 3, 5, 3, 4, 2, 1).

References

[ALM17] Adi Akavia, Rio LaVigne, and Tal Moran. Topology-hiding computation on all graphs. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 447–467.
Springer, Heidelberg, August 2017.

[AM17] Adi Akavia and Tal Moran. Topology-hiding computation beyond logarithmic diameter. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of
LNCS, pages 609–637. Springer, Heidelberg, May 2017.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-
key encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566–582.
Springer, Heidelberg, December 2001.

[BBMM18] Marshall Ball, Elette Boyle, Tal Malkin, and Tal Moran. Exploring the boundaries of topology-hiding
computation. In Eurocrypt’18, 2018.

[BOCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In 25th
ACM STOC, pages 52–61. ACM Press, May 1993.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CCGZ16] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and
composability of cryptographic protocols. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 240–269. Springer, Heidelberg, August 2016.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for uc secure computation
using tamper-proof hardware. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 545–562. Springer, 2008.

[CKS+14] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and Hong-Sheng
Zhou. (efficient) universally composable oblivious transfer using a minimal number of stateless
tokens. In Theory of Cryptography Conference, pages 638–662. Springer, 2014.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 494–503. ACM, 2002.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature
cards. In ICS, volume 10, pages 310–331, 2010.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseu-
dorandom generator. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, pages
378–394, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[Fle83] M Fleury. Deux problèmes de géométrie de situation. Journal de mathématiques élémentaires,
2:257–261, 1883.

13

[Fle91] H Fleischner. X. 1 algorithms for eulerian trails. Eulerian Graphs and Related Topics: Part 1
(Annals of Discrete Mathematics), 2(50):1–13, 1991.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Founding
cryptography on tamper-proof hardware tokens. In Theory of Cryptography Conference, pages 308–
326. Springer, 2010.

[HJ07] Markus Hinkelmann and Andreas Jakoby. Communications in unknown networks: Preserving the
secret of topology. Theoretical Computer Science, 384(2-3):184–200, 2007.

[HMQU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Universally composable zero-
knowledge arguments and commitments from signature cards. In 5th Central European Conference
on Cryptology, 2005.

[HMTZ16] Martin Hirt, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Network-hiding communication
and applications to multi-party protocols. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 335–365. Springer, Heidelberg, August 2016.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable syn-
chronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498.
Springer, Heidelberg, March 2013.

[LLM+18] Rio Lavigne, Chen-Da Liu-Zhang, Ueli Maurer, Tal Moran, Marta Mularczyk, and Daniel Tschudi.
Topology-hiding computation beyond semi-honest adversaries. In Theory of Cryptography Confer-
ence, to appear, 2018.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-
party computation combining bmr and spdz. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, pages 319–338, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[Mak97] SAM Makki. A distributed algorithm for constructing an eulerian tour. In Performance, Computing,
and Communications Conference, 1997. IPCCC 1997., IEEE International, pages 94–100. IEEE,
1997.

[MOR15] Tal Moran, Ilan Orlov, and Silas Richelson. Topology-hiding computation. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 159–181. Springer,
Heidelberg, March 2015.

14

Supplementary Material

A Adversarially-Controlled Delays Leak Topology

Much like how adversarially-controlled aborts were shown to leak topological information in [MOR15],
we can show that adversarially-controlled delays also leak topological information. First, note that if we
have bounded delays, we can always use a synchronous protocol, starting the next round after waiting
the maximum delay. So, in order for this model to be interesting, we must assume the adversary has
unbounded delays. In order to be as general as possible, we prove this with the weakest model we can
while still giving the adversary some control over its delays: the adversary can only add delay to messages
leaving corrupt nodes.

Our proof will follow the structure of [MOR15], using a similar game-based definition and even using
the same adversarially-chosen graphs (see figure 2). Our game is straightforward. The adversary gives
the challenger two graphs and a set of corrupt nodes so that the corrupt neighborhoods are identical
when there is no adversarially added delay. The challenger then chooses one of those graphs at random,
runs the protocol, and gives the views of all corrupt nodes to the adversary. The adversary wins if she
can tell which graph was used. In [MOR15], the adversary would choose a round to failstop one of its
corrupt parties. In our model, the adversary will instead choose a time (clock-tick) to add what we call a
long-delay (which is just a very long delay on sending that and all subsequent messages). The adversary
will be able to detect the delay based on when the protocol ends: if the delay was early in the protocol,
the protocol takes longer to finish for all parties, and if it was late, the protocol will still finish quickly
for most parties.

This impossibility result translates to an impossibility in the simulation-based setting since a secure
protocol for the simulation-based setting would imply a secure protocol for the game-based setting.

G0:
PS PD

. . .

PL PR

. . .

G1:
PS

. . .

PL PR

. . .

PD

Fig. 2. Graphs used to prove the impossibility of THC with adversarial delays. PS is the sender. The corrupted
parties (black dots) are: PL and PR (they delay messages), and the detective PD. The adversary determines
whether PD (and its two neighbors) are on the left or on the right.

A.1 Adversarially-Controlled Delay Indistinguishability-based Security Definition

Before proving the impossibility result, we first formally define our model. This model is as weak as
possible while still assuming delays are somewhat controlled by the adversary. We will assume a minimum
delay along edges: it takes at least one clock-tick for a message to get from one party to another.

Delay Algorithms In order to give the adversary as little power as possible, we define a public (and
arbitrary) randomized algorithm that outputs the delays for a graph for protocol Π. Both the adversary
and challenger have access to this algorithm and can sample from it.

Definition 1. A indistinguishability-delay algorithm (IDA) for a protocol Π, DelayAlgorithmΠ , is a
probabilistic polynomial-time algorithm that takes as input an arbitrary graph outputs unbounded poly-
nomial delays for every time τ and every edge in the graph. Explicitely, for any graph G = (V, E),
DelayAlgorithm(G) outputs T such that for every edge (i, j) ∈ Eb and time τ , T ((i, j), τ) = d(i,j),τ is a
delay that is at least one.

The Indistinguishability Game This indistinguishability definition is a game between an adversary
A and challenger C adapted from [MOR15]. Let DelayAlgorithm be an IDA as defined above.

15

– Setup: Let G be a class of graphs and Π a topology-hiding broadcast protocol that works on any of
the networks described by G according to our adversarial delay model, and let DelayAlgorithm be a
public, fixed IDA algorithm. Without loss of generality, let P1 have input x ∈ {0, 1}, the broadcast
bit.

– A chooses two graphs G0 = (V0, E0) and G1 = (V1, E1) from G and then a subset Z of the parties
to corrupt. Z must look locally the same in both G0 and G1. Formally, Z ⊂ V0 ∩ V1 and NG0(Z) =
NG1(Z). If this doesn’t hold, C wins automatically.
A then generates TZ , a function defining delays for every edge at every time-step controlled by the
adversary. That is, TZ((i, j), τ) = d(i,j),τ , and if Pi ∈ Z, then every message sent from Pi to Pj at
time τ is delayed by an extra d(i,j),τ .
A sends G0, G1, Z, and TZ to C.

– C chooses a random b ∈ {0, 1} and executes Π in Gb with delays according to DelayAlgorithm(Gb) = T
for all messages sent from honest parties. For messages sent from corrupt parties, delay is determined
by the time and parties as follows: for time τ a message sent from party Pi ∈ Z to Pj has delay
T ((i, j), τ) + TZ((i, j), τ) in reaching Pj . A receives the view of all parties in Z during the execution.

– A then outputs b′ ∈ {0, 1} and wins if b′ = b and loses otherwise.
Notice that in this model, the adversary statically and passively corrupts any set of parties, and

statically determines what delays to add to the protocol.
Definition 2. A protocol Π is indistinguishable under chosen delay attack (IND-CDA) over a class of
graphs G if for any PPT adversary A, there exists an IDA DelayAlgorithm such that

Pr[A wins] ≤ 1
2

+ negl(n).

A.2 Proof that Adversarially-Controlled Delays Leak Topology
First, we will define what we mean when we say a protocol is ‘weakly’ realized in the adversarial delay
model. Intuitively, it is just that the protocol outputs the correct bit to all parties if there is no adversarial
delay.
Definition 3. A protocol Π weakly realizes the broadcast functionality if Π is such that when all parties
execute honestly with delays determined by any IDA, all parties get the broadcast bit within polynomial
time (with all but negligible probability).
Theorem 4. There does not exist an IND-CDA secure protocol Π that weakly realizes the broadcast
functionality of any class of graphs G that contains line graphs.

Throughout the proof and associated claim, we refer to a specific pair of graphs that the adversary
has chosen to distinguish between, winning the IND-CDA game. Both graphs will be a line of n vertices:
G = (V, E) where E = {(Pi, Pi+1)}i=1,...,n−1. We will let Π be a protocol executed on G that weakly
realizes broadcast when P1 is the broadcaster, see Figure 2.

Our adversary in this model will either add no delay, or will add a very long polynomial delay to
every message sent after some time τ .

Notice that A is given access to DelayAlgorithm at the start of the protocol. One can sample from
DelayAlgorithm using G0, G1, and Z to get an upper bound T on the time it takes Π to terminate with
all but negligible probability. Since Π weakly realizes broadcast, T is polynomial. So, A has access to
this upper bound T .
Long-delays. Let a long-delay be a delay that lasts for T clock-ticks. Consider an adversary that will
only add long-delays to a protocol, and once an adversary has long-delayed a message, he must continue
to long-delay messages along that edge until the end of the protocol. That is, once the adverary decides
to delay along some edge, all subsequent messages along that edge cannot arrive for at least T clock-ticks.
Claim. Consider any party Pv whose neighbors do not add any extra delay as described by the long-delay
paragraph above. As in [MOR15], let Hv,b be the event that Pv outputs the broadcast bit by time T (Pv

may still be running the protocol by time T or terminate by guessing a bit by T). Let Eτ be the event
that the first long-delay is at time τ . Then either Π is not IND-CDA secure, or there exists a bit b such
that

|Pr [Hv,b|ET −1] − Pr [Hv,b|E0]| ≥ 1
2

− negl(n).

16

Proof. If some Pi long-delays at time 0, then the first message it sends is at time T , and so the graph
is disconnected until time T . This makes it impossible for parties separated from P1 to learn about the
output bit by time T . So, by that time, these parties must either guess an output bit (and be right with
probability at most 1/2) or output nothing and keep running the protocol (which is still not Hv,b). If Π
is IND-CDA secure, then all honest parties must have the same probability of outputting the output bit
by time T , and so there exists a b such that Pr[Hv,b|E0] ≤ 1

2 − negl(n) for all honest parties Pv.
However, if Pi long-delays at time T − 1, then the only parties possibly affected by Pi are Pi−1

and Pi+1; all other parties will get the output by time T and the information that Pi delayed cannot
reach them (recall we assumed a minimum delay of at least one clock-tick in the DelayAlgorithm). So,
Pr[Hv,b|E0] = Pr[Hv,b|no extra delays] = 1 − negl(n) for all honest parties without a delaying neighbor
by the definition of weakly realizing broadcast.

The claim follows: |Pr [Hv,b|ET −1] − Pr [Hv,b|E0]| ≥ | 1
2 − negl(n) − 1| ≥ 1

2 − negl(n). ⊓⊔

Proof (Theorem 4). This just follows from the previous claim. A simple hybrid argument shows that
there exists a pair (τ∗, b) ∈ {0, . . . , T − 1} × {0, 1} such that

|Pr [Hv,b|Eτ∗] − Pr [Hv,b|Eτ∗+1]| ≥ 1
2T

− negl(n)

for all Pv who do not have a neighbor delaying. Since T is polynomial, this is a non-negligible value.
Without loss of generality, assume Pr[Hv,b|Eτ∗] > Pr[Hv,b|Eτ∗+1]. Leveraging this difference, we will
construct an adversary A that can win the IND-CDA game with non-negligible probability.

A chooses two graphs G0 and G1. G = G0 and G1 is G except parties 3, 4, and 5 are exchanged with
parties n − 2, n − 1, and n respectively. A corrupts the source part PS := P1, a left party PL := Pn/2−1,
a right party PR := Pn/2+1, and the detective party PD := P4. See figure 2 for how this looks. The goal
of A will be to determine if PD is to the left or right side of the network (close to the broadcaster or far).

A computes the upper bound T using DelayAlgorithm and randomly guesses (τ∗, b) that satisfy the
inequality above. At time τ , A initiates a long-delay at party PL, and at time τ + 1, A initiates a long-
delay at party PR. So, A gives the challenger TZ where TZ((i, j), t) = 0 for t < τ∗, and for t ≥ τ∗:
TZ((L, n/2), t) = TZ((L, n/2 − 2), t)T and TZ((R, n/2), t + 1) = TZ((R, n/2 + 2), t + 1) = T .

Notice that news of PL’s delay at time τ∗ cannot reach PR or any other party on the right side of
the graph by time T . Also note that the time A gets output for each of its corrupt parties is noted in
the trasncript.

If C chooses G0, then PD is on the left side of the graph and has probability Pr[HD,b|Eτ∗] of having
the output bit by time T because its view is consistent with PL delaying at time τ∗. If C chooses G1,
then PD is on the right side of the graph, and has a view consistent with the first long delay happening
at time τ∗ + 1 and therefore has Pr[HD,b|Eτ∗] of having the output bit by time T . Because there is a
noticeable difference in these probabilities, A can distinguish between these two cases with 1

2 plus some
non-negligible probability. ⊓⊔

Consequences of this lower bound. We note that this is just one model where we prove it is impossible
for the adversary to control delays. However, we restrict the adversary a great deal, to the point of saying
that regardless of what the natural network delays are, the adversary can learn something about the
topology of the graph. The lower bound proved in this model seems to rule out any possible model
(simulation or game-based) where the adversary has power over delays.

B PKCR* Encryption

This section formally defines PKCR*—the extended Privately Key Commutative and Rerandomizable
(PKCR) encryption of [AM17].

Let PK, SK and C denote the public key, secret key and ciphertext spaces. In contrast to PKCR,
the message space is {0, 1}. Moreover, C ∩ {0, 1} = ∅. As in any public-key encryption scheme, we have
the algorithms PKCR*.KGen : {0, 1}∗ → PK × SK and PKCR*.Enc : {0, 1} × PK → C for key generation
and encryption, respectively (decryption can be implemented via deleting layers). Moreover, we require
the following properties, where only the first two are provided (with minor differences) by PKCR.

17

Key-Commutative. PK forms a commutative group under the operation ~. In particular, given any
pk1, pk2 ∈ PK and the secret key sk1 corresponding to pk1, we can efficiently compute pk3 =
pk1 ~ pk2 ∈ PK (note that sk1 can be replaced by sk2, since PK is commutative).
This group must interact well with ciphertexts; there exists a pair of deterministic efficiently com-
putable algorithms PKCR*.AddLayer : C × SK → C and PKCR*.DelLayer : C × SK → C ∪ {0, 1} such
that for every pair of public keys pk1, pk2 ∈ PK with corresponding secret keys sk1 and sk2, for
every bit b ∈ {0, 1}, and every ciphertext c = PKCR*.Enc(b, pk1), with overwhelming probability it
holds that:

– The ciphertext PKCR*.AddLayer(c, sk2) is an encryption of b under the public key pk1 ~ pk2.
– PKCR*.DelLayer(c, sk2) is an encryption of b under the public key pk1 ~ pk−1

2 .
– PKCR*.DelLayer(c, sk1) = b.

Notice that we need the secret key to perform these operations.16

Rerandomizable. There exists an efficient probabilistic algorithm PKCR*.Rand : C → C, which re-
randomizes a ciphertext.17 Formally, we require that for every public key pk ∈ PK, every bit b,
and every c = PKCR*.Enc(b, pk), the following distributions are computationally indistinguishable:

{(b, c, pk,PKCR*.Enc(b, pk))} ≈ {(b, c, pk,PKCR*.Rand(c, pk))}

Transforming a 0-ciphertext to a 1-ciphertext. There exists an efficient algorithm PKCR*.ToOne : C →
C, such that for every pk ∈ PK and for every c = PKCR*.Enc(0, pk), the output of PKCR*.ToOne(c)
is an encryption of 1 under pk.

Key anonymity. A ciphertext reveals no information about which public key was used in encryption.
Formally, we require that PKCR* is key-indistinguishable (or IK-CPA secure), as defined by Bellare
et al. [BBDP01].

B.1 Construction of PKCR* Based on DDH

We use a cyclic group G = ⟨g⟩. We keep as ciphertext a pair of group elements (c1, c2). The first
group element contains the message. The second group element contains the secret keys of each layer of
encryption. All information is contained in the exponent.

To add a layer of encryption with a secret key sk, one simply raises the second element to sk. Similarly,
one can remove layers of encryption. When all layers of encryption are removed, both group elements
are either equal c1 = c2 (the message is 0) or c1 = c2

2 (the message is 1). To transform an encryption of
0 to an encryption of 1, one simply squares the first group element.

Algorithm PKCR*

We let G be a group of order p, generated by g. These parameters are implicitly passed to all algorithms
(formally, they are part of each ciphertext and an input to key generation).

PKCR*.KGen
1: Sample the secret key sk uniform at random

from Zp.
2: Output (gsk, sk).
PKCR*.Enc(b, y)

1: Sample r at random from Zp.
2: Output c = (g(b+1)r, yr).
PKCR*.AddLayer((c1, c2), sk)

1: Output (c1, csk
2).

PKCR*.Rand((c1, c2))

1: Sample r at random from Zp.
2: Output (cr

1, cr
2).

PKCR*.DelLayer((c1, c2), sk)

1: Set c′
2 = csk−1

2 .
2: if c1 = c′

2 then Output 0.
3: else if c1 = c′2

2 then Output 1.
4: else Output (c1, c′

2).
PKCR*.ToOne((c1, c2))

1: Output (c2
1, c2).

16 In PKCR of [ALM17], computing pk1 ~ pk2 does not require the secret key. Moreover, PKCR requires perfect
correctness.

17 In [ALM17] the rerandomization algorithm is given the public key as input. We also note that they require
public keys to be re-randomizable, while we do not need this property.

18

Security. Semantic security and KI-CPA security of our scheme follow from the respective properties
of the ElGamal encryption (for the proof of KI-CPA security, see [BBDP01]). Further, the proof that it
satisfies the requirements of rerandomizability and key commutativity is analogous to the proof that the
DDH-based construction of [ALM17] satisfies these properties. We refer to [ALM17] for details.

It remains to prove the correctness of PKCR*.ToOne and PKCR*.DelLayer. The former follows trivially
from inspection of the protocol.

For the latter, we need to show that the probability of PKCR*.DelLayer giving the wrong output
(either from the wrong domain, or the incorrect decryption) is negligible. Observe that, by correctness of
the ElGamal cryptosystem, whenever PKCR*.DelLayer should output a bit, it indeed outputs the correct
value. Now, for a fixed secret key sk, and a public key pk, consider the probability of PKCR*.DelLayer
outputting a bit when it should output a ciphertext. This event happens only when c1 = csk−1

2 or
c1 = c2sk−1

2 , which happens with probability 2/p.

C Proof of Theorem 1

Simulator. We simulate the outputs of Fnet on inputs (FetchMessages, i) from the corrupted parties
(note that everything else can be simulated trivially). The messages sent by the corrupted parties can
be easily generated by executing the protocol. Hence, the challenge is to generate the messages sent by
honest parties to their corrupted neighbors.

We first deal with the problem of outputting the messages at correct times. That is, the simulator
generates all messages upfront. The messages are then stored in buffer, and the simulator outputs them
by executing the algorithm of Fnet.

What remains is to show how to compute the messages. This will be done per a corrupted arc of the
cycle. Observe that a sequence of corrupted parties can fast-forward the protocol and learn the output
before the protocol terminates. Concretely, consider an honest party neighboring the corrupted arc. Right
before the end of the protocol, it sends messages, that can be read by its direct corrupted neighbor. Before
that, it sends messages, that can be read by its colluding two-neighborhood. This continues until time t,
before which the messages carry the output for a party outside of the corrupted arc. The messages sent
before time t are computed as encryptions of 0 under a fresh public key, since the corrupted arc cannot
decrypt these messages. The messages sent after t are encryptions of the output bit.

Finally, we need a way to compute the time t, after which the messages sent by an honest party carry
output for a party in the corrupted arc. As noted in Section 3, the protocol has a deterministic end time
of T = R (nκ + MedRSum[D]). Consider a single corrupted arc P1, . . . , Pk (all corrupted arcs can be
handled independently since there is at least one honest party between them). A message sent from Pk

of that arc to an honest node can be read by the corrupted arc when it reaches P1 of the arc. Since the
corrupted arc knows the waiting time for its parties (w1, . . . , wk), the simulator also knows these values,
and so the time at which the message is revealed to the arc is T minus the time it would have taken for
that message to traverse from P1 to Pk: T −

∑k
i=1 wi. This is how we compute t.

Simulator Scycle

1. Scycle corrupts the parties in the set Z.
2. Scycle sends inputs for all parties in Z to FBC and receives the output bit bout.
3. It sends (GetInfo, R) to FLmedian

info and receives the neighborhoods of corrupted parties.
4. Now Scycle has to simulate the view of all parties in Z. The messages sent by corrupted parties can be

easily generated by executing the protocol CycleProt. To simulate the messages sent by honest parties
to their corrupted neighbors, Scycle proceeds as follows.

5. First, it prepares a set buffer, containing all messages which will be sent by the honest parties through-
out the simulation (recall the variable buffer in Fnet). Scycle initializes buffer = ∅.

6. Scycle generates the messages per a connected corrupted arc P 1, P 2, . . . , P K of the cycle. We will use
the following notation:

– P 0 and P K+1: the neighboring honest parties.
– P K+2, . . . , P n−1: (the labels of) the rest of the parties on the cycle (their identities are unknown

to Scycle).
– MedRSum[D]: the distribution corresponding to the median-round-sum of all delays, obtained from

FLmedian
info .

19

– for 0 ≤ k ≤ n − 1, denote by Dk the delay distribution on the edge from P (k−1) mod n to P k (for
1 ≤ k ≤ K, Dk was obtained from FLmedian

info).
– for 1 ≤ k ≤ K, define wk = κ +

⌈
Med[D(k,k+1)]/R

⌉
(recall the initialization step of CycleProt).

– for 1 ≤ k ≤ K, denote by pkk the public key corresponding to the secret keys of the corrupted
parties P 1, . . . , P k.

– pksim: a public key freshly sampled by Scycle at the beginning of the simulation.
Scycle has to compute the messages sent by P 0 to P 1 and by P K+1 to P K . To compute the former
messages, it does as follows (the latter messages are computed analogously):
1: For 1 ≤ k ≤ K, compute the time after which P 0 starts processing messages from the walk started

by P k as tk = R
(
nκ + MedRSum[D] −(w1 + · · · + wk)

)
.

2: Let t0 = R (nκ + MedRSum[D]).
3: for τ = t0 to 0 and τ ≡ 0 mod R do
4: if τ < tK then
5: Compute c = PKCR*.Enc(0, pksim).
6: else
7: Find k such that tk+1 ≤ τ < tk.
8: Compute c = PKCR*.Enc(bout, pkk).
9: for i = 0 to κ − 1 do

10: Sample d from D0.
11: Record the tuple (τ + iR + d, P 0, P 1, (τ/R + i, c)) in buffer.

7. Scycle simulates the messages received by corrupted parties from Fnet by executing the algorithm of
Fnet. On every input (FetchMessages, j) from a corrupted Pj , it gets the current time τ from Fclock.
Then, for each message tuple (t, Pi, Pj , c) from buffer where t ≤ τ , it removes the tuple from buffer
and outputs (i, c) to Pj .

We first prove a fact about the protocol CycleProt: with overwhelming probability one of the κ copies
of a message generated by Pi for P ℓ in a given round is delivered within wℓ rounds.

Lemma 1. In the real execution of the protocol CycleProt, the probability that none of the κ messages
(rc, c) sent by Pi to P ℓ for round rc is delivered by round rc + κ +

⌈
Med[D(i,ℓ)]/R

⌉
is negligible.

Proof. For the distribution D(i,ℓ) on the edge between Pi and P ℓ and for 1 ≤ j ≤ κ, let Xj be the
indicator variable that message (rc, c) arrived after time T = R(rc + κ +

⌈
Med[D(i,ℓ)]/R

⌉
). Since the

message was sent at time tj
sent = R(rc + j), with probability 1/2 the message arrives at Pi by time

tj
sent + Med[D(i,ℓ)], and is officially delivered at the next round, time tj

sent +
⌈
Med[D(i,ℓ)]/R

⌉
· R. Note

that for every j, time T is greater than or equal to tj
sent +

⌈
Med[D(i,ℓ)]/R

⌉
· R. Therefore, for every j,

we have
Pr

D(i,ℓ)
[Xj = 1] ≥ 1

2
.

Finally, given independence between messages sent at different rounds, the probability that all messages
arrive after time T is upper bounded by

Pr
D(i,ℓ)

[
κ∑

j=1
Xj = 0] =

κ∏
j=1

Pr
D(i,ℓ)

[Xj ̸= 1] ≤ 1
2κ

= negl(κ).

As a consequence, a message sent at round rc arrives with all but negligible probability at round rc +
(κ +

⌈
Med[D(i,ℓ)]/R

⌉
). �

We are now ready to prove that the messages from the walks initiated by P k are acknowledged and
processed by P 0 after exactly tk clock ticks. This also proves correctness of the protocol: P 0 will get his
walk back after t0 clock ticks.

Lemma 2. In the real execution of the protocol, at time tk, the party P 0 starts sending to P 1 a message
from the walk started by P k.

Proof. We assume that for each P i, one of the copies of a message generated by P i−1 in a given round
arrives within wi rounds. By Lemma 1, this happens with overwhelming probability.

20

Consider each message-walk started by party P k going to P k+1 (we ignore the repetitions and count
the number of distinct messages sent). There are wk such walks, started at rounds 0, . . . , wk − 1. A walk
started at a given round is processed by the party P k+k′ after

∑k′

i=1 wk+i rounds. So it is processed by
P 0 after

∑n−1
i=0 wi − (w1 + · · · + wk) rounds. We have

∑n−1
i=0 wi = MedRSum[D]. Hence, P 0 processes

messages from the walk started by P k after time R · (MedRSum[D] −
∑k

i=1 wi) = tk. �

Remark 1. The protocol is correct. Note that Lemma 2 implies the correctness of the protocol. A party
“sends” a message first by processing it (and seeing if it can decrypt) and then forwarding it if it did not
decrypt. Without loss of generality, consider party P1. The walk started from P1 arrives back at P1 at
time tn, at which point, n−1 layers of encryption will have been removed, and the message is guaranteed
to have passed the source party (and thus have the output bit). P1 decrypts this message and gets the
output from the protocol.

Finally, we show that the execution with Scycle is indistinguishable from the real execution by pre-
senting a sequence of hybrids. In the following, we only consider the messages sent by an honest Pi = P 0

to its corrupted neighbor Pj = P 1 (all other messages are trivial to simulate).

Hybrid 1. S1
cycle simulates the real world exactly. That is, S1

cycle has information on the entire commu-
nication graph and all edge delays. It generates messages according to the protocol, at the time they
are sent.

Hybrid 2. S2
cycle generates all messages upfront the same way Scycle does, but the messages are still

generated according to the protocol.
Hybrid 3. S3

cycle replaces the real ciphertexts PKCR*.DelLayer(c, ski) sent by P 0 by fresh encryptions
PKCR*.Enc(m, pk′) (where m is the message c encrypts, and pk′ is the public key corresponding to
the secret keys of the parties remaining on the cycle).

Hybrid 4. For messages generated at time τ < tK , S4
cycle changes the encryption key to pksim, that

is, it computes PKCR*.Enc(m, pksim) instead of PKCR*.Enc(m, pk′). For messages generated at time
τ ≥ tK , S4

cycle uses fresh encryptions under the public key PKCR*.Enc(m, pkk), where k is chosen as
in Scycle.

Hybrid 5. For messages generated at time τ < tK , S5
cycle changes the message to 0, i.e., it computes

PKCR*.Enc(0, pksim) instead of PKCR*.Enc(m, pksim).
Hybrid 6. For messages generated at time τ ≥ tK , S6

cycle computes the encrypted message using the
output of FBC.

Observe that Hybrids 1 and 2 are trivially identical. Moreover, indistinguishability of Hybrids 5 and
6 follows from the correctness of the protocol, allowing the adversary to decrypt not the bit generated
by traversing the graph, but the bit generated by the ideal functionality. These two will be equivalent
since each message traverses the entire graph. It is also easy to see that S6

cycle is the original simulator
Scycle.

Claim 1. No efficient distinguisher can distinguish between Hybrids 2 and 3.

Proof: For an honest party Pi, S3
cycle generates all messages sent by it as fresh encryptions, while a

message generated by S2
cycle can be one of the following:

– An initial ciphertext (starting the cycle): this is the same as in S3
cycle.

– A ciphertext c, which results from applying to another ciphertext c′, in order, PKCR*.DelLayer,
and PKCR*.Rand. By correctness, c is an encryption of the same message as c′ with overwhelming
probability. Moreover, re-randomizability of PKCR*, guarantees that the distribution of c is indis-
tinguishable from the distribution of a fresh encryption of the same message, as generated by S3

cycle.
– A ciphertext c, which results from applying to another ciphertext c′, in order, PKCR*.DelLayer,

PKCR*.ToOne, and PKCR*.Rand. As in the previous case, c is an encryption of one with overwhelming
probability, and the distribution of c is indistinguishable from the distribution of a fresh encryption
of 1.

�

Claim 2. No efficient distinguisher can distinguish between Hybrids 3 and 4.

21

Proof: We will prove first that messages sent after time tK are indistinguishable between the two hybrids,
and then show that before time tK , they are also indistinguishable.

After tK : Consider each message walk started by corrupted party P k going to P k+1. By Lemma 2,
by time tk, in the real world, the messages from that walk would have traversed all parties except
P1, . . . , Pk−1. So, by that time, all key-layers except those from corrupted parties P1, . . . , Pk−1 will
have been removed, meaning that message is now encrypted under public key pkk. Hybrids 3 and 4
are equivalent in this case, then, because we are actually encrypting under the same key as one would
encrypt in the real world.

Before tK : By Lemma 2, the messages sent by P 0 before tK are encrypted under the public key, for
which the honest party P K+1 holds a part of the secret key. So, the proof for time before tK is a reduction
to a version of KI-CPA security of PKCR*, where the adversary is allowed to ask many encryption queries.
We note that [BBDP01] defines only the game for one query, but the reduction follows by a standard
hybrid argument. For completeness, we recall their game against an adversary A:

Game IK-CPA

1: pk0, sk0 = PKCR*.KGen(1κ)
2: pk1, sk1 = PKCR*.KGen(1κ)
3: Choose b ∈ {0, 1} at random.
4: b′ = APKCR*.Enc(·,pkb)(pk0, pk1)
5: Output b = b′.

Recall that, for each honest party Pi, S3
cycle uses the real key corresponding to a number of parties on

the cycle, while S4
cycle uses a different key pksim. We will introduce a sequence of intermediate hybrids

H1 to Hn, where Hi uses the real key for P1, . . . , Pi, and the simulated key for the other parties (in case
they are honest and have corrupted neighbors).

Assume that D is a distinguisher for Hybrids Hi−1 and Hi. A winner A for the above game can be
constructed as follows. Let pk0, pk1 be the keys obtained from the game. If D corrupts Pi or it does
not corrupt any of its neighbors, we abort (the hybrids are trivially indistinguishable). Otherwise, let
P 1, . . . , P K be the corrupted arc starting at Pi’s neighbor P 1. A will simulate the protocol for D using
freshly generated key pairs, except that for P K+1 it will use its challenge key pk0. Note that it can
now efficiently compute the joint key. Ciphertexts sent by the parties can now be generated using A’s
encryption oracle. A outputs whatever D outputs.

�
Claim 3. No efficient distinguisher can distinguish between Hybrids 4 and 5.

Proof: In both Hybrid 4 and Hybrid 5, the messages sent before Dk are encrypted under a fresh public
key pksim chosen by the simulator. Hence, the indistinguishability follows by semantic security. �

D Details of the Protocol for Trees

Protocol TreeProt

// The common input of all parties is the round length R. Additionally, the sender Ps has the input bit bs.
Setup: For i ∈ {1, . . . , n}, let (pki, ski) = PKCR*.KGen(1κ). Let pk = pk1 ~ . . . ~ pkn. The setup outputs

to each party Pi its secret key ski and the product public key pk.
Initialization for each Pi:
– Send (GetInfo) to the functionality Fnet to obtain the distributions of the local edges.
– Assign randomly the labels P 0, . . . , P ν−1 to its neighbors. Let succ(ℓ) = ℓ + 1 mod ν denote the index

of the successor of neighbor P ℓ on the tree traversal.
– For each neighbor P ℓ, initialize a list Recℓ = ⊥ and a set Sendℓ = ∅.
– For each ℓ, D(i,ℓ) is the delay distribution on the edge between Pi and neighbor P ℓ, obtained from Finfo.
– Let wℓ = κ +

⌈
Med[D(i,ℓ)]/R

⌉
be the time Pi waits before sending a message from P ℓ to P ℓ+1.

Execution for each Pi:

22

1: Send (ReadClock) to the functionality Fclock and let τ be the output. If τ mod R ̸= 0, send (Ready)
to the functionality Fclock. Otherwise, let r = τ/R be the current round number and do the following:

2: Receive messages: Send (FetchMessages, i) to the functionality Fnet. For each message (rc, c) received
from a neighbor P ℓ, set Recℓ[rc + wℓ] = c.

3: Process messages from P ℓ with ℓ ̸= 0:
– For each P ℓ ̸= P 0 such that Recℓ[r] = ⊥, add (κ, r,PKCR*.Enc(0, pk)) to Sendsucc(ℓ).
– For each P ℓ ̸= P 0 such that Recℓ[r] ̸= ⊥, add (κ, r,PKCR*.Rand(Recℓ[r])) to Sendsucc(ℓ).

4: Process if no messages received from P 0: If Rec0[r] = ⊥, start a new cycle traversal in the direction of
P 1:

– If Pi is sender (i.e. i = s) then add (κ, r,PKCR*.Enc(bs, pk)) to Send1.
– Otherwise, add (κ, r,PKCR*.Enc(0, pk)) to Send1.

5: Process received messages from P 0: Set d = PKCR*.DelLayer(Rec0[r], ski), and do the following:
– If d ∈ {0, 1}, output d and halt (we have decrypted the source bit).
– Otherwise, if i = s and bs = 1, then set d = PKCR*.ToOne(d). Then, in either case, add

(κ, r,PKCR*.Rand(d)) to Send1.
6: Send messages: For each ℓ ∈ {0, . . . , ν − 1}, let Sendingℓ = {(k, rc, c) ∈ Sendℓ : k > 0}. For each

(k, rc, c) ∈ Sendingℓ, send (rc, c) to P ℓ.
7: Update Send sets: For each (k, rc, c) ∈ Sendingℓ, remove (k, rc, c) from Sendℓ and insert (k − 1, rc, c)

to Sendℓ.
8: Send (Ready) to the functionality Fclock.

E The Function Executed by the Hardware Boxes

The functionality FHW contains hard-wired the following values: a symmetric encryption key pk, and a
key rk for a pseudo-random function prf. Whenever it outputs an encryption, it uses an authenticated
encryption scheme AE with key pk, and with encryption randomness computed as prfrk(x), where x is
the whole input of FHW. FHW can receive three types of input, depending on the current stage of the
protocol: the initial input and an intermediate input during Hw-Preprocessing, and an intermediate input
during Hw-Computation. On any other inputs, FHW outputs ⊥.

Behavior during preprocessing. During the preprocessing, the first input is a triple (i, idi, NG(Pi)),
and next inputs are triples (id, c, cj), where c and cj are states of parties, encrypted under pk. In
particular, the state of a party Pi consists of the following information:

– i: the index of Pi,
– G: the current image of the graph (stored in an n-by-n matrix),
– ID = (id1, . . . , idn): a vector, containing the currently known identifiers of parties.

On the first input, FHW outputs an encryption of the initial state, that is, the state where the graph G
contains only the direct neighborhood of Pi, and ID contains only the value idi chosen by Pi. For the
inputs of the form (id, c, cj), FHW decrypts the states c and cj and merges the information they contain
into a new state s, which it then encrypts and outputs.

Behavior during computation. Recall that the goal of FHW at this stage is to compute the next
encrypted messages, which a party Pi will send to its neighbors. That is, it takes as input a set of
encrypted messages received by Pi and, for each neighbor of Pi, outputs a set of n messages to be sent.

Each encrypted message contains information about which graph traversal it is a part of, about
the current progress of the traversal, and about all the inputs collected so far. Moreover, we include
the information from the encrypted state: (i, G, ID) and the function f of the party starting the cycle.
Intuitively, the reason for including f and the encrypted state is that, since the adversary is passive, the
information taken from the message must be correct (for example, now a corrupted party cannot use its
box to evaluate any function of its choice). Formally, an encrypted message from another node decrypts
to a message mj containing the following elements:

– j is the party number (the publicly known number between 1 and n, not the party’s id)
– IDj is the vector of unique random id’s. Carrying this in the message allows us to ensure that inputs

are all consistent with the same parties.

23

– Gj is the adjacency matrix of the network graph. It is also used to check consistency.
– Pathj = (id1, . . . , id4n2): a vector of length 4n2, containing the current set of identifiers of parties

visited so far along the graph traversal starting at Pj (recall that the eulerian cycle of length at most
2n2 is traversed twice).

– fj is the function that parties will compute.
– x⃗j is a vector that has a slot for every party to put its input. It starts as being completely empty, but

gains an entry when it visits a new node on the graph. We also check this for consistency (a party
trying to input a different value from the one they started with will not be able to use the hardware).

At a high level, FHW first discards any dummy or repeated messages (a party can receive many
messages, but the hardware box needs to continue at most n Eulerian cycles), and then processes each
remaining message. If a message has traversed the whole Eulerian cycle, FHW computes and reveals the
function applied to the inputs. Otherwise, it creates an encryption of a new message with the current
party’s id added to the current path, and its input added to the list of inputs, and next contains the id of
the destination neighbor. After processing all messages, for each destination neighbor, it adds correctly
formated dummy encryptions, so that exactly n encryptions are sent to each neighbor.

The functionality FHW is formally described below. It calls the following subroutines:
– AggregateTours takes as input a set of messages M . Each of these messages contain information

about a Eulerian Cycle, the party that started that Eulerian Cycle, and the path traversed so far.
The subroutine selects the (at most n) messages that start from different parties. It is expected that
Eulerian Cycles starting from the same party, are exactly the same message.

– ContinueTour takes as input a specific message, a Eulerian Cycle that the message must traverse,
and a current party’s input and number. If the Eulerian Cycle has not been traversed, it then creates
a new message containing a path with the current party’s input and id appended to the corresponding
variables, and also the id of the party where the message should be sent. Otherwise, it outputs a flag
indicating that the Eulerian Cycle has ended and the output must be revealed.

– EncryptAndFormatOutput takes as input a set of pairs message-dest- ination, and appends to
each possible destination parsable messages until there are n messages. It then encrypts each message
and outputs, for each possible destination a set of encryptions and the id of the party where the
encryptions must be sent.

Functionality FHW

Setup: The hardware box is initialized with a symmetric encryption key pk and a PRF key rk.

Initial input during Hw-Preprocessing

Input: x = (i, idi, NG(Pi))
1: Compute the initial vector ID as a vector of n ⊥’s except with idi in the i-th position.
2: Compute a new adjacency matrix Gi with the only entries being the local neighborhood of Pi.
3: Compute the initial state s = (i, ID, Gi)

Output: the encrypted initial state AE.Encpk(s; prfrk(x)).

Intermediate input during Hw-Preprocessing

Input: x = (id, c, cj), where id is the identifier of Pi, c is the encrypted state of Pi, and cj is the state
of a neighbor Pj .

1: Compute the states (i, ID, G) = AE.Decpk(c) and (j, IDj , Gj) = AE.Decpk(cj).
2: Compute the new state s = (i, ID′, G′), where ID′ contains all identifiers which appear in IDj or ID, and

G′ is the union of G and Gj .
Output: the encrypted state AE.Encpk(s; prfrk(x)).

Intermediate input during Hw-Computation

Input: x = (i, id, c, E, xi, fi, r), where i is the party’s index, id is the identifier of Pi, c is the encrypted
state of Pi, E is the set of encrypted messages (freshly gotten from the buffer), xi is the input, fi is the
evaluated function and r is a fresh random value.

1: Decrypt the messages M = {AE.Decpk(e) | e ∈ E} (output ⊥ if any decryption fails).

24

2: Let L = AggregateTours(M), and output ⊥ if AggregateTours outputs ⊥.
3: Let S = ∅, val = ⊥.
4: if L = ∅ then// Start the traversal.
5: Decrypt the state (i, ID, G) = AE.Decpk(c) (output ⊥ if the decryption fails). // The graph and the

ID-vector are taken from the encrypted state.
6: Let Path = (id, ⊥, . . . , ⊥) be a vector of length 4n2. Let x be the vector of length n, initialized to

⊥ and set x[i] = xi.
7: Compute Touri as the reverse Euler Cycle for G starting at party Pi.
8: Let m = (i, ID, G, Path, fi, x).
9: Add (m, Touri[2]) to S.

10: else// Continue traversals.
11: for m ∈ L do
12: Parse m = (j, IDj , Gj , Pathj , fj , x⃗j). // The graph and the ID-vector are taken from the message.
13: Compute Tourj as the reverse Euler Cycle for G starting at party Pj .
14: Parse Pathj = (p1, . . . , pℓj , ⊥, . . . , ⊥). Output ⊥ if any of the following conditions holds:

– id ̸= IDj [i]
– pℓj ̸= i
– for any l ∈ [ℓj], pl ̸= Tourj [l mod 2m]

15: Let (m′, next) = ContinueTour(m, xi, i, Tourj).
16: if m′ = Output then
17: Let val = fi(x⃗j).
18: else
19: Add (m′, next) to S.
20: Output : (val, EncryptAndFormatOutput(i, G, r, S, 0))

Functionality FHW-subroutines

AggregateTours (M)
// Takes a set of messages and for each party outputs a message that corresponds to its Euler Cycles.
1: If any m ∈ M does not parse properly, return ⊥.
2: Let L = ∅.
3: for each m ∈ M do
4: Parse m = (j, ID, G, Path, f, x⃗).
5: if ∃m′ := (j, ∗, ∗, ∗, ∗, ∗) ∈ L and m′ ̸= m then
6: Output ⊥.
7: if m /∈ L then
8: Add m to L.
9: return L

ContinueTour (mj , xi, i, Tourj)

1: Parse mj = (j, IDj , Gj , Pathj , fj , x⃗j).
2: Parse Pathj = (p1, . . . , pℓj , ⊥, . . . , ⊥).
3: if ℓj = 4m − 1 and Tourj [(ℓj + 1) mod 2m] = i then
4: return (Output, 0).
5: Set Pathj = (p1, . . . , pℓj , Tourj [(ℓj + 1) mod 2m], ⊥, . . . , ⊥).
6: If x⃗j [i] = ⊥, then set x⃗j [i] = xi.
7: return (mj , Tourj [(ℓj + 1) mod 2m]).

EncryptAndFormatOutput (i, G, r, S, sim)18

1: For each d ∈ NG(i), let Md = {m : (m, d) ∈ S}.
2: for d ∈ NG(i) do
3: If |Md| < n, pad Md with fake, but parsable, messages until it is length n (messages that start with

the party number being 0).
4: for d ∈ NG(i) do
5: Let k = 0, Ed = ∅.
6: for m ∈ Md do

25

7: if sim = 0 then
8: Add AE.Encpk(m; prfrk(Md, k, r)) to Ed. // Used in protocol
9: else

10: Add AE.Encpk(m; r) to Ed. // Used in simulator
11: return {(Ed, d) : d ∈ NG(i)}

F Proof of Theorem 3

Proof. Simulator. The simulator has to simulate the view of all corrupted parties. It knows the neigh-
borhood of corrupted parties, its delay distributions and its clock rates. The view of the corrupted parties
in the real world, consist of messages received from the network functionality Fnet, and messages received
from the hardware functionality FHW.

Consider a corrupted component C and the subgraph GC , which contains C and the honest parties
in the immediate neighborhood of C (but not the edges between honest parties). Observe that SHW has
complete knowledge of the topology of GC .

To simulate the preprocessing phase, we do as follows: Each honest party in GC starts with a state
where its only neighbors are in GC , and the simulated hardware box answers the queries exactly the
same way as the real hardware box FHW. As a result, at the end of the preprocessing phase, all parties
in GC have an encrypted state containing the graph GC .

In the computation phase, the simulator generates all local delays upfront. It then computes, for each
corrupted party Pj in GC , the number of traversals it initiates (recall that the party initiates a traversal
every round, until the first message is received). For each of these traversals, it computes the last honest
party Pi in GC , before the traversal enters GC (by executing the algorithm EulerianCycle on GC), the
next (corrupted) party Pk on the traversal, and samples and records the time at which the message
arrives to Pi (corresponding to four times the total rounded delay minus the sum of rounded delays of
the last fragment of corrupted parties in GC). Then, the simulator checks at every round whether he
has to send to a neighbor Pk a message containing the output of any corrupted party Pj ∈ GC . It then
sends the corresponding encryptions containing outputs, and appends encryptions so that every round,
Pi sends n encryptions to each (corrupted) neighbor in GC . The simulated hardware messages are as
in the real protocol, except that the vector of inputs is 0, and, once the traversal is completed, it gives
directly the output (ignoring the inputs). Moreover, it generates truly random values instead of using a
PRF.

Simulator SHW

1. SHW corrupts Z.
2. SHW sends inputs for all parties in Z to FBC and for each party Pi ∈ Z receives the output value vout

i .
3. Let R be the round length. SHW receives from FLsum

info the distribution D =
∑

e
⌈De/R⌉R and, for each

Pi ∈ Z, the neighborhood NG(Pi) and its delay distributions.
4. SHW generates an authenticated encryption key ek.
5. Now, SHW has to simulate the view of all parties in Z. The view of corrupted parties consist of messages

received via the network Fnet and the queries to the hardware functionality FHW.

Network messages: The messages sent by corrupted parties can be easily generated by executing the
protocol Hardware. To simulate the messages sent by an honest party to the corrupted neighbors, SHW

proceeds as follows.
First, it prepares a set buffer, containing all messages which will be sent by the honest parties to corrupted
neighbors throughout the simulation (recall the variable buffer in Fnet).
SHW sets buffer = ∅. We simulate the messages per corrupted connected component. Let GC = (VC , EC) ⊂
G be a corrupted connected component including the honest parties in its immediate neighborhood. Then,
SHW does the following:
Preprocessing: Let Pj be a corrupted party in the component, who has an honest neighbor Pi.
1: Let tprep be the time when the preprocessing finishing signal is received by Pi.

18 The additional input sim ∈ {0, 1} will be used by the simulator and can be ignored at this point.

26

2: Choose a random value idi and compute the initial vector ID as a vector of n ⊥’s with idi in the i-th
position. Let s0 = (i, ID, NGC (Pi)).

3: for τ ∈ {0, R, 2R, . . . , ⌊tprep/R⌋R} do
4: Sample the delay dij from the distribution D(i,j) and record the tuple (τ + dij , Pi, Pj ,AE.Encek(s0))

in buffer.

Computation:
1: Let tstart be the start time of the computation (rounded to the next multiple of R), and for each party

Pi ∈ GC , let ti
end be the signal to terminate the execution of the computation phase.

2: For each honest party Pi ∈ GC and corrupted neighbor Pj ∈ GC , set Sij = ∅.
// Local delays generated upfront.

3: For each party Pi ∈ GC and neighbor Pj ∈ GC , let L(i,j) be a list containing n ·
(

⌊ ti
end−tstart

R
⌋ + 1

)
samples from D(i,j). The messages sent by corrupted parties use these delays.

4: For each Pj , let tj
stop := min{t ∈ L(i,j) : Pi ∈ NG(Pj)} the time at which Pj obtains the first message

from any neighbor (stops initiating Eulerian Cycles).
5: Compute the number of Eulerian Cycles initiated from each corrupted Pj ∈ GC as Nj := ⌊

t
j
stop
R

⌋.
6: For each corrupted Pj ∈ GC , do as follows: Run Ej =EulerianCycle(Pj , GC). Let Ej

C be the starting
path of the eulerian cycle from Pj until the first honest party Pi. Let Pk be the last corrupted party in
Ej

C . Let P ′
j be the first party after Pj in the path.

For each v ∈ [Nj], for each edge e ∈ Ej
C , let de be the next unused delay. Then, sample tv

out from the
distribution 4D −

∑
e∈Ej

C
⌈de/R⌉R. Add (Pj , tv

out) to Sik.
7: Let Pi be an honest party, and let Pk be a corrupted neighbor. We simulate all messages sent by Pi to

Pk. Let S = ∅.
8: // Message sent at Round 0
9: For each w ∈ [n], record the tuple (tstart + L(i,k)[w], Pi, Pk,AE.Encek(⊥)) in buffer, where ⊥ is a

parsable fake state.
10: // Messages sent at Round r
11: Let r = 1.
12: while tstart + rR < ti

end do
13: Let S = ∅ and let x be a vector of length n initialized to 0.
14: If there exists (Pj , tout) ∈ Sik such that (r − 1)R ≤ tout < rR, add AE.Encek((j, ID, GC , Path, x, fj))

to S, where ID is the vector of IDs that parties in GC generated during the preprocessing, and
Path = Ej \ Ej

C .
15: while |S| < n do
16: Add an encryption of a parsable fake state AE.Encek(⊥; z) to S.
17: Let S = {c1, . . . , cn}. For each v ∈ [n], record the tuple (tstart + rR + L(i,k)[rn + v], Pi, Pk, cv) in

buffer.
18: r = r + 1.
SHW simulates the messages received by corrupted parties from Fnet as follows. On every input
(FetchMessages, j) from a corrupted Pj , it gets the current time τ from Fclock. Then, for each mes-
sage tuple (T, Pi, Pj , c) from buffer where T ≤ τ , it removes the tuple from buffer and outputs (i, c)
to Pj .
Hardware messages: SHW has to simulate the replies to queries of corrupted parties to the hardware
box functionality FHW. SHW simulates the queries of the preprocessing phase doing exactly the same as the
functionality FHW.
In the computation phase, on input x = (i, id, c, E, xi, fi, z), SHW simulates the query as follows: It executes
the code of FHW, except that in Step 17, instead of evaluating fi, it sets val = vout

j , and in Step 20, it
outputs (val, EncryptAndFormatOutput(i, G, z, S, 1)) (i.e., it sets sim = 1).

We now show that the execution with SHW is indistinguishable from the real execution. For that, we
present a sequence of hybrids. In the following, we only consider the messages sent by an honest Pi to
its corrupted neighbor Pk (messages between corrupted neighbors are trivial to simulate).

Hybrid 1. S1
HW simulates the real world exactly. That is, S1

HW has information on the entire commu-
nication graph, all edge delays and all clock rates. It simulates the messages exactly.

Hybrid 2. S2
HW generates fresh random values instead of using the outputs from the prf.

27

Hybrid 3. S3
HW is exactly as S2

HW , except the way the output value is generated upon querying the
hardware box. It returns the output vout

j of the corresponding party (ignoring the input vector),
instead of evaluating its function fj(x⃗) on the input vector.

Hybrid 4. S4
HW , generates the local delays of the messages during the computation phase upfront, but

still generates all messages as in S3
HW . That is, instead of sampling the delays when the message is

going to be sent, it calculates the number of delays that are needed for the entire computation, and
generates all samples upfront.

Hybrid 5. S5
HW , generates all messages in the computation phase by sending artificial ciphertexts

containing either the output or parsable fake encryptions. More concretely, instead of following the
path according to the message received (j, ID, G, Path, x, fj) from the previous neighbor, it generates
a new message (j, ID, GC , Pathj , xj , fj) containing the graph GC , the ID’s in GC , and the fake path
on GC started from Pj , but with the same ending. The input vector xj is the 0 vector.

Hybrid 6. S6
HW , generates all messages in the computation phase at the correct times at follows: for

each corrupted party Pj that has an Eulerian Cycle Ej where the first honest party is Pi and the
previous party is Pk, it computes the time tj

stop at which Pj received the first message, the number
of Eulerian Cycles Nj initiated by Pj , and a sample delay for the delay it takes for each initiated
cycle message to arrive to Pi.

Hybrid 7. S5
HW : Pi starts the preprocessing phase with the state where its only neighbors are the

corrupted neighbors in GC . This Hybrid corresponds to SHW .

– Hybrids 1 and 2 are indistinguishable by the security of the prf.
– For Hybrids 2 and 3 to be indistinguishable, we need that fj(x⃗) = vout

j , where vout
j is received from

the ideal functionality, and x⃗ and fj are the values contained in the message. Hence, we have to
show that the message contains the actual function and inputs (and not modified values from the
adversary). To see why this holds, observe that any message that enters the corrupted component and
can be decrypted has been processed by at least one honest party during the second cycle traversal.
This means that this message was actually sent to this party. Now these sent messages are always
correct (recall the adversary is passive) and the box never changes them. Moreover, the adversary
cannot produce any forged or modified messages due to the security of the authenticated encryption.
Hence, the value fj is correct and x⃗ contains inputs (again, correctly) provided by parties during the
first traversal.

– Hybrids 3 and 4 are trivially identical.
– The only difference between the Hybrids 4 and 5 is in the content of the encrypted messages generated

by the simulator. We argue that the output of the simulated hardware box is indistinguishable for
these messages. Observe that the outputs of the hardware box can be either encryptions, or the
output. Both are trivially indistinguishable, as long as the box outputs an encryption in Hybrid 4 if
and only if it outputs an encryption in Hybrid 5. This is the case, because (1) the graph G in any
message from an honest party is correct (by an argument analogous to the one we used to argue that
the function fj is correct), and (2) the part of Path remaining to traverse when the Eulerian cycle
is computed on j and G is the same as the part of Pathj remaining to traverse when it is computed
on j and GC .

– Hybrids 5 and 6 are trivially identical, since the preprocessing messages are always encryptions under
the secret key of FHW.

– Hybrids 6 and 7 are indistinguishable by semantic security.
⊓⊔

28

	Topology-Hiding Computation for Networks with Unknown Delays
	Introduction
	Contributions
	Related Work

	The Probabilistic Unknown Delay Model
	Impossibility of Stronger Models
	Adversary
	Communication Network and Clocks
	Additional Related Work

	Protocols for Restricted Classes of Graphs
	Synchronous THC from Random Walks
	Protocol for Cycles
	Protocol for Trees

	Protocol for General Graphs
	Preprocessing
	Computation
	Computing the Eulerian Cycle

	Adversarially-Controlled Delays Leak Topology
	Adversarially-Controlled Delay Indistinguishability-based Security Definition
	Proof that Adversarially-Controlled Delays Leak Topology

	PKCR* Encryption
	Construction of PKCR* Based on DDH

	Proof of Theorem 1
	Details of the Protocol for Trees
	The Function Executed by the Hardware Boxes
	Proof of Theorem 3

