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Abstract. The purpose of this paper is to initiate the study of a combinatorial
abstraction, called abstract storage device (ASD), which models deterministic
storage devices with the property that only partial information about the state
can be read, but that there is a degree of freedom as to which partial information
should be retrieved.

We study combinatorial problems related to ASD’s, including reducibility among
ASD’s, which is proved to be N'P-complete, and the factorization of ASD’s. In
particular, we prove that the factorization into binary-output ASD’s (if it exists)
is unique.

1 Introduction

MOTIVATION. The term storage device is conventionally used for a physical device
with a write and a read operation which can store data reliably, i.e., with the property
that the read operation yields an exact copy of the data previously written into the
device. This paper introduces a generalized type of storage devices for which the write
operation consists of setting the device’s state to some value in the state space, and the
subsequent read operation provides some (usually only partial) information about the
state.

Such a storage device is a relevant special case of a general physical system whose
state can not be measured exactly. This may be due to intrinsic physical reasons: For
instance, it is inherently impossible to perfectly measure a quantum state, unless it is
known to be one of a set of orthogonal states. Furthermore, inaccuracy in retrieving
the full state of a system may be due to practical constraints: Slow access to the data
medium used in a storage device (consider e.g. a tape-based storage device) may only
allow for efficient partial access to its contents, as retrieving the entire state of the
device would be (at least in certain application contexts) infeasible.

The task of a conventional storage device (e.g., a hard disc) is to store information
reliably. For this reason, the design goal of such a system is to define a finite subset
of its state space (as large as possible) such that the available read operation allows to
distinguish different such states with negligible error probability, and a storage device
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is hence traditionally characterized in terms of its storage capacity, i.e., the number of
bits that can be stored reliably in it. Here, however, we take a more general approach
to storage devices, by modeling explicitly the fact that, on one hand, a read operation
provides only partial information about the state, but that, on the other hand, many
different such read operations can be available.

There are different motivations for considering such a setting. A first motivation is
quantum cryptography or, more precisely, privacy amplification, the last step of a quan-
tum key agreement protocol (see [6]). In simplified terms, an adversary is assumed to
have access to a bit string .S of length n, shared by the legitimate users, and can store
information about S in a 2*-dimensional quantum device, where k£ < n. Since the (re-
liable) storage capacity of the device is only k, the adversary cannot store .S perfectly.
Later, the legitimate users select a hash function A from n bits to ¢ bits (where ¢ < k)
at random from a class of such functions, and the adversary can now perform a mea-
surement of the quantum state, depending on the choice of h. In this context, the goal
is to prove that every such measurement yields only a negligible amount of information
about h(.S). One can naturally generalize the setting of privacy amplification to other
types of storage devices.

Subsequent to the on-line publication of a first version of this paper [7], Kopf and
Basin [8] have suggested that generalized storage devices (and in particular the concept
of ASD’s proposed in this paper) can be used to model leakage of information in side-
channel attacks. An adversary mounting such an attack is given physical access to some
cryptographic device (e.g. a smart card) storing a secret value (generally the secret key)
in a tamper-proof way, and in a legitimate interaction with the device the adversary gains
additional side-channel information (such as the power consumption of the device or
spurious electromagnetic radiation) through appropriate physical measurements. This
information is generally correlated with the secret and can hence be of substantial help
in breaking the given device. As proposed in [8], this setting can be abstracted in terms
of a storage device with the secret value as its state and such that each allowed input to
the cryptographic device is interpreted as a read operation resulting in the corresponding
secret-dependent side information.

As a final motivating example, we look at the abstract general game in which an
entity, say Alice, is given access to an n-bit string s = [sy,..., S,] about which she
stores partial information. Later, she will learn a function f drawn from a given set and
will have to guess f(s). For example, this set of functions might consist of all linear
predicates a;s1 + -+ + an s, (mod 2) for some aq,...,a, € {0,1}. A natural ques-
tion is finding the minimal amount of reliable storage required to win this game. More
generally, one may be interested in deciding whether keeping information about s in a
certain storage device suffices to succeed in the game. It is also interesting to compare
such games in the sense of determining whether one game is strictly more difficult than
another one.

CONTRIBUTIONS OF THIS PAPER. This paper introduces the notion of an abstract
storage device (ASD), a combinatorial abstraction which models the described property
that only partial information about the state can be read, but that there is a degree of
freedom as to which partial information should be retrieved. Both generalized storage
devices as well as the above game can be described as an ASD. Here we only consider



deterministic storage devices, i.e., we analyze the case with no error probability. This
is similar in spirit to the investigation of the zero-error capacity [10] in communication
theory. Like there, the treatments of the zero-error and the negligible-error cases are
quite different and deserve separate investigation. (Partial results in the probabilistic
case have been given in [11].)

We study the central question of reducibility of devices, namely deciding whether a
certain device can be implemented by another one. This concept directly yields a notion
of equivalence of devices, as well as different natural quantities characterizing ASD’s:
The storage capacity provides a measure of the amount of information that can be
reliably stored in a device, the state complexity characterizes the minimal amount of re-
liable storage needed to simulate the device, and the perfectness index of an ASD is the
minimal number of read operations needed to entirely retrieve the state of the device. We
show that these quantities yield easily verifiable necessary conditions for reducibility,
and we give relations among these quantities. However, we prove the general problem
of deciding reducibility of ASD’s to be A"P-complete, whereas deciding equivalence of
ASD’s is shown to be at least as difficult as deciding the isomorphism of graphs. Also,
equivalence of ASD’s is unlikely to be N"P-complete, as its N"P-completeness would
imply a collapse of the polynomial hierarchy.

In order to investigate the structural properties of ASD’s and to considerably sim-
plify the general question of deciding both reducibility and equivalence, the last part
of this paper introduces the concept of factorizations of ASD’s as the direct product
(i.e. the parallel composition) of simpler ASD’s. We prove that every device admits a
unique factorization in terms of binary devices (i.e. with binary output), if such a fac-
torization exists. This result is to be seen as a first step towards answering the general
question of the existence of unique factorizations into (prime) ASD’s, which we state as
an open problem. It also adds an additional contribution to the long line of work inves-
tigating product factorizations of discrete structures, such as graphs and finite relational
structures (see [4, 5] for respective surveys).

OUTLINE OF THIS PAPER. The remainder of this paper is organized as follows. Sec-
tion 3.1 introduces ASD’s, provides some examples, and defines the basic composition
operations for ASD’s (such as direct products). Sections 3.2 and 3.3 deal with the cen-
tral problems of reducibility and equivalence of ASD’s, and in Section 3.4 we present
and analyze relevant quantities related to ASD’s, such as the storage capacity, the state
complexity, and the perfectness index. In Section 4, we investigate the complexity of
reducibility and equivalence of ASD’s, whereas the last section (Section 5) addresses
direct product factorizations of ASD’s.

Relevant basic facts about set partitions and the partition lattice are briefly reviewed
in Section 2. For lack of space, some technical proofs are omitted and can be found in
the full version of this paper [7].

2 Preliminaries

Throughout this paper, we make use of capital calligraphic letters to denote sets. An
(undirected) graph is an ordered pair G = (V, ), where V is the set of vertices, and
EC (‘2)) is the set of edges of G.



A (set) partition 7 of a set S is a family {B, ..., By} of disjoint non-empty subsets
of S, called blocks, with the property that Ule B; = S. We write s =, t whenever
both elements s,¢ € S are in the same block of 7. Moreover, we denote by IT (S) the
set of partitions of S. We say that = € IT (S) refines ' € II (S), denoted 7 C «/,
if for all B € 7 there exists a B’ € 7’ such that B C B’. Recall that (IT (S);C) is a
bounded lattice (cf. e.g. [3]), with the minimal element being ids = {{s}|s € S} and
the maximal element being {S}. The meet of w,«' € II (S) is the partition 7 A 7’ =
{BNB'|Ben B exn',BNB # 0}, whereas their join 7V 7’ is such that & =y y
if and only if we can find a sequence of elements x = g, z1,...,z, = y (for some
r) such that z; =, x;4; or ©; = x;41 holds forall i = 0,...,r — 1. For a set IT
of partitions, we generally write \ IT = A . 7and \/ IT = \/ . 7. Also, such a
set I1 is called an antichain if = [Z 7' for all distinct 7, 7’ € II.

The direct product of the partitions 7 € II (S) and 7’ € IT (S’) is the partition 7 x
7 ={BxB|Ben,B e€x'} € I (Sx8). In particular, we have (s,s") =rxn
(t,t')if and only if s =, s’ and ¢t =,/ t' forall s,t € S, s',¢' € S’. Let now m,p €
II(S),n,p' € IT (S8') be partitions. Then, both equalities (7 A p) x (7' A p') = (7 x
7N (pxp’) and (V) x (7'Vp') = (mwx7")V(px p’) hold. Furthermore, 7 x 7' C px p’
is satisfied if and only if # C 7’ and p C p'.

Given sets S,8’, a partition 7 € IT (S’), and some function ¢ : § — &', we
define mog € II (S) as the partition such that © =4 v if and only if ¢(x) =, ¢(y) for
all z,y € S. Notice that (rog)A(1'0d) = (AT’ )og, and (mo@)V (7o) = (7V7')og.
Moreover, the kernel (partition) of a function f : X — YVisker(f) = {f~*({y}) |y €
range(f)}. Given a further function ¢ : S — X, we have ker(f o ¢) = ker(f) o ¢.

Finally, recall that a k-variate lattice polynomial p in the variables x4, ..., 2y is a
formal expression of the form either (i) z; fori = 1,..., k, or (ii) one of ¢(z1, . . . , Tk ) A
¢ (x1,...,z;) and q(21, ..., x5)Va(z1,. .., z)) for k-variate lattice polynomials ¢, ¢’.
Given partitions 71, ..., Tk, P1,.--, Pk such that m; T p; for i = 1,... k, then for
every k-variate lattice polynomial p we have p(m1,...,7) C p(p1,- - -, pk)-

3 Abstract Storage Devices

3.1 Definition

In the following, we look at storage devices used by two entities, called the writer and
the reader, respectively.? The writer writes to such a device by selecting a state s from
the state space of the device. The reader subsequently chooses a (possibly randomized)
function g mapping states to output symbols from a set of possible such mappings, and
obtains the output g(s). Note, however, that the actual labeling of the outputs is irrele-
vant, as long as the reader knows a complete description of the function to be read out.
In particular, as we only focus on devices whose behavior is entirely deterministic, we
abstract from the notion of an output domain and we solely describe the kernel parti-
tions of the functions of the storage device. This allows us to formulate the following
combinatorial abstraction of deterministic devices.

3 These entities are not necessarily distinct in a physical sense.



Definition 1. An abstract storage device (ASD) D is a pair D = (8P, ITP), where S
is a set called the state space of D, and II” is a family of partitions of ST, called the
partition set of D.

For an ASD D, a write operation of the writer consists in selecting a state s € S,
and in a subsequent read operation the reader selects a partition 7 € IT” and learns
the (unique) block B € 7 such that s € B. We assume that a single read operation is
performed. Furthermore, in the following, we are going to focus on ASD’s with finite
state space and partition set.

Whenever idsp € TP, the reader can distinguish any pair of states with a single
read operation. In this case, D is called perfect, and it is called non-perfect otherwise.
If the partition set contains only the trivial partition {SP}, the ASD is called trivial.
Moreover, it is called r-regular if |x| = r for all 7 € ITP. In particular, 2-regular
ASD’s are also called binary.

The following are examples of ASD’s.

— For a given set X, the perfect device Cx has state space X and its state can be
retrieved perfectly, that is, IT” = {idx}. The special case where X = {1,...,m}
for m € N is denoted as C,,.

- Fori e {l,...,n},letp; : {0,1}"™ — {0, 1} be such that p;(x1,...,x,) = =; for
all (z1,...,x,) € {0,1}". The projective device P, has state space S = {0,1}"
and its partition set is IT"» = {ker(p;)|i = 1,...,n}. This device is similar to
the 1-out-of-n oblivious transfer (OT) primitive considered in cryptography (intro-
duced in [9]). One may also extend this device to allow for retrieving any k < n
consecutive bits of the state. Such a device could be used to model a tape-based
storage device.

— The linear device L., ) where n > k is the ASD having state space Stn* =
{0,1}", and the partition set is the set of the kernel partitions of all linear maps
{0,1}™ — {0, 1}*. We denote by L,, the binary ASD L,, ;.

One way of constructing a complex device from simpler devices is the parallel com-
position of two ASD’s to obtain a new ASD modeling a setting where the reader and
the writer use both devices in a non-adaptive fashion. That is, if D has state s and D’
has state s, the reader first selects borh partitions 7 € IIP and «/ € ITP’, and only
subsequently learns the unique blocks B € 7, B’ € 7’ such that s € Band s’ € B'.

Definition 2. The direct product D x D’ of the ASD’s D, D' is the ASD with SP*P" =
SP x 8P and TP*P" = {nx x 7' |7 € TP, 7" € TP},

For example, since idgp , gpr = 7 x 7' holds if and only if 7 = idsp and 7’ =
idgps, we immediately see that D x D’ is perfect if and only if both D and D’ are
perfect.

In general, we may want to look at more than a single read operation. For an inte-

ger k > 1 and an ASD D, we denote as D(*) the ASD with SP™ — 8§D and 1P =
{/\le UK

to perform (at most) k£ non-adaptive read operations, i.e. given state s € ST, it first

melPi=1,..., k;} It models the scenario where the reader is allowed



chooses k partitions 71, . .., m, € IT” to be retrieved, and only subsequently learns the
corresponding blocks By € 7y, ..., Bk € 7, such that s € ﬂle B;.

Note that both the direct product and the device D*) can be extended to allow for
adaptive read operations, as it essentially suffices to consider all partitions induced by
every possible (deterministic) retrieval strategy. However, we do not address this case
in this paper.

3.2 Reducibility and Equivalence

In the problem of reducibility of ASD’s, we want to decide whether an ASD D can be
implemented by a second ASD D’. This is formalized by the following definition.

Definition 3. We say that an ASD D is reducible to an ASD D’, denoted D < D', if
there exist functions ¢ : SP? — 8P and o : ITP — ITP" such that o(m) o ¢ C 7 for
all m € ITP. Such a pair of functions (¢, «) is called a reduction of D to D'

In order to clarify this concept, consider the following abstraction in terms of ASD’s
of the game introduced in Section 1. The writer and the reader are given an ASD D’ as
well as the description of a further ASD D. The writer is told an arbitrary state s € S”
and selects the state ¢(s) € SP for D'. Later, an arbitrary partition 7 € ITP is re-
vealed to the reader, and it performs a read operation for a partition () € ITP ". The
goal is to find appropriate functions ¢ : SP — SP "and o : ITP — IIP" such the
reader can perfectly guess the unique block B € 7 such that s € BB from the result of re-
trieving a(7) from D’. If such functions exist, the writer and the reader can simulate D
using D’. Note that the ASD D itself can alternatively be seen as the specification of a
particular game the writer and the reader try to win by using the ASD D’.

It is easy to see that the condition « () o ¢ C 7 must hold. Otherwise, there would
be s, s’ € ST such that s# s, but ¢(s) =4 (x) ¢(s'), and hence s and s’ could not be
distinguished. Conversely, if a(r)o¢ C m, then given state s € SP and B’ € a(r) such
that ¢(s) € B, there exists a unique block B € 7 such that s € B. Hence, Definition 3
expresses the precise condition in order for ¢ and « to be a winning strategy in the
game.

Reducibility is a reflexive and transitive relation. However, it is not antisymmetric,
and thus it is only a quasi-order on the set of ASD’s. In this respect, we say that two
ASD’s D, D' are equivalent, denoted D = D', if both D < D’ and D’ < D hold. The
relation = is an equivalence relation and reducibility implicitly defines a partial order
on its equivalence classes.

The following proposition relates reducibility to direct products and multiple read
operations.

Proposition 1. Let D, D', E, E' be ASD’s.

(i) IfD<D' and E < E', then D x E < D' x E'.
(ii) If D < D', then D) < D'(F),

Proof. The first claim is obvious. For the second one, let (¢, ) be a reduction of D
to D', Define a : 17" — 117" such that &(AF_, m;) = A, a(m;). Then, (¢, @)



reduces D) to D), since &(AF_, m;)o¢ = (/\f:1 a(m)) o = N (alm;)o) C
/\i‘c:1 ;. O

The perhaps most natural question related to storage devices is to determine how
many bits of information can be reliably stored in it with the guarantee of no errors at
read out. This quantity can be expressed in terms of the largest perfect device that can
be reduced to the considered device.

Definition 4. The storage capacity of an ASD D is C(D) = max{logm|C,, <
D, m € N}.

Equivalence of ASD’s captures that two ASD’s D and D’ such that D = D’ have
the same behavior. As an example, it is clear that D x D’ = D’ x D, and that D x
(D' x D") = (D x D') x D", that is, the direct product is commutative and associative
with respect to equivalence. The direct product of D1, ..., D,, is thus simply written
as X ?:1 D;, and DF = X le D for any device D. Finally, notice that D x £ = D
holds for any trivial device E.

3.3 Minimality

In this section, we have a closer look at the equivalence relation = and at the inner struc-
ture of its equivalence classes. In particular, we are interested in the minimal number of
states and partitions needed in order to implement the functionality of a certain ASD.

Definition 5. An ASD D is state-minimal if there is no equivalent device D' with
|SP| < |SP|. Furthermore, D is partition-minimal if there is no equivalent device D'
with |ITP"| < |ITP|. Finally, we say that D is minimal if D is both state and partition-
minimal.

For every ASD D there exist by definition equivalent ASD’s D’ and D" such that
D' is state-minimal and D" is partition minimal. However, it is not clear whether
an equivalent ASD exists that satisfies both, i.e., which is minimal. This is shown in
the following theorem, which also provides an equivalent characterization of state and
partition-minimality. The proof is given in [7].

Theorem 1. For an ASD D we have the following.

(i) D is state-minimal if and only if for all pairs of distinct states s, s’ € ST there
exists a set partition m € IIP such that s# s'. In particular, this holds if and
only if N1TP = idgp.

(ii) D is partition-minimal if and only szD is an antichain (with respect to C).

Furthermore, for every ASD D, there exists a minimal ASD D' = D.

As an example, observe that the projective device P, is state minimal. Indeed,
given distinct , 2’ € {0,1}", there exists a component 4 such that x; # z/, and thus
TF ker(p,) ' This also implies that the linear device L,, is state-minimal. Furthermore,



every r-regular device (for some r) is necessarily partition-minimal, since any two par-
titions with the same number of blocks are either equal or incomparable (with respect
to C).

The following lemma provides some properties of minimal devices with respect to
device reducibility and it is proved in the full version.

Lemma 1. (i) If D, D’ are state-minimal and (¢, &) reduces D to D', then ¢ is in-
jective. In particular, |SP| < |SP’|.
(ii) If D, D’ are both r-regular for some r (and hence partition minimal) and ($, &)
reduces D to D', then o is injective. In particular, | ITP| < |IT"|.
(iii) If D, D' are both state-minimal (partition-minimal), then the direct product D X
D' is state-minimal (partition-minimal).

It also turns out that equivalence of devices is easier to characterize in the minimal
case, and the following proposition can be shown.

Proposition 2. Ler D, D’ be minimal ASD’s. Then D = D' if and only if there exist
bijections ¢ : SP — SP" and o : ITP — IIP" such that m = o) o ¢ forall w € IIP,
or, equivalently, 7' = a~*(n') o ¢~ forall 7' € IT".

For example, given ASD’s D, D’, where IT”? = {m,..., 7}, as well as a k-
variate lattice polynomial p, Proposition 2 implies p(a(m1) o ¢,...,a(mg) o ¢) =
pla(m),. .., a(rg))od = p(m, ..., mk). As ¢ is a bijection, in order to prove that D #
D’ it is sufficient to find a k-variate lattice polynomial p such that [p(my,...,7)| #
pla(m), ... a(m)].

3.4 Necessary Conditions for Reducibility

In this section, we discuss easily characterizable necessary conditions for reducibility.
Let D be a set of ASD’s and let f : D — R be a function. We say that f is order-
preserving on D if D < D’ implies f(D) < f(D’) for all ASD’s D,D’ € D. In
particular, note that f(D) = f(D’) whenever D = D’. Such a function yields a nec-
essary condition for reducibility. In the following paragraphs, we discuss three order-
preserving functions.

STORAGE CAPACITY. The storage capacity (cf. Section 3.2) is order-preserving on the
set of all ASD’s: Given D, D’ such that D < D’, let m be maximal such that C,,, < D.
By transitivity we have C,,, < D’, and hence logm = C(D) < C(D’). The storage
capacity is easy to compute, as stated in the following proposition, which also provides
properties with respect to direct products and multiple read operations.

Proposition 3. (i) C(D) = max, ¢y log |7| for all ASD’s D.
(ii) C(D x D) = C(D) + C(D’) for all ASD’s D, D'
(iii) Forall k > 1, we have C(D™)) < k- C(D) for all ASD’s D.

The first claim follows from the simple observation that C',,, < D holds if and only
if there exists 7 € ITP such that || > m. The simple proofs of (ii) and (iii) are omitted.

For instance, C(D) = logr for every r-regular ASD D. Furthermore, the storage
capacity allows us to easily see that Ly X Ly X Ly % L3 x Lg, since C(La X Ly X Ly) =
3-C(Ly) =3,but C(Ls x L3) =2-C(L3) = 2.



STATE COMPLEXITY. The state complexity o(D) of an ASD D provides the mini-
mal number of states that are necessary in order to reproduce the behavior of D, that
is, 0(D) = ming=p log |S¥|. The state complexity is order-preserving: Given de-
vices D, D’ with D < D', let E, E' be state-minimal such that D = E and D' = FE’.
We have E < E’ by transitivity, and by Lemma 1 this implies (D) = log |SF| <
log |SE'| = ¢(D’). Furthermore, o(D x D) = o(D) 4 o(D’) by Lemma 1.

Note that D < Cyo(py, Whereas Lemma 1 yields D ﬁ C,, for all m’ < 20(D),
For this reason, we obtain o(D) = min{logm|m € N,D < Cp,}. Therefore, the
state complexity (D) provides the minimal amount of reliable storage in terms of bits
needed to win the game (in the sense of Section 3.2) described by the ASD D.

PERFECTNESS INDEX. The perfectness index i(D) of a device D is the minimal in-
teger k such that D(*) is perfect, if such k exists. Otherwise, i(D) = co. Thus, i(D)
provides the minimal number of (non-adaptive) read operations needed to retrieve the
state perfectly. If i(D) is finite, then in particular (D) < |II”|, and by Theorem 1
i(D) is bounded if and only if D is state-minimal. In the following, for an integer m,
consider the set of ASD’s D, such that for all D € D,,, we have |SP| = m.

Proposition4. Let D, D’ € D,, for some m be such that D < D'. Then, i(D) >
i(D'). Thatis, D — —i(D) is an order-preserving function on Dp,.

Proof. If i(D) = oo holds, the claim is trivially satisfied. Therefore, assume that (D)
is finite, and, towards a contradiction, that D < D’, but ¢(D) < (D’). There is an

integer k& > 1 such that D*) is perfect, but D'(*) is not. Thus, idgp € 17°" | but
idgp ¢ 17°"  Since |SP| = |SP'| = m, for all possible ¢ : SP — SP’ there
is no partition 7’ € 172" such that 7/ o ¢ C idsp. Hence D¥) £ D'®) which
contradicts D < D’ according to Proposition 1. ad

One can easily verify thati( X ;_; D;) = maxj<;<y, i(D;) for ASD’s Dy, ..., D,,.
Furthermore, i(L,) = n, since exactly n distinct, linearly independent, linear predi-
cates have to be read out to learn the state. As an example, consider the ASD’s Ly x Lo
and L3 x L3. By the above, we have i(L4 X L) =4, and i(L3 x L3) = 3. Therefore,
L3 x L3 £ Ly x Ly by Proposition 4.

The presented quantities are related by the following proposition.
Proposition 5. For all ASD’s D, we have o(D) < i(D) - C(D).

Proof. The claim is trivially true if i(D) = co. Otherwise, we just combine the facts
that o(D) < C(DWP)) = 1og|SP| and that C(DHP)) < i(D) - C(D). O

4 Complexity of Reducibility and Equivalence

We investigate the computational complexity of deciding reducibility and equivalence
of ASD’s. Both problems are obviously in AP, since given a reduction (¢, ) reducibil-
ity can be verified in polynomial-time (in the numbers of states and partitions),* and

* We assume some canonical encoding of ASD’s.



hence also equivalence (by giving two corresponding reductions). In this section, we
prove the following theorem.

Theorem 2. Reducibility of ASD’s is N'P-complete. Furthermore, deciding equiva-
lence of ASD’s is at least as hard as deciding graph isomorphism.

First, we briefly recall some graph-theoretic notions. A graph G = (V, &) is iso-
morphic to G' = (V',£’), denoted G = G’ if there exists a bijection ¢ : V — V' such
that {v,w} € £ if and only if {¢(v), p(w)} € &’. Furthermore, G is a subgraph of G’
if V C V' and £ C &'. Finally, G is contained in G', denoted G < G, if there exists a
subgraph H of G’ such that G = H. Let KCj;, be the complete graph on k vertices. The k-
clique problem consists in deciding, given a graph G, whether 'y, =< G. For arbitrary k,
this is a well-known N P-complete problem.

In order to prove Theorem 2, we introduce a class of ASD’s representing graphs.
For a given graph G = (V, &), we define its graph device D(G) as the 3-regular ASD
such that SP(9) =V and ITP9) = {1, |e € £}, where for e = {u,v} € &, we have
me = {{u},{v},V — {u,v}}. Note that graph devices are only meaningful if [V| > 4,
since in the case where |V| = 3, all edges define the same partition.

For instance, if one takes the complete graph Cj, (for k& > 4), the resulting graph
device D(K},) has state space {1,...,k} and its partition set contains all partitions of
the form {{i}, {5}, {1,....k} — {4,j}} foralli < j,i,j € {1,...,k}.

The following result can easily be verified using Theorem 1.

Lemma 2. The ASD D(G) is minimal for all graphs G = (V,E) with |V| > 4 and no
isolated® vertices.

The following lemma is the central point in the proof of Theorem 2.

Lemma 3. Let G = (V, &) and G' = (V',E") be graphs with no isolated vertices such
that min{|V|, |V'|} > 4. Then, G < G’ if and only if D(G) < D(G’).

Proof. For notational convenience, let ITP(9) = {7, |e € £} and ITP9) = {7/, | ¢’ €
E'}.If G = G, then there is an injective map ¢ : V — V' such that, for all u,v € V,
{u,v} € € implies {¢(u), ¢(v)} € £'. Thatis, forall e € £, we have 7, ) € P@),
Construct a map o : ITP(9) — [TP(9") such that for all e € &£, we set a(m,) = w;(e).
One can now easily see that for all e € &£, we have 7, = 7r’¢(6) o ¢, and thus (¢, a)
reduces D(G) to D(G').

For the converse, assume that D(G) < D(G’), and let (¢, ) be a reduction of
D(G) to D(G'"). Since both graphs have at least four vertices, D(G) and D(G’) are both
state-minimal by Lemma 2, and therefore the function ¢ is injective by Lemma 1. For
all e € &, there is ¢/ € &’ such that a(m,) = 7 and such that 7. = 7., o ¢. For
all e = {v,w}, this means that ¢(v)# »/ ¢(w), and that the remaining block of 7,
contains at least two elements. Thus, e’ = {¢(v), d(w)}, and since e’ € E’, we have

Gg=g. g

> A vertex v € V is isolated if there exists no e € & such that v € e.



Given a graph G with at least four vertices, none of which is isolated, as well as an
integer k > 4, in order to decide whether G contains a k-clique, one simply constructs
the ASD’s D(K}) and D(G), and checks whether D(K)) < D(G). It is easy to see
that the reduction is polynomial-time, and this implies NP-completeness.® Lemma 3
also implies that D(G) = D(G’) if and only if G = G’ for any two graphs G, G’
as in the statement of the lemma. Hence, deciding equivalence of ASD’s is at least
as difficult as deciding graph isomorphism, since deciding isomorphism is clearly not
(computationally) easier when restricted to such graphs. This completes the proof of
Theorem 2.

We conclude this section by noting that one can provide a simple two-round in-
teractive proof for the problem of deciding non-equivalence of ASD’s (cf. [7]). This
means that deciding non-equivalence is in the complexity class ZP(2), and hence also
in AM [2]. For this reason, if the problem of deciding equivalence of ASD’s were N'P-
complete, we would have NP C co-AM, and it is well-known [1] that this implies
a collapse of the polynomial hierarchy PH to its second level. Therefore, it is very
unlikely that deciding device equivalence is NP-complete.

5 Binary ASD’s and Unique Factorizations

We say that an ASD D has direct product factorization X", D; if this product is
equivalent to D. Furthermore, an ASD D is prime if, whenever D = E x E’, then
either E or E' is trivial. For example, if D is minimal with a partition 7 € IT” such
that |7| = p for a prime number p, then D is prime. Clearly, every ASD D has a prime
factorization with at most log |S| factors.

In the following, we look at the class Dy of ASD’s having (at least one) prime
factorization consisting uniquely of binary ASD’s. Note that this class is closed under
taking direct products. The following lemma provides a strong necessary and sufficient
condition for deciding reducibility among members of the class D, with the same
number of states, and such that no perfect factor appears in their binary factorization.
The reader is referred to the full version for a proof.

Lemmad. Let Dy,...,D,,, Di,..., D, be non-perfect state-minimal binary ASD’s
such thar TT;2, |87 =TT}, S5 |. Then X", D; < X —1 D} holds if and only if

1=

there exists a partition {J1, ..., Jm} of {1,...,n} such that D; < X ;¢ ;. Dj for all
ie{l,...,m}

As a corollary of this fact, for given linear devices Ly, ,..., Ly, , Lyy,..., L, ,
where 3" ) ki = Y7 7y, we have XLy Ly, < X7y L, if and only if m < n

and there exists a partition {Ji,..., J,} of {1,...,n} such that k; = >, ; r;. For
instance, one can see that L3 X L3 %_ Lo x Lo x Ls. Otherwise, the above would imply
that L3 < Lo, which is obviously false.

The following theorem makes use of Lemma 4 to show that the factorization in
terms of binary ASD’s in unique.

® Of course, the k-clique problem is still A/P-complete even when imposing k > 4 and when
looking at graphs with no isolated vertices.



Theorem 3. Let D be an ASD, and assume that X" | D is a factorization of D where
D, ..., Dy, are binary. Then, this factorization is unique (with respect to the set of all
factorizations into binary devices), up to order and equivalence of the factors.

An immediate corollary of the theorem is the following.

Corollary 1. Two products of binary linear devices are equivalent if and only if they
consist of exactly the same devices.

For instance, the corollary immediately yields Ly x L3 x L3# Ly X L4 X L. Note
that this non-equivalence could not be proved using simpler arguments based on order-
preserving functions.

We stress that Theorem 3 does not rule out the fact that there might be additional
factorizations in terms of non-binary prime ASD’s. Indeed, the general question of de-
ciding whether prime factorizations of ASD’s are unique appears to be challenging.
For instance, it is easy to see that every perfect ASD C,, where m = H;l p;* for
distinct primes p1, ..., p,, and positive integers a1, . .., o, can be uniquely factorized
as X, Cp.. We leave the more general question as an open problem. Note that the
problem is related to a line of research investigating unique factorizations of relational
structures (cf. e.g. [S] for a survey). Even though ASD’s are related to relational struc-
tures, known results only apply to a weaker form of direct product.
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