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Abstract. Extracting essentially uniform randomness from a somewhat
random source X is a crucial operation in various applications, in partic-
ular in cryptography where an adversary usually possesses some partial
information about X. In this paper we formalize and study the most
general form of extracting randomness in such a cryptographic setting.
Our notion of strong extractors captures in particular the case where the
catalyst randomness is neither uniform nor independent of the actual
extractor input. This is for example important for privacy amplification,
where a uniform cryptographic key is generated by Alice and Bob sharing
some partially secret information X by exchanging a catalyst R over an
insecure channel accessible to an adversary Eve. Here the authentication
information for R creates, from Eve’s viewpoint, a dependence between
X and R. We provide explicit constructions for this setting based on
strong blenders. In addition, we give strong deterministic randomness
extractors for lists of random variables, where only an unknown subset
of the variables is required to have some amount of min-entropy.

1 Introduction

1.1 Extracting Uniform Randomness

Extracting essentially uniform randomness from somewhat random information
is an important operation arising in different settings, ranging from the deran-
domization of probabilistic algorithms, the design of pseudo-random generators,
to the generation of information-theoretically secure cryptographic keys.

One can distinguish different variations of this problem, depending on whether
the randomness extraction is deterministic or makes use of some catalyst ran-
domness, and whether or not the generated random string must be protected
from an adversary with side information, including the catalyst (cryptographic
vs. non-cryptographic case).

Non-cryptographic randomness extraction has been studied extensively. A
deterministic randomness extraction function f : Ω → Ω′ is characterized by
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the set S of random variables (often called a source) X for which it generates
an essentially uniform output (e.g., has distance at most ε from the uniform dis-
tribution). Such a function is called an (S, ε)-extractor1 [Dod00]. The question
of the existence of such extractors and the problem of finding explicit construc-
tions has been considered for a large number of sources and remains an im-
portant research topic [TV00]. Examples include various kinds of “streaming”
sources (e.g., [vN51, Eli72, Blu84, SV86, Vaz87b, Vaz87c]), which produce a se-
quence of symbols (as for example Markov sources), families consisting of pairs
or tuples of independent weak random variables (e.g., [CG88, DO03, DEOR04]),
families generated by samplers (e.g., [TV00]), and various kinds of bit-fixing and
symbol-fixing sources (e.g., [CGH+85, CW89, KZ03, GRS04]).

The term “extractor” is generally used for the probabilistic non-cryptographic
case. In this case, the extractor takes as a second input an independent uniform
random string R, which can be seen as a catalyst. The source X from which
randomness is extracted is usually characterized by a lower bound on the min-
entropy. A (k, ε)-extractor [NZ96] extracts ε-close to uniform randomness under
the sole condition that the min-entropy of X is at least k.

Such a (k, ε)-extractor is called strong if the output is ε-close to uniform
even when R is taken as part of the output. This is useful in a setting where
R is communicated over an (authenticated) channel accessible to an adversary
who should still be completely ignorant about the generated string. This setting,
usually referred to as privacy amplification, is discussed in the following section.

Note that the concept of an (S, ε)-extractor is a strict generalization of the
concept of a (k, ε)-extractor if one views the catalyst as part of the input to the
(then deterministic) extractor. In the same sense, the (S, ε)-strong extractors
defined in this paper are a strict generalization of (k, ε)-strong extractors. The
output of an (S, ε)-extractor is required to be close to uniform even given some
additional piece of information, which does not necessarily have to be part of
the input, but is characterized by the family S.

1.2 Privacy Amplification

Classical privacy amplification, introduced by Bennett, Brassard, and Robert
[BBR88] (and further analysed in [BBCM95]), refers to the following setting.
Two parties Alice and Bob are connected by an authenticated but otherwise
insecure communication channel, and they share a random variable X about
which Eve has partial information, modeled by a random variable Y known to
her.2 The random variable X could for instance be the result of a quantum
cryptography protocol or some other protocol.

Alice and Bob’s goal is to generate an almost uniform random string S about
which Eve has essentially no information, i.e., which is essentially uniform from
1 Note that the term extractor usually refers to the probabilistic case, which is gener-

ally attributed to Nisan and Zuckerman [NZ96], see below.
2 The setting is described by the joint probability distribution PXY or, more precisely,

by a set of such distributions. Actually, in the literature X is usually assumed to be
a uniformly distributed bitstring, but this restriction is not necessary.
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her point of view and can thus be used as a cryptographic key. This is achieved
by Alice choosing a random string R, sending it to Bob (and hence also to Eve),
and Alice and Bob applying a strong extractor (with catalyst randomness R) to
obtain S. This works if the min-entropy of X , when given Y = y, is sufficiently
high, with overwhelming probability over the values y that Y can take on. As
mentioned above, the extractor must be strong since S must be uniform even
when conditioned on R.

1.3 Contributions of This Paper

This privacy amplification setting can be unsatisfactory for two different reasons.
First, in a practical setting, where the goal is to make as conservative and realistic
assumptions as possible, one might worry that the catalyst randomness generated
by one of the parties is neither uniform nor fully independent of X . Therefore,
a natural question to ask is whether privacy amplification is possible without
catalyst randomness, i.e., by a deterministic function. This problem is formalized
in Section 3, where our new notion of strong extractors is introduced. We also
provide a definition of strong condensers, which only guarantee some amount
of min-entropy in the output and show how these concepts are related to each
other.

A non-uniform and dependent catalyst can be seen as a special case of the
above when viewed as part of the input to the (then deterministic) privacy ampli-
fication with two input random variables. In Section 4 we show that the amount
of extractable uniform randomness is determined essentially by the difference of
the amount of min-entropy and the degree of dependence. These results give rise
to new sources allowing for conventional deterministic randomness extraction,
in particular for dependent pairs of weak random variables, thus relaxing the
independence condition needed in the constructions of [CG88, DO03, DEOR04].
As an important example, the type of dependence considered includes the case
of outputs generated by a (hidden) Markov model, thus generalizing for exam-
ple [Blu84].

In Section 5 we present strong extractors (or, equivalently, deterministic pri-
vacy amplification) for a setting where Alice and Bob share a list of random
variables, some unknown subset of which contains sufficient min-entropy, and
where the adversary also knows some unknown subset of them. Note that the
problem of constructing such extractors was recently considered by Lee, Lu, Tsai
and Tzeng [LLTT05] along with a different cryptographic application in the con-
text of key agreement for group communication. One of our constructions is very
similar to theirs, though our analysis is different. We stress that the problem con-
sidered here is different from the problem of constructing extractors for several
independent sources (each having a specific amount of min-entropy). Concerning
the latter problem, there has recently been a significant breakthrough by Barak
et al. [BIW04].
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A second generalization of standard privacy amplification is to get rid of
the need for an authenticated communication channel between Alice and Bob.3

In this case, the shared random variable X must also be used to authenticate
the catalyst R, in addition to being the input to the extraction procedure. This
creates a dependence, from the adversary’s viewpoint, between X and R, thus
requiring the use of our generalized strong extractors. This setting has been
considered before [MW97, DO03, RW03]. Our results lead to a more general
and modular treatment with simpler proofs, but this application is not discussed
here.

1.4 Outline

Section 2 introduces some basic concepts used throughout the paper. We then
present our general definition of strong extractors and strong condensers in Sec-
tion 3.1, and show how these primitives and some of their basic properties are
related to privacy amplification. In Section 3.2, we discuss how our definition of
a strong extractor generalizes various known definitions of randomness extrac-
tors. In Section 3.3 we establish a relation between strong extractors and strong
condensers. In Section 4, we show how to construct (S, ε)-strong extractors for
a non-trivial family S which consists of dependent pairs of random variables.
Finally, in Section 5, we show how to construct strong extractors for tuples of
independent weak random variables with certain properties.

2 Preliminaries

For n ∈ N we denote by [n] the set {1, . . . , n}. If x = (x1 · · · xn) ∈ {0, 1}n is a
bitstring and S ⊂ [n] a set of indices, we write x|S for the concatenation of the
bits xi with i ∈ S.

We will denote by P(Ω) the set of probability distributions4 on an alphabet
Ω. Moreover, P(Ω1) × P(Ω2) ⊂ P(Ω1 × Ω2) will be the set of independent
distributions on Ω1 × Ω2. If X1, X2 ∈ P(Ω), we write PX1 ≡ PX2 if PX1(x) =
PX2(x) for all x ∈ Ω. For (X1, X2) ∈ P(Ω1 × Ω2), the distribution X1 × X2 ∈
P(Ω1)×P(Ω2) is defined by PX1×X2(x1, x2) := PX1(x1)PX2 (x2) for all (x1, x2) ∈
Ω1 × Ω2.

The statistical distance between two distributions P and P ′ over the same
alphabet Ω is defined as d(P, P ′) := 1

2

∑
z∈Ω |P (z) − P ′(z)|. Note that the sta-

tistical distance satisfies

d(P1 × Q, P2 × Q) = d(P1, P2) (1)

and is strongly convex, i.e.,

d
(∑

i

λiPi,
∑

i

λiQi

)
≤

∑

i

λid(Pi, Qi) if λi ≥ 0 and
∑

i

λi = 1. (2)

3 Actually, in most realistic settings the channel is completely insecure and authentic-
ity must be guaranteed by use of a pre-distributed short secret key.

4 The terms random variable and probability distribution will be used interchangeably.
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Let UΩ ∈ P(Ω) denote a random variable with uniform distribution on Ω.
A random variable Z ∈ P(Ω) is ε-close to uniform if d(Z, UΩ) ≤ ε.

For a set S ⊂ P(Ω) of probability distributions, let

Bε(S) := {X ∈ P(Ω) | ∃Y ∈ S : d(X, Y ) ≤ ε}

denote the distributions which are ε-close to some distribution in S. We write S
for the convex hull of S, i.e., the set of distributions which can be written as a
convex combination of distributions in S.

For (X, Y ) ∈ P(Ω1×Ω2), we define the min-entropy of X and the conditional
min-entropy of X given Y as follows5:

H∞(X) := − log2(max
x

PX(x)) H∞(X |Y ) := min
y

H∞(X |Y = y).

We call a random variable X for which only a lower bound on its min-entropy
is known (i.e., H∞(X) ≥ k for some k) a weak random variable. Finally, we use6

H0(X) := log2(| supp(X)|)

to measure the size of the support supp(X) := {x ∈ Ω1 | PX(x) > 0} of X .
We will use the following property of the statistical distance, which we state

as a lemma.

Lemma 1. Let (S, Y ) ∈ P(Ω1 × Ω2) be an arbitrary pair of random variables.
Then there exists7 a random variable S′ which is uniformly distributed on Ω1,
independent of Y , and satisfies P[S = S′] ≥ 1 − d

(
(S, Y ), UΩ1 × Y

)
.

Proof. Let Sy be a random variable with distribution PSy ≡ PS|Y =y and let
dy := d(Sy, UΩ1). We use the following well-known fact.

For an arbitrary random variable T ∈ P(Ω), there exists a random variable
T ′ defined by a channel8 PT ′|T with the property that T ′ is uniformly distributed
on Ω and P[T = T ′] = 1−d(T, UΩ). Applying this to Sy, we conclude that there
exists a random variable S′y defined by a channel PS′

y|Sy
such that

P[S′y = Sy] = 1 − dy and PS′
y

= PUΩ1
.

Let us define S′ by the conditional distributions PS′|Y =y,S=s := PS′
y|Sy=s for all

(s, y) ∈ Ω1 × Ω2. Then we obtain for all (s′, y) ∈ Ω1 × Ω2

PS′|Y =y(s′) =
∑

s∈Ω1

PS|Y =y(s)PS′|Y =y,S=s(s′) =
∑

s∈Ω1

PSy(s)PS′
y|Sy=s(s′) = PS′

y
(s′)

5 H∞(X|Y = y) is to be understood as the min-entropy of the conditional distribution
PX|Y =y.

6 For 0 < α < ∞, α �= 1, the Rényi entropy of order α is defined as Hα(X) :=
1

1−α
log2

��
x PX(x)α

�
. The quantities H0(X) and H∞(X) are obtained by taking

the limits α → 0 and α → ∞, respectively.
7 “exists” is to be interpreted as follows: One can define a new random experiment

with random variables S, S′, and Y such that PSY is equal in both experiments and
such that S′ satisfies the stated conditions.

8 This means that T and T ′ are jointly distributed according to PTT ′ (t, t′) :=
PT (t)PT ′|T=t(t′).
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which implies that S′ is indeed uniform and independent of Y . Moreover, we have
P[S = S′|Y = y] =

∑
s∈Ω1

PS|Y =y(s)PS′|Y =y,S=s(s) =
∑

s∈Ω1
PSy(s)PS′

y|Sy=s(s),
hence P[S = S′|Y = y] = P[Sy = S′y] and P[S = S′|Y = y] = 1 − dy . But

E
y←Y

[dy] = d
(
(S, Y ), UΩ1 × Y

)
. The statement now follows from

E
y←Y

[
P[S = S′|Y = y]

]
= P[S = S′].

3 Strong Extraction for General Families of Random
Variables

3.1 Basic Definitions and the Relation to Privacy Amplification

In the general setting of privacy amplification described in the introduction, the
two parties (possibly after communicating first) have a shared random string X ,
whereas the adversary holds some information about X which is summarized by
a random variable Y . It is important to note that Y does not necessarily have
to be a part of X , but may depend in some other more intricate way on X . As
an example, if Alice and Bob used X to authenticate some message M using a
MAC, then Eve might learn Y = (M, MACX(M)). As a consequence, we may
usually only assume that the pair (X, Y ) has some specific structure (depending
on the particular setting), i.e., it is contained in some family S of distributions.
The question is then what Alice and Bob have to do in order to deterministically
extract a key S from X which is uniform from the point of view of the adversary.

According to Lemma 1, if for the extracted key S, the quantity d
(
(S, Y ), UΩ′×

Y
)

is small, then S is with high probability identical to a perfectly uniformly dis-
tributed “ideal” key which is independent of the part Y known to the adversary.
This motivates the following general definition.

Definition 1. Let S ⊂ P(Ω1 ×Ω2) be a set of probability distributions on Ω1 ×
Ω2. A function Ext : Ω1 → Ω′ is an (S, ε)-strong extractor if for every pair
(X, Y ) ∈ S,

d
(
(Ext(X), Y ), UΩ′ × Y

)
≤ ε.

Using this new terminology, Alice and Bob simply have to apply an appro-
priate (S, ε)-strong extractor in order to obtain the desired result. The following
lemma describes some intuitive properties of strong extractors which follow di-
rectly from the definition and properties of the statistical distance.

Lemma 2. An (S, ε)-strong extractor is

(i). an (S, ε)-strong extractor.
(ii). a (Bδ(S), ε + δ)-strong extractor for every δ ≥ 0.
(iii). an (S′, ε)-strong extractor for the family of distributions

S′ :=
{
(X, (Y, Z))

∣
∣ P(X,Y )|Z=z ∈ S for all z ∈ supp(Z)

}
.



328 R. König and U. Maurer

(iv). an (S′, ε)-strong extractor for the family of distributions

S′ :=
{
(X, Z)

∣
∣ (X, Y ) ∈ S, X ↔ Y ↔ Z

}
,

where the notation X ↔ Y ↔ Z means that X, Y and Z form a Markov
chain.

Property (i) expresses the obvious fact that an (S, ε)-strong extractor also works
on any convex combination of distributions in S. Property (ii) implies that in
the context of privacy amplification, Alice and Bob can obtain an almost perfect
secret key even if the initial situation is only close to a situation for which
the extractor is appropriate. Property (iii) states that any additional piece of
information Z does not help the adversary if conditioned on every value that
Z can take on, the extracted key is close to uniform from the adversary’s view.
Finally, Property (iv) asserts that the extracted key still looks uniform to the
adversary even if he processes his piece of information Y to obtain some different
random variable Z.

As a weakening of the concept of extractors, it is natural to consider also the
concept of condensers (see e.g., [RSW00]). In the privacy amplification setting,
this corresponds to a situation where Alice and Bob would like to obtain a key
which has a large amount of min-entropy from the point of view of the adversary.
This may be used for example in an authentication protocol. We are thus led to
the following analogous definition.

Definition 2. Let S ⊂ P(Ω1 ×Ω2) be a set of probability distributions on Ω1 ×
Ω2. A function Cond : Ω1 → Ω′ is an (S, k, ε)-strong condenser if for every
(X, Y ) ∈ S, there exists a random variable S such that

d
(
(Cond(X), Y ), (S, Y )

)
≤ ε and H∞(S|Y ) ≥ k.

3.2 Relation to Known Definitions

In this section, we show that known definitions of extractors are in fact special
instances of (S, ε)-strong extractors. Let us begin with the following general
notion of deterministic9 extractors, first introduced by Dodis.

Definition 3 ([Dod00]). Let S ⊂ P(Ω) be a set of probability distributions
on Ω. A function Ext : Ω → Ω′ is an (S, ε)-extractor if for every X ∈ S,
d(Ext(X), UΩ′) ≤ ε.

Obviously, such an extractor corresponds to an (S′, ε)-extractor for the family
S′ := {(X, ⊥) | X ∈ S} where ⊥ denotes a constant random variable. Note that
an (S, ε)-strong extractor is an (S, ε)-extractor according to Definition 3, a fact
which follows from Property (iv) of Lemma 2.

Our definition also generalizes the concept of strong (k, ε)-extractors, which
are defined as follows.
9 In this paper, we generally use the term deterministic to refer to procedures which

(contrary to probabilistic ones) do not require a seed consisting of truly random bits.
Note, however, that a probabilistic extractor can be seen as a deterministic one in
the sense of Definition 3.
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Definition 4 ([NZ96]). A strong (k, ε)-extractor is a function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m such that for every X ∈ P({0, 1}n) with H∞(X) ≥ k,

d
(
(Ext(X, R), R), U{0,1}m × R

)
≤ ε.

A strong (k, ε)-extractor is an (S′, ε)-extractor for the family of distributions
S′ ⊂ P

(
({0, 1}n × {0, 1}d) × {0, 1}d

)
given by

S′ :=
{(

(X, R), R
) ∣

∣ H∞(X) ≥ k, R independent of X and PR ≡ PU{0,1}d

}
.

Similarly, our concept generalizes the so-called strong blenders introduced by
Dodis and Oliveira in [DO03]. To describe this type of strong extractors, it is
convenient to introduce the following families of distributions, which we also use
in Sections 4 and 5.

Definition 5 ([CG88]).The setCG(Ω1,)[k1, Ω2]k2 of so-called Chor-Goldreich-
sources is the set of all pairs (X1, X2) ∈ P(Ω1)×P(Ω2) of independent random
variables such that H∞(X1) ≥ k1 and H∞(X2) ≥ k2.

The set CG(Ω1, Ω2)[k] is the set of all pairs of independent random variables
(X1, X2) ∈ P(Ω1) × P(Ω2) satisfying H∞(X1X2) ≥ k. Furthermore, we define
CG(Ω)[k] := CG(Ω, Ω)[k].

To simplify the notation, we will sometimes refer to the set {0, 1}n simply by n
in these two definitions. For example, we will write CG(n1, n2)[k1, k2] instead
of CG({0, 1}n1, {0, 1}n2)[k1, k2].

Definition 6 ([DO03]). A (k1,k2, ε)-strong blender is a function Ble :{0, 1}n1×
{0, 1}n2 → {0, 1}m such that

d
(
(Ble(X, Y ), Y ), U{0,1}m × Y

)
≤ ε

for all pairs (X, Y ) ∈ CG(n1, n2)[k1, k2].

With our new notion of strong extraction, a (k1, k2, ε)-strong blender is an (S, ε)-
strong extractor for the special family of distributions

S :=
{(

(X, Y ), Y
) ∣

∣ (X, Y ) ∈ CG(n1, n2)[k1, k2]
}

. (3)

We will reconsider strong blenders in Section 4.1. Note that in the definition of
the family S, the random variables X and Y are independent. In Section 4.2,
we show how to construct strong extractors even in the case where X and Y
depend on each other.

As already mentioned, our definition of strong extractors also applies to the
more general situation where the “public” information Y given to the adversary
is not simply a part of X . In particular, this is the case when it is unavoidable
to leak certain additional information about X , for instance if we would like
to provide some error tolerance with respect to X . A general solution to this
problem is accurately modeled by the concept of fuzzy extractors introduced by
Dodis, Reyzin and Smith (see [DRS04] for details). It is easy to see that our
definition of strong extractors also generalizes these fuzzy extractors.
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3.3 Strong Condensers from Strong Extractors

Intuitively, in the setting of privacy amplification, if Alice and Bob derive a secret
key S by applying a strong extractor, this key will still have a high amount of
min-entropy from the point of view of the adversary even if the adversary is
given a (short) additional piece of information. This means that an (S, ε)-strong
extractor is in fact a strong condenser for a different family S′, which models
the situation where the adversary gets additional information. This is formally
expressed by Lemma 4.

The proof relies on the following technical result, which appears in a more
general form in [MW97] and is implicitly used in [NZ96]. For an arbitrary pair
(X, Z) ∈ P(Ω1 × Ω2) of random variables and δ > 0,

P
z←Z

[
H∞(X |Z = z) ≥ H∞(X) − H0(Z) − log2

1
δ

]
≥ 1 − δ . (4)

We reformulate this statement in a way which is more useful for our purpose.

Lemma 3. Let (S, Y, Z) ∈ P(Ω1 × Ω2 × Ω3) be arbitrary random variables and
let δ > 0. Then there exists a random variable S′ defined by a channel PS′|Y Z

such that

H∞(S′|(Y, Z)) ≥ H∞(S|Y ) − H0(Z) − log2
1
δ and (5)

d
(
(S, Y, Z), (S′, Y, Z)

)
≤ δ. (6)

Proof. Let us define the set

Γδ := {(y, z) ∈ Ω2 × Ω3 | H∞(S|Y = y, Z = z) ≥ H∞(S|Y ) − H0(Z) − log2
1
δ }.

Then by identity (4),

P
z←Z|Y =y

[
(y, z) ∈ Γδ

]
≥ 1 − δ . (7)

We define S′ by

PS′|Y =y,Z=z :=

{
PS|Y =y,Z=z if (y, z) ∈ Γδ

PUΩ1
otherwise.

Statement (5) is now a consequence of the definition of Γδ.
As the quantity d(PS|Y =y,Z=z, PS′|Y =y,Z=z) is at most 1 if (y, z) /∈ Γδ and 0

otherwise, we conclude, using (7), that
∑

z∈Ω3

PZ|Y =y(z)d(PS|Y =y,Z=z, PS′|Y =y,Z=z) ≤ P
z←Z|Y =y

[(y, z) /∈ Γδ] ≤ δ .

Statement (6) then follows from

d
(
(S, Y, Z), (S′, Y, Z)

)
= E

y←Y

[ ∑

z∈Ω3

PZ|Y =y(z)d(PS|Y =y,Z=z, PS′|Y =y,Z=z)
]

.
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Lemma 3 allows us to derive the main result of this section.

Lemma 4. Let Ext : Ω1 → {0, 1}n0 be an (S, ε)-strong extractor and let δ > 0.
Then Ext is an (S′, k, ε + δ)-strong condenser for the family

S′ :=
{(

X, (Y, Z)
) ∣

∣ (X, Y ) ∈ S and H0(Z) ≤ n0 − k − log2
1
δ

}
.

Proof. Let S := Ext(X). Then by Lemma 1 there is a random variable S′ which
is uniformly distributed and independent of Y such that P[S = S′] ≥ 1 − ε. In
particular, we have H∞(S′|Y ) = n0. Therefore, by Lemma 3, there is a random
variable S′′ such that

H∞(S′′|(Y, Z)) ≥ n0 − H0(Z) − log2
1
δ ≥ k

and
d
(
(S′, (Y, Z)), (S′′, (Y, Z))

)
≤ δ .

The statement now follows from the triangle inequality of the statistical distance
and the fact that

d
(
(S, (Y, Z)), (S′, (Y, Z))

)
≤ ε

which holds because P[S = S′] ≥ 1 − ε.

This result is implicitly used for example in a protocol by Renner and Wolf
[RW03] for privacy amplification over a non-authenticated channel. Without
elaborating this any further, we point out that our generalized concepts of con-
densers and extractors allow to simplify existing security proofs such as the one
given in [RW03].

4 Strong Extraction with a Weak and Dependent Catalyst

An important special case of our generalized notion of (deterministic) strong
extractors is when the input can be seen as consisting of two parts, an actual
input X1 and a non-uniform and dependent catalyst X2 which is also part of
the output. In this section we introduce a dependence measure for such pairs
(X1, X2) of random variables and show that the amount of uniform randomness
extractable from (X1, X2) is determined essentially by the difference of the min-
entropies of X1 and X2 and the level of dependence. In Section 4.1 we reformulate
the definition of strong blenders and in Section 4.2 we state our main result
concerning strong extraction from dependent variables. The dependence measure
we consider is defined as follows.

Definition 7. The set of m-independent distributions Im(Ω1, Ω2) ⊂ P(Ω1 ×
Ω2) is the set of all pairs (X1, X2) of random variables on Ω1 × Ω2 which can
be written as a convex combination of m independent distributions, i.e.,

Im(Ω1, Ω2) :=
{ ∑

i∈[m]

λiPi × Qi

∣
∣
∣ ∀i ∈ [m] : λi ≥ 0, Pi ∈ P(Ω1), Qi ∈ P(Ω2)

}
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The dependence index of a pair of random variables (X1, X2) ∈ P(Ω1 × Ω2) is
defined as the quantity

dep(X1, X2) := log2
(
min

{
m ∈ N

∣
∣ (X1, X2) ∈ Im(Ω1, Ω2)

})
.

Obviously, Im(Ω1, Ω2) ⊂ Im′(Ω1, Ω2) for m < m′ and dep(X1, X2) = 0 if and
only if X1 and X2 are independent. Note that an m-independent distribution is
for example obtained by observing the output of a (hidden) Markov source with
at most m states at subsequent time steps.

4.1 Strong Blenders

Strong blenders can be used to perform privacy amplification when Alice and Bob
have a pair (X, Y ) of independent weak random variables and the adversary is
given Y (compare e.g., [DO03]). To model this situation using strong extractors,
it is convenient to use a “copying” operator10 cc which transforms a pair of
random variables (X, Y ) into a pair ((X, Y ), Y ). This models the fact that the
adversary is given Y .

Note that this operator has the following simple property which can be veri-
fied by direct calculation. If

∑
i µi = 1 with µi ≥ 0 and Pi ∈ P(Ω1 × Ω2) for all

i, then
cc

(∑

i

µiPi

)
=

∑

i

µi cc(Pi) (8)

With this definition, the family of distributions cc(CG(n1, n2)[k1, k2]) is ex-
actly the family given in equation (3). In other words, a (k1, k2, ε)-strong blender
according to Definition 6 is a (cc(CG(n1, n2)[k1, k2]), ε)-strong extractor. In the
sequel, we will use the terms strong blender and (cc(CG(n1, n2)[k1, k2]), ε)-
strong extractor interchangeably, depending on whether or not we would like to
refer to the parameters explicitly.

Recently, new results concerning extraction from independent weak sources
were obtained by Barak et al. ([BIW04, BKS+05]) and Raz11 [Raz05]. We use
these extractors in Section 4.2.

4.2 m-Independence and Strong Extraction

The following lemma states that every pair (X1, X2) of random variables is close
to a convex combination of independent random variables having some specific
amount of min-entropy which depends on dep(X1, X2). An analogous statement
holds for the pair ((X1, X2), X2).

10 Formally, the copying operator cc : P(Ω1 × Ω2) → P((Ω1 × Ω2) × Ω2) is defined
as follows. If PX1X2 ∈ P(Ω1 × Ω2) and P := cc(PX1X2), then P ((x1, x2), x3) :=
PX1X2(x1, x2)·δx2,x3 for all xi ∈ Ωi, i = 1, . . . , 3, where δx2,x3 denotes the Kronecker-
delta, which equals 1 if x2 = x3 and 0 otherwise.

11 In particular, Raz [Raz05] presents (CG(n, n)[k1, k2], ε)-extractors for parameters
k1 = ( 1

2 + δ)n and k2 = Θ(log n) where δ > 0 is an arbitrarily small constant.
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Lemma 5. Let (X1, X2) ∈ P(Ω1 × Ω2) and δ1, δ2 > 0 be arbitrary and define

ki = H∞(Xi) − dep(X1, X2) − log2
1
δi

for i = 1, 2.

Then we have

(X1, X2) ∈ Bδ1+δ2(CG(Ω1, Ω2)[k1, k2]) and

cc(X1, X2) ∈ Bδ1+δ2(cc(CG(Ω1, Ω2)[k1, k2])) .

Proof. Let m := 2dep(X1,X2). Then there is a distribution (X ′1, X
′
2, Z) ∈ P(Ω1 ×

Ω2 × [m]) such that PX1X2 ≡ PX′
1X′

2
≡

∑
z∈[m] PZ(z)PX′

1|Z=zPX′
2|Z=z. For i =

1, 2, applying identity (4) to the pair (X ′i, Z) shows that there are two subsets
A1, A2 ⊆ [m] and distributions {P i

j}j∈[m] ⊂ P(Ωi) for i = 1, 2 such that PX1X2

has the form PX1X2 ≡
∑

j∈[m] λjP
1
j × P 2

j , where for every i = 1, 2,
∑

j∈Ai
λj ≥

1 − δi as well as H∞(P i
j ) ≥ ki for all j ∈ Ai. In particular, we may write

PX1X2 ≡
∑

j∈A1∩A2

λjQj +
(
1 −

∑

j∈A1∩A2

λj

)
Q (9)

for some distributions {Qj}j∈A1∩A2 ∈ CG(Ω1, Ω2)[k1, k2] and a distribution
Q ∈ P(Ω1 × Ω2), where (1 −

∑
j∈A1∩A2

λj) ≤ δ1 + δ2. By the strong convexity
(2) of the statistical distance, the first statement follows. The second statement
follows similarly by application of cc to both sides of (9), using (8) and (2).

Using Lemma 5, Lemma 2 and an explicit construction by Raz [Raz05], we
immediately obtain12 a strong extractor with a weak and dependent catalyst.
Theorem 1 gives the exact parameters. Intuitively, it expresses the fact that the
amount of required min-entropy rises with the amount of dependence there is. In
the setting of privacy amplification, this result states that there is an (explicit)
deterministic function which Alice and Bob can use to extract a secret key S in
a situation where they initially share a pair of weak random variables (X1, X2),
and where X2 is known to the adversary. We emphasize that contrary to the
setting analysed in [DO03], X2 need not be completely independent of X1.

Theorem 1. For any parameters n, m, κ1, κ2 and 0 < δ < 1
2 satisfying

κ1 ≥
(1
2

+ δ
)

· n + 4 log2 n

κ2 ≥ 5 log2(n − κ1)

m ≤ δ · min
{n

8
,
κ1

40
}

− 1,

where n is sufficiently large, there exists an (explicit) (Sm
κ1,κ2

, ε)-strong extractor
Ext : {0, 1}n × {0, 1}n → {0, 1}m for the family of distributions

Sm
κ1,κ2

:=
{(

(X1, X2), X2
)

| H∞(Xi) − dep(X1, X2) ≥ κi +
3
2
m for i = 1, 2}.

12 Note that our techniques also apply, e.g., to the constructions provided by Barak et
al. ([BIW04, BKS+05]).
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with error ε := 3 ·2− 3
2 m. Moreover, this extractor is also strong in the first input,

i.e., it is an (Ŝm
κ1,κ2

, ε)-strong extractor for the family of distributions

Ŝm
κ1,κ2

:=
{(

(X1, X2), X1
)

|
(
(X1, X2), X2

)
∈ Sm

κ1,κ2

}
.

5 Strong Extractors for the Family T N
Ω (k)

In this section, we consider the following family of random variables, which is
somewhat related to symbol-fixing sources (see [CGH+85, CW89, KZ03, GRS04])
since the “positions” having “good” randomness are unknown.

Definition 8. For an N -tuple of random variables (X1, . . . , XN ) ∈ P(ΩN ) and
a subset A ⊂ [N ], let X |A denote the concatenation of those random vari-
ables Xi with i ∈ A. The family T N

Ω (k) is the set of all pairs of the form(
(X1, . . . , XN), X |A

)
where (X1, . . . , XN) ∈ P(Ω)n are independent random

variables and A ⊂ [N ] is such that there exists two distinct indices i, j ∈ [N ]
with j �∈ A and H∞(XiXj) ≥ k.

In the privacy amplification setting, this corresponds to a situation where Al-
ice and Bob have a sequence of independent random variables and the adversary
obtains a subsequence. The only thing guaranteed is that two of these random
variables (say Xi and Xj) have joint min-entropy at least13 k and at least one of
the two (say Xj) is unknown to the adversary. Note that extractors for this family
have been used for other applications than privacy amplification [LLTT05].

We give two new constructions for strong extractors for the family T n
Ω (k).

The first construction is based on special group-theoretic strong blenders. It is
presented in Section 5.1. The second construction is very similar to a recent
construction due to Lee, Lu, Tsai and Tzeng [LLTT05] and related to the con-
struction of strong blenders presented in [DEOR04]. Our proof proceeds along
the lines of similar derivations in [DO03] and [DEOR04].

5.1 Group-Theoretic Extractors for the Family T N
Ω (k)

Theorem 2 below shows how a (T N
Ω (k), ε)-strong extractor can be constructed in

a generic way, using the following simple observation. We omit the trivial proof.

Lemma 6. Let (G, +) be a group and let X1, X2 ∈ P(G) be two independent
random variables defined on G. Then H∞(X1 +X2) ≥ max{H∞(X1), H∞(X2)}.

Intuitively, this lemma says that taking a random step according to X2 on the
Cayley graph defined by the group G, starting from a random position defined
13 Note that usually, we have k > log2 |Ω|, implying that both Xi and Xj must

have some amount of min-entropy individually. As pointed out in the introduction,
this problem is different than the extraction problem considered, e.g., by Barak et
al. [BIW04, BKS+05].
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by X1, we end up with an element that is at least as random as the variable
which contains more randomness. This observation allows us to give a generic
construction of a (T N

Ω (k), ε)-strong extractor, solving this problem in a (at least
conceptually) similar manner as the way Kamp and Zuckerman [KZ03] treat the
problem of randomness extraction from symbol-fixing sources.

Theorem 2. Let (G, +) be an abelian group and let Ext : G × G → Ω be a
(cc(CG(G)[k]), ε)-strong extractor of the form Ext(x1, x2) := f(x1 + x2). Then
the function F (x1, . . . , xN ) := f(

∑
i∈[N ] xi) is a (T N

G (k), ε)-strong extractor.

Proof. Let
(
(X1, . . . , XN ), X |A

)
∈ T N

G (k). Suppose i, j ∈ [N ] are such that
i ∈ A, j /∈ A and H∞(XiXj) ≥ k. Then F (X1, . . . , XN) = Ext (X ′, Y ′) where
X ′ :=

∑
�∈[N ]\A X� is independent of Y ′ :=

∑
�∈A X� and H∞(X ′)+H∞(Y ′) ≥ k

by assumption and Lemma 6. Because (X1, . . . , XN ) ↔ X |A ↔ Y ′ is a Markov
chain, the statement follows from Lemma (iv). The case where i /∈ A is treated
similarly.

Using the following function Ext : Zp ×Zp → Zn0 (originally proposed in [CG88]
and later shown to be a strong blender in [DO03])

Ext(x1, x2) :=

{
logg(x1 + x2 mod p) mod n0 if x1 + x2 �= 0 mod p

0 otherwise,

where p > 2 is a prime, g a generator of Z
∗
p and n0 a divisor of p− 1, Theorem 2

immediately gives a
(
T n

Zp
(log2 p + 2 log2(

1
ε ) + 2 log2 n0), ε

)
-strong extractor for

every ε ≥ 2
p . Note that for appropriately chosen parameters p, g and n0, the

resulting extractor is efficiently computable (see [CG88] for details).

5.2 More Extractors for the Family T N
Ω (k)

It is easy to see that any (cc(CG(n)[k]), ε)-strong extractor which is symmetric
in its arguments is a (T 2

{0,1}n(k), ε)-strong extractor. This, combined with the
result by [DO03] that the inner product is a strong blender gives a very simple
(T 2
{0,1}n(k), ε)-strong extractor.

Lemma 7 ([DO03]). The inner product modulo 2, denoted 〈·, ·〉 : {0, 1}n ×
{0, 1}n → {0, 1}, is a (T 2

{0,1}n(k), ε)-strong extractor, where log 1
ε = k−n

2 + 1 .

A slight extension of this statement allows us to construct a (T 2
{0,1}n(k), ε)-strong

extractor which extracts just a single bit. The construction given here is more
general than necessary (the parameters a, b, c could be omitted), but allows to
prove Lemma 9 more easily.

Lemma 8. Let M be an invertible n×n matrix over GF (2) and let a, b ∈ {0, 1}n

and c ∈ {0, 1} be arbitrary. Define the function Exta,b,c
M (x1, x2) := 〈x1, Mx2〉 +

〈a, x1〉 + 〈b, x2〉 + c where addition is modulo 2. Then the function Exta,b,c
M is a

(T 2
{0,1}n(k), ε)-extractor, where log(1

ε ) = k−n
2 + 1.
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In the following proofs, we use the non-uniformity δ(Z) := d(Z, UΩ) to denote
the distance of a distribution Z ∈ P(Ω) from the uniform distribution on Ω.

Proof. We have to prove that

E
x2←X2

[δ(Exta,b,c
M (X1, x2))] ≤ ε and E

x1←X1
[δ(Exta,b,c

M (x1, X2))] ≤ ε

(10)
for all pairs (X1, X2) ∈ CG(k)[n] with k as specified. Since the operation of
adding a constant is a bijection, we have for every fixed x2 ∈ {0, 1}n

δ(Exta,b,c
M (X1, x2)) = δ(Exta,b,0

M (X1, x2)) = δ(Exta,0,0
M (X1, x2)) .

Hence, as Exta,0,0
M (x1, x2) = 〈x1, Mx2〉 + 〈a, x1〉 = 〈x1, Mx2 + a〉, we obtain

E
x2←X2

[δ(Exta,b,c
M (X1, x2))] = E

x2←X2
[δ(〈X1, Mx2 + a〉)] .

Define the random variable X ′2 by X ′2 := MX2 + a. Since the mapping x2 �→
Mx2 + a is a bijection, we have

E
x2←X2

[δ(〈X1, Mx2 + a〉)] = E
x′
2←X′

2

[δ(〈X1, x
′
2〉)] .

This combined with the fact that H∞(X ′2) = H∞(X2) and Lemma 7 proves the
first inequality in (10). The second inequality then follows from the first with
the identity Exta,b,c

M (x1, x2) = Extb,a,c
MT (x2, x1) and the fact that the transpose

MT is invertible if M is invertible.

Lemma 8 allows us to obtain a (T N
{0,1}n(k), ε)-strong extractor for N > 2 which

again extracts only a single bit.

Lemma 9. Let M be an invertible n × n-matrix over GF (2) and let ExtM :
({0, 1}n)N → {0, 1} be the function ExtM (x1, . . . , xN ) :=

∑
s<t〈xs, Mxt〉, where

Mxt is the matrix-vector multiplication over GF (2) and addition is modulo 2.
Then ExtM is a (T N

{0,1}n(k), ε)-strong extractor, where log(1
ε ) = k−n

2 + 1.

Proof. Suppose that
(
(X1, . . . , XN ), X |A

)
∈ T N

{0,1}n(k) and let i, j ∈ [N ] be
such that i ∈ A, j /∈ A and H∞(XiXj) ≥ k. Without loss of generality, we
may assume that i < j, since

(
(Xπ(1), . . . , Xπ(N)), X |A

)
∈ T N
{0,1}n(k) for every

permutation π ∈ SN . A straightforward calculation shows (compare [LLTT05])
that we can write ExtM (x1, . . . , xN ) = Exta,b,c

M (xi, xj) with a, b, c depending
only on the variables x� with � /∈ {i, j}. 14 Hence we have

d((ExtM (X1, . . . , XN ), X |A), (U{0,1}, X |A)) =

E
x̃←XA\{i}

E
xi←Xi

[δ(Exta(x̃),b(x̃),c(x̃)
M (xi, Xj))]

14 More precisely, a, b and c are given by the expressions

a := M
�

t>i,t �=j xt + MT
�

s<i xs,

b := M
�

t>j xt + MT �
s<j,s�=i xs

c :=
�

s<t∈[m]\{i,j}〈xs, Mxt〉
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for appropriately defined functions a, b, c from ({0, 1}n)|A|−1 to {0, 1}n and
{0, 1}, respectively. The claim then follows from Lemma 8.

To get an extractor which produces several bits, we use the following refor-
mulation of Vaziranis parity lemma [Vaz87a].

Lemma 10. Let S ⊂ P(Ω1 × Ω2) and let Ext : Ω1 → {0, 1}m be such that the
function x �→ 〈v, Ext(x)〉 is an (S, ε)-strong extractor for every v ∈ {0, 1}m\{0m}.
Then Ext is an (S, 2m · ε)-strong extractor.

Proof. We use the following so-called parity lemma by Vazirani [Vaz87a]. For
every A ∈ P({0, 1}m), the non-uniformity δ(A) of A is bounded as follows:
δ(A) ≤

∑
v∈{0,1}m\{0m} δ(〈v, A〉). It implies that for any pair of random variables

(A, B) ∈ P({0, 1}m × Ω2),

d((A, B), (U{0,1}m , B)) = E
b←B

[δ(A|B=b)]

≤
∑

v∈{0,1}m\{0m}
E

b←B
[δ(〈v, A|B=b)]〉

=
∑

v∈{0,1}m\{0m}
d((〈v, A〉, B), (U{0,1}, B)),

where the linearity of the expectation was used. Applying this to (A, B) =
(Ext(X), Y ) with (X, Y ) ∈ S immediately yields the claim.

Finally, this implies the main result of this section. Note that the efficient
construction of suitable matrices M1, . . . , Mm in the following theorem is dis-
cussed in [DEOR04].

Theorem 3. Let M1, . . . , Mm be n×n-matrices over GF (2) such that for every
non-empty subset I ⊂ [m] the matrix

∑
i∈I Mi is invertible. Then the function

Ext : ({0, 1}n)N → {0, 1}m defined by

Ext(x1, . . . , xn) =
(∑

s<t

〈xs, M1xt〉, . . . ,
∑

s<t

〈xs, Mmxt〉
)

is a (T N
{0,1}n(k), ε)-strong extractor, where log(1

ε ) = k−n
2 − m + 1.

Proof. Let v ∈ {0, 1}m\{0m} and I(v) := {i ∈ [m] | vi = 1}. Then

〈v, Ext(x1, . . . , xn)〉 =
∑

s<t

〈xs, (
∑

i∈I(v)

Mi)xt〉 = ExtM(v)(x1, . . . , xn) ,

where M(v) :=
∑

i∈I(v) Mi is invertible by assumption and ExtM(v) is defined as
in Lemma 9. Hence, by Lemma 9, the function (x1, . . . , xn) �→ 〈v, Ext(x1, . . . , xn)〉
is a (T N

{0,1}n(k), ε)-strong extractor for every v ∈ {0, 1}m\{0m}, where log(1
ε ) =

k−n
2 + 1. Lemma 10 then implies the desired result.
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