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Abstract

Hash functions are one of the most important cryptographic primitives, but
their desired security properties have proven to be remarkably hard to formalize.
To prove the security of a protocol using a hash function, nowadays often the
random oracle model (ROM) is used due to its simplicity and its strong security
guarantees. Moreover, hash function constructions are commonly proven to be
secure by showing them to be indifferentiable from a random oracle when using
an ideal compression function. However, it is well known that no hash function
realizes a random oracle and no real compression function realizes an ideal one.

As an alternative to the ROM, Bellare et al. recently proposed the notion
of universal computational extractors (UCE). This notion formalizes that a
family of functions “behaves like a random oracle” for “real-world” protocols
while avoiding the general impossibility results. However, in contrast to the
indifferentiability framework, UCE is formalized as a multi-stage game without
clear composition guarantees.

As a first contribution, we introduce context-restricted indifferentiability
(CRI), a generalization of indifferentiability that allows us to model that the
random oracle does not compose generally but can only be used within a well-
specified set of protocols run by the honest parties, thereby making the provided
composition guarantees explicit. We then show that UCE and its variants can
be phrased as a special case of CRI. Moreover, we show how our notion of CRI
leads to generalizations of UCE. As a second contribution, we prove that the
hash function constructed by Merkle-Damgéard satisfies one of the well-known
UCE variants, if we assume that the compression function satisfies one of our
generalizations of UCE, basing the overall security on a plausible assumption.
This result further validates the Merkle-Damgérd construction and shows that
UCE-like assumptions can serve both as a valid reference point for modular
protocol analyses, as well as for the design of hash functions, linking those two
aspects in a framework with explicit composition guarantees.

*This is the full version of the article due to appear at SCN 2018. The final publication will be
available at link.springer.com
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1 Introduction

1.1 Motivation and Background

The random oracle model (ROM) [BR93] is an important tool towards establishing
confidence in the security of real-world cryptographic constructions. The paradigm
can be described in two steps: first, to design a protocol and prove it secure in the
ROM, thus using a random oracle instead of a hash function; second, to instantiate
the random oracle with a cryptographic hash function. However, it is well known
[CGHO4| that no hash function realizes a random oracle; hence, once the random
oracle is instantiated the security proof degenerates to a heuristic security argument.

The ROM is not only used as a model to prove protocols in, but it also serves as a
reference point for the designers of hash functions. The indifferentiability framework
[MRHO04|, while being a general framework, is most famously used to phrase the
security obligation of a hash function construction: the hash function is proven
indifferentiable from a random oracle when using an ideal compression function
(e.g. a fixed input-length random oracle), thereby excluding attacks exploiting the
construction. Since indifferentiability is equipped with a composition theorem, this
guarantee holds moreover irrespective of the context the hash function is used in.
However, just as no hash function can instantiate a random oracle, no real compression
function can instantiate the idealized version assumed in the proof.

More recently, Bellare et al. [BHK14| proposed the notion of universal compu-
tational extractors (UCE). This notion is based on the observation that for most
“real-world” protocols proven secure in the random oracle model, instantiating the
random oracle with a concrete hash function is not known to be insecure. The UCE
framework revisits the question of what it means for a hash functions to “behave like
a random oracle” and formalizes families of security notions aimed at bridging the
gap between the general impossibility result and the apparent security of concrete
protocols. So far, the research on the UCE framework has mainly been focused on
two aspects: first, studying in which applications the ROM can be safely replaced by
one of the UCE assumptions and, second, studying which ones of the UCE assump-
tions are generally uninstantiable and which one might actually be. Little attention,
however, has been paid analyzing common hash function constructions within the
UCE framework. Moreover, UCE is formalized as a multi-stage game without clear
composition guarantees, which makes it therefore hard to directly apply as a modular
step in an analysis of a complex protocol.

1.2 Contributions

Our contributions are three-fold. First, we introduce a (parametrized) generalization
of indifferentiability called context-restricted indifferentiability (CRI). This general-
ization allows us to model that a resource cannot be instantiated in every context
but only within a well-specified set of contexts. Formally, CRI consists of a fam-
ily of statements, of which classical indifferentiability is the strongest one, i.e., we
weaken indifferentiability to avoid impossibility results while maintaining explicit
composition guarantees. We then mainly apply the general context-restricted indif-
ferentiability framework to the random oracle, called random-oracle context-restricted
indifferentiability (RO-CRI) security.

Secondly, we show that every UCE-class, i.e., every variant of the original UCE
framework introduced by Bellare et al., can be expressed as a set of non-interactive
contexts in which the random oracle can be instantiated. Hence, we prove that the
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UCE framework can be translated to RO-CRI and, thus, is essentially a special case
of it. Thereby we propose an alternative interpretation of the UCE framework in a
traditional single-stage adversary model with well-defined composition guarantees
and provide a direct relation between the UCE and the indifferentiability frameworks.
We furthermore show how two of the generalizations of UCE can be expressed within
RO-CRI as well. Viewing UCE as a special case of CRI then allows us to generalize
the split-source UCE-class to non-interactive contexts and we propose in particular a
generalization that we call strong-split security.

Finally, we propose to consider CRI to analyze the security of common hash-
function constructions. In contrast to indifferentiability, CRI allows us to consider
more fine-grained versions of both the assumption on the compression function as
well as the guarantee of the constructed hash function. As an example, we investigate
the split-security of the Merkle-Damgard scheme using RO-CRI and we prove that
the constructed hash function is split-secure if the underlying compression function
is strong-split secure (as opposed to the usual much stronger assumption of the
compression function being a random function) if the hashed message has a sufficient
min-entropy density from the distinguisher’s point of view. We thereby generalize
a lemma on min-entropy splitting by Damgard et al., which we believe might be of
independent interest.

1.3 Related Work

We discuss the relation between context-restricted indifferentiability and some related
notions, including variants of indifferentiability and UCE.

Variants of Indifferentiability. Several variants of indifferentiability have been
proposed in the past. The reset indifferentiability notion has been introduced by
Ristenpart, Shacham, and Shrimpton in [RSS11| as a workaround to the composition
problems in multi-stage settings they highlighted. In [DGHM13], Demay et al. gave
an alternative interpretation of those shortcomings. They prove that reset indiffer-
entiability is equivalent to indifferentiability with stateless simulators. Moreover,
they introduce the notion of resource-restricted indifferentiability, which makes the
memory used in the simulator explicit in contrast to the original definition which only
requires this memory to be polynomially bounded. In contrast to our CRI notion that
weakens indifferentiability, those two variants are a strengthening, i.e., any statement
in those frameworks implies the traditional indifferentiability statement, but not
vice-versa.

In [Mit14], Mittelbach presents a condition called unsplittability on multi-stage
games, that allows to show that the composition theorem of indifferentiability can
be salvaged for iterative hash function constructions. They formalize a condition
that specifies certain multi-stage games, in which the random oracle can be safely
instantiated by an iterated hash function based on an idealized compression function.
In contrast, CRI formalizes in which single-stage settings a hash function might be
instantiable by an actual hash function, without having to assume an unrealistically
ideal compression function. Moreover, CRI is a general paradigm that not only applies
to iterative hash function constructions.

Universal Computation Extractors and Variants Thereof. The UCE frame-
work was introduced by Bellare et al. [BHK13] as a tool to provide a family of
notions of security for keyed hash functions, refining the predominant random oracle
methodology. Since then, the impossibility of various UCE-classes has been shown by
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Brzuska et al. [BFM14; BM15| and Bellare et al. [BST16|, and the possibility of a
specific UCE-class in the standard model has been shown by Brzuska and Mittelbach
[BM14]. Bellare et al. [BHK14] have also suggested to use the UCE framework
to study the domain extension of a finite input-length random oracle to a UCE
secure variable input-length random oracle. Their motivation is based on finding
more efficient constructions if they only require the UCE-security of the variable
input-length random oracle. In constrast, we consider the domain extension in a
setting where we also assume the compression function to be only UCE secure.

In [FM16|, Farshim and Mittelbach introduced a generalization of UCE called
interactive computational extractors (ICE). Generalizing UCE to interactive scenarios
is also one of our contributions. The generalization they propose and the one we
propose, however, differ on a very fundamental level and pursue different directions.
ICE makes the two stages of the original UCE definition symmetrical where the
two stages jointly form the queries, requiring that neither one of them can predict
the query. In contrast, we exactly use the asymmetry of UCE to embed it in the
traditional indifferentiability setting with one dishonest and one honest party, where
naturally the honest party knows the position where it queries the hash function.

In [ST17], Soni and Tessaro introduce the notion of public-seed pseudorandom
permutations (psPRP) that are inspired by UCE. In fact, they introduce a generaliza-
tion of UCE, called public-seed pseudorandomness, of which both psPRP and UCE
are instantiations. For their psPRP notion they introduce the unpredictability and
reset-security notions analogous to UCE, and moreover they study the relations be-
tween psPRP and UCE. In contrast to CRI, their definition is still purely game-based.
In Section 5, we show that CRI is a strict generalization of their notion as well.

2 Preliminaries

2.1 The (Traditional) UCE framework

To circumvent the well-known impossibility result that no hash function family is
indifferentiable from a random oracle, Bellare, Hoang, and Keelveedhi [BHK14]
introduced the UCE framework to formalize a weaker version of what it means for a
family of keyed hash functions to behave like a random oracle. The UCE framework
defines a two-stage adversary, where only the first stage—the source S—has access
to the oracle (either the hash function or the random oracle) and only the second
stage—the distinguisher D—has access to the hash key hk. The source provides
some leakage L to the distinguisher that then decides with which system the source
interacted. The definition of the security game is presented in Figure 1. Here, H.Kg
denotes the key-generation algorithm, H.Ev the deterministic evaluation algorithm,
and [ the output length associated with the family of hash functions H.

Without any further restriction, this game is trivial to win: the source queries
some point z, obtains the result y, and then provides the tuple (z,y) as leakage to the
distinguisher which then decides whether y matches with the hash of x. Therefore, in
order for this definition to be meaningful, the leakage has to be restricted in some sense,
which gives rise to various UCE-classes depending on the kind of restriction. The
basic restriction proposed was that the queries of the source S must be unpredictable
given the leakage L. Both statistical unpredictability as well as computational
unpredictability have been proposed; however, the latter has been shown to be
impossible assuming 1O exists [BFM14].
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Algorithm 1 The UCE game

function MAIN UCE?I’D(/\) function HasH(z, 1!)
b & 10,1} hk & HKg(1Y) if T[x,]] = L then
if b=1 then

L ﬁ SHASH(l/\)
¥ & DN hk, L)
return (V' =)

Tlx,l] < HEv(1}, hk, z,1%)
else Tz, 1] & {0,1}!

return T'[z, ]

Figure 1: The UCE game for a hash function H, a source S, and a distinguisher D.

2.2 Resources and Converters

The indifferentiability framework by Maurer, Renner, and Holenstein [MRHO04| is
a widely adopted framework to analyze and prove the security of hash function
constructions. The indifferentiability framework is a simulation-based framework
that uses the so-called “real world — ideal world” paradigm and formalizes security
guarantees as resources (analogous to functionalities in the Universal Composability
framework [Can01]). A resource S captures the idea of a module which provides some
well-defined functionality to the different parties—both the honest and the dishonest
ones—which can then be used in a higher level protocol. A resource can either be
something physically available, such as an insecure communication network, or can
be constructed from another resource R using a cryptographic protocol 7. In fact, the
goal of the protocol m can be seen as constructing the ideal resource S from the real
one R assumed to be available. The protocol is modeled as a converter that connects
to the system R.

The indifferentiability framework formalizes this concept in a setting with a single
honest and a single dishonest party. In the following we give a brief description of
the system algebra used in this work. We basically follow the contemporary notation
of indifferentiability presented in [MR16|, while sticking to the original reducibility
notion.

Formal definitions. A resource is a system with two interfaces via which the
resource interacts with its environment. The (private) interface A and the (public)
interface E can be thought as being assigned to an honest and a dishonest party,
respectively. Let ® denote the set of resources. All resources in ® are outbound (as
in the original version of indifferentiability) meaning that interaction at one interface
does not influence the other interface. If two resources V and W are used in parallel,
this is again a resource, denoted [V, W], where each of the interfaces allows to access
the corresponding interfaces of both subsystems. Moreover, we assume the existence
of a resource O € ® such that [R,0J] = R for any R.

Converters are systems that can be connected to an interface of a resource to
translate the inputs and outputs. A converter has two interfaces: the outer interface
out that becomes the new interface of the resource, and the inner interface in that
is connected to the interface of the existing resource. Attaching a converter 7 to a
specific interface of a resource R yields another resource. We understand the left and
the right side of the symbol R as the interface A and E, respectively; thus, attaching
7 at interface A is denoted wR and attaching it at interface E is denoted Rw. Let X
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denote the set of converters. Two converters ¢ and ¥ can be composed sequentially
and in parallel: sequential composition is denoted as ¢ 01 such that (¢po))R = ¢(¥R)
and parallel composition as [¢, 1], where [, ¥][R,S] = [¢R, S]. Moreover, we assume
the existence of an identity converter id such that idR = Rid = R.

Conventions for Describing Systems and Algorithms. We describe our sys-
tems using pseudocode. The following conventions are used: We write z < y for

assigning the value y to the variable z. For a finite set X', x & X denotes assigning

x uniformly at random a value in X. Furthermore, x <Pi{ X denotes sampling =
according to the indicated probability distribution Px over X.

Queries (also called inputs) to systems consist of a list of arguments, of which the
first one is a suggestive keyword. If the input consists only of the keyword we omit
the parenthesis, i.e., we write retrieve or (hash, x). When specifying the domain
of the inputs, we ignore the keyword and write (hash, x) € X to indicate x € X. If
a system outputs a value x at the interface named int, we denote this “output x
at int”. We generally assume that all resources reply at the same interfaces they
have been queried before processing any additional queries. Therefore, if a converter
outputs a query at its inside interface, we write “let var denote the result” meaning
that we wait for the value returned from the connected system and then store it in
the variable var.

2.3 Indifferentiability

In contrast to game-based security definitions, indifferentiability gives composable
security guarantees, i.e., the security guarantees obtained are not only with respect
to specific attack scenarios but with respect to all possible attacks. The fundamental
idea of composition is then to prove the construction of S from R in isolation and
be assured that in any higher level protocol ¢ making use of S, the resource S can
be replaced with R with the protocol applied, without degrading the security of ¢.
The system S, while not existing in the real world, therefore serves as an abstraction
boundary for the design of cryptographic schemes.

Indifferentiability formalizes this by demanding that there exists an efficient
simulator o, such that the real setting 7R and the ideal setting So are indistinguishable
according to the following definitions.

Definition 2.1. The advantage of D in distinguishing R and S is defined as
AP(R,S) := Pr[DS = 1] — Pr[DR = 1],

where DS denotes the output of the distinguisher D when connected to the resource S.

The distinguisher thereby gets access to both interfaces of the resource S. Moreover,

let R~ S denote that AP(R,S) is negligible for every efficient D.

Definition 2.2 (Indifferentiability). Let R and S be 2-interface resources. S is
reducible to R by m € ¥ in the sense of indifferentiability (denoted R S S), if

Ri—= S = do € ¥ : 7R = So,

where we refer to m and o as the protocol and the simulator, respectively.
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(R E s [ )-

Figure 2: The real (left) and the ideal (right) setting considered in indifferentiability.
We depict resources using rectangular boxes and converters using rounded boxes. The
honest party’s interface is depicted on the left, and the dishonest’s on the right side.

The formalism of indifferentiability composes in the natural way under some
standard closure assumptions! on the sets ¥ and D of converters and distinguishers
considered. First, if T is reducible to S and S is reducible to R, then T is reducible to
R by the composed protocol. Secondly, if S is reducible to R, then for any resource U,
[S, U] is reducible to [R, U]. More formally, for any resources R, S, T, and U we have
the following two conditions:

TQ0T]

R SAS — T — REZT

T m,id
Re2s S —  [RU] =2 s, Ul

3 Context-Restricted Indifferentiability

In this section we first revisit the motivation behind composable frameworks such as
the indifferentiability framework. To handle cases where fully composable security is
unachievable, we then introduce the notion of context-restricted indifferentiability, a
single-stage security definition inspired by the original motivation behind the UCE-
framework. In fact, in the next section we then prove that UCE can be seen as a
special case of context-restricted indifferentiability.

3.1 The Limitations of General Composability

At the heart of every composable cryptographic framework, such as indifferentiability,
lies the concept of a resource (called functionality in the UC framework). A resource
S captures the idea of a module which provides some well-defined functionality to
the different parties—both the honest and the dishonest ones—which can then be used
in a higher level protocol. The goal of a protocol 7 is then phrased as constructing
the resource S from an assumed resource R and the fundamental idea of composition
is to prove the construction of S from R in isolation and be assured that in any
environment, the resource S can be replaced with 7R, without degrading the security.
This allows for a modular approach, since the construction of the resource S can be
considered entirely independent of its use.

The modular approach of indifferentiability, however, fails if we use a resource S
which cannot be reduced to any R available in the physical world, such as the random
oracle. Let PO denote a public random oracle resource, and HK a public hash key
resource. Then, the famous impossibility result [CGHO04| implies, that there exists
no deterministic and stateless protocol h, implementing a hash function, such that

h
HK == PO, i.e., such that the hash function reduces the random oracle to the
public hash key.

!The set of distinguishers D needs to be closed under emulation of a resource and converter. The
set of converters needs to be closed under sequential composition and parallel composition with the
identity converter.
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s s

Figure 3: The real (left) and the ideal (right) setting considered in context-restricted
indifferentiability for a specific context (f, P) consisting of the filter f and the auxiliary
parallel resource P.

Traditionally, such an impossibility result is circumvented by weakening the
guarantees S, and instead consider a restricted variant S’. However, for the random
oracle, and many other examples, no such natural weakened version exists. As a
second approach, one can restrict the class of distinguishers allowed. The UCE
framework is such an approach. Unless there is an application scenario where one can
justify such a restricted attacker, this approach leads, however, to security definitions
without evident semantics. The original motivation of the UCE framework, though,
has not been to consider restricted adversaries but to phrase that, in contrast to the
impossibility results, real-world protocols use the random oracle in “sensible” ways. In
the following, we turn this motivation into a third approach: We restrict composition
in a well-defined way. If there is a resource S that cannot be reduced to a resource R
in all contexts, we propose to make explicit in which contexts one can do it.

3.2 Context-Restriction

In this section we formally define the idea of restricting composition. In order to
do so, we define a context in which we allow the resource S to be used. A context
consists of an auxiliary parallel resource P and some converter f applied by the honest
party. We usually call this converter f a filter to indicate that its goal is to restrict
the access to the resource S. To obtain general statements, we consider a set of
contexts instead of a single one. This set should be general enough to capture many
application scenarios but avoid those for which the impossibility is known.

Definition 3.1. A context set C is a subset of ¥ x ®, where ¥ denotes the set of all
converters and ® denotes the set of all resources.

Recall that our goal is to make a modular statement: reducing S to another
resource R in each of these contexts in C, i.e., finding a single resource R and protocol
7 such that 7R can instantiate S in each of these contexts in C. Therefore, the same
context appears in both the real and the ideal setting. See Figure 3 for an illustration
of the distinction problem when fixing a specific context. Quantifying over all contexts
of a set leads to the following definition of context-restricted indifferentiability.

Definition 3.2. Let C C 3 x ® be a given set of contexts, and let R and S be
2-interface resources. We define S to be C-restricted reducible to R by 7 € 3 in the

,C
sense of indifferentiability (denoted R — S), as
cr

7,C
R= S 1« V(f,P)eCIoeX: f[rR,P]~f[S,Plo

cr

and refer to the converters m and o as the protocol and the simulator, respectively.
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3.3 Composition

Composability generally refers to the property of a framework that from one, or
multiple, given statements, new ones can be automatically deduced in a sound way
without having to reprove them. More concretely, in CRI we are interested in deducing
new reducibility statements from given ones. Using the abstract algebraic approach
of constructive cryptography [MR11; Maull], such composition properties are usually
consequences of composition-order invariance, a natural associativity property stating
that the order in which we connect systems is irrelevant.

Before stating the composition theorem, we first observe that when a resource S
is reduced to R in a context (f,P), the overall environment of S actually consists of
both (f, P) and the distinguisher. Especially, if S can be reduced to R within (f, P),
so can it within (f’ o f, [P, P’]), as f" and P’ can be absorbed into the distinguisher.
This leads to the following closure operation on context sets.

Definition 3.3. Let C C ¥ x ® be a given set of contexts. We denote by C C ¥ x ®
the following set of contexts:

C={fP)eSx®|IgQ eCIheTIed: hog=Ff A [QU]=P}.

The following proposition states the context-restricted indifferentiability is idem-
potent under the closure of the context set.

Proposition 3.4. Let R,S € & denote resources, m € ¥ denote a converter, and let
.C .C
C denote a set of contexts. We then have R = S <= R == S.
Ccr cr
Proof. The implication <= is trivial, since C C C. We now prove the other direction.

Let (f,P) € C and notice that by Definition 3.3 this implies that there exists (g, Q) € C,
h € 3, and Z € ® such that h o [g,id] =f and [Q,Z] = P.

By our assumption, we know that g[,id][R, Q] is indistinguishable from g[S, Q|o, as
indicated by the dotted box. Thus, if we add the additional filter h and resource Z,
they remain indistinguishable. This concludes the proof. O

We now state the formal composition theorem of context-restricted indifferentia-
bility. Note that the additional conditions compared to the composition theorem of
classical indifferentiability (cf. Section 2.3) are a direct consequence of the context
restrictions. For instance, if in the sequential case we reduce T to S in one of the given
contexts, we have to ensure that now we are again in a valid context for reducing S to
R. This highlights that in order for context-restricted indifferentiability to be useful,
the context sets have to be defined in a form that containment can be easily verified.

Theorem 3.5. Let R, S, T, and U denote resources, let w1 and 7o denote protocols,
and C1 and Coy contexts sets. We have

m1,C1 m2,Ca maomy,Ca
Re= SAS— T — R — T,

cr cr cr
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iff for all (f,P) € Cy it holds that (f o [ma,id],P) € C1. Moreover, we have

m,C 71,C
Re=— S = [RU] == [S,U],
Ccr Ccr

iff for all (f,P) € Cy it holds that (f,[U,P]) € C1.

Proof. We first show the sequential case. Assume that the prerequisite regarding the
two context sets is satisfied. Moreover, consider an arbitrary context (f, P) € C2 and
the three system configurations, depicted in the following figure.

s T
=~ f o1 ~ f 0201
P P

Using the assumed property on C; and Proposition 3.4, we know that the context
indicated with the dashed line is a valid one for reducing S to R, yielding the first
equality. The second equality follows directly from the premise.

In order to show the parallel composition property, assume again that the corre-
sponding condition on the context sets is satisfied. Moreover, consider an arbitrary
context (f,P) € C; and the two system configurations, depicted in the following figure.

Using the assumed property on C; and Proposition 3.4, we know that the context
indicated with the dashed line is a valid one for reducing S to R. In short, parallel
composition in CRI is just associativity: The resource Q can be seen as both part
of the context, indicated by the dashed line, or part of the real and ideal resources,
indicated by the dotted line. This concludes the overall proof. O

3.4 Relation to Indifferentiability

Let id denote the identity converter, such that idR = R and [ the neutral resource,
such that [R,0] = R, for any resource R. It is then easy to see that regular indiffer-
entiability, which guarantees full composition, is a special case of context-restricted
indifferentiability with the context set Ciq :== {(id,0)}, since Ciq = X x ®, i.e., the
closure equals to the set of all resources and converters. One can, however, also take
the opposite point of view and consider context-restricted indifferentiability to be
a special case of plain indifferentiability. From this perspective, CRI reducibility is
just a set of normal reducibility statements where the context is part of the consid-
ered resources and protocols, respectively. This can be summarized in the following
proposition.

Proposition 3.6. Let Ciq == {(id,0)}. For all resources R, S, protocol w, and context
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sets C C ¥ x @, we have

s 7,Ci
Re= S «— R:d>5,

cr

,C fo[m,id
R—=S s« VP eC: [RP] m=t fs,pl.
cr

Proof. This follows directly from Definitions 2.2 and 3.2, and the definitions of the
identity converter id and the neutral resource . O

Using Ciq = ¥ x ®, it is also easy to see that the composition theorem of regular
indifferentiability is just a special case of Theorem 3.5.

3.5 An Example of CRI: Diffie-Hellman Key Exchange

The general setting. Consider the following simple example: two honest parties,
e.g., Alice and Bob, perform a Diffie-Hellman key exchange using authenticated
communication and then extract an actual key by hashing the group element g,
while an eavesdropper is present.

Since both the honest parties hash the exactly same element, there is no necessity
to treat them as different parties and we can work in the indifferentiability setting
with one honest party and the adversary. Consider the following resources: let DH
be a Diffie-Hellman resource (modeling the authenticated key exchange) that outputs
g at interface A and (g%, g°) at interface E, let PO denote a random oracle accessible
by both parties, let HK denote a public hash key resource that outputs the key at
both interfaces, and let KEY be a resource that outputs a uniformly random key
at interface A and nothing at interface E. The Diffie-Hellman converter 7 takes the
group element g% at the inside interface, inputs it to the random oracle, and outputs
the obtained result at the outside interface. It is easy to see that under the CDH

assumption we have [PO, DH]| == KEY, using the simulator o that chooses (g%, g°)

uniformly at random and simulates the interface E of the public random oracle. Note
that the fact that the random oracle “vanishes” and is simulated in the ideal world
corresponds to the notion of a programmable random oracle...

Limitation of Indifferentiability. The explicit appearance of the resource PO in
the above statement corresponds to a proof in the so called random oracle model.
The corresponding simulator o chooses (g%, ¢°) uniformly at random and simulates
the interface E of the public random oracle?. If we want to obtain a proof in
the standard model, i.e., getting rid of the assumed random oracle resource, we
would need to find a (potentially) keyed hash function that instantiates the random
oracle, which is of course impossible. Such a hash function is in our terminology
just a converter h that reduces the random oracle to the public hash key resource

HK, i.e., HK é) PO. If we had such a hash function, we could use parallel

h,id
composition to obtain [HK, DH] ’[:|]> [PO, DH] and then sequential composition to

molh,id
obtain [HK, DH] st KEY.

2The fact that the random oracle “vanishes” and is simulated in the ideal world corresponds to
the notion of a programmable random oracle.
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Applying CRI. The main obstacle in the way of the modular approach is that
there exists no hash function that reduces the random oracle to a public hash key.
However, using the formalism of context-restricted indifferentiability there might be
a context set C such that the random oracle is reducible for a given hash function h.
Composing this with the second step should then be possible as long as the protocol
which we want to actually apply is in the context set, i.e., (w, DH) € C. We now show,
that this is exactly what the composition theorem of CRI yields:

h,C
Assume that HK == PO for some context set C with (7,DH) € C. Let C’ :=
cr

{([m,id],0)}. According to the parallel composition rule of Theorem 3.5, we have
h,C’
that [HK, DH] == [PO, DH], since by definition of the identity converter and the

cr
neutral resource, ([, id], [DH,O)]) is equivalent to (7, DH) and thus contained in C.

7Ci
Using Proposition 3.4, we moreover have [PO, DH] ——4 KEY and since by definition
cr
(id o [m,id],0) = ([=,id],0) € C’, we can apply sequential composition and obtain

moh,Ciq

moh
[HK,DH] == KEY, which is equivalent to [HK,DH] —= KEY.
cr

In summary, this shows that the composition theorem of context-restricted indif-
ferentiability yields exactly what one expects: composition works if and only if the
considered application is in the set of allowed contexts. This of course implies that
the context set must be defined in such a way that verifying this fact becomes as easy
as possible. For the above example, for instance, it is easy to see that this works if C
is the context-set of split-security combined with computational unpredictability, or
statistical unpredictability if we are willing to assume DDH instead of CDH. Split
security is discussed in more detail in Scction 6.

4 Modeling UCE in CRI

In the following section we consider the ROM in context-restricted indifferentiability,
i.e., consider the special case of CRI where the ideal-world resource S that we reduce
is a random oracle. We then prove that the UCE framework is actually a special case
of CRI with a random oracle.

4.1 Applying CRI to the ROM

In the following, let H: H.K x H.X — H.) denote a keyed hash function, let HKy
denote the public hash-key resource that chooses a key for H and outputs it at
both interfaces, let hashy denote the converter that implements an oracle for H
at the outside interface when connected to HKy at the inside interface, and let
H := hashyHKy as a shorthand. Finally, let ROy denote the private random oracle
resource with the same input and output domains as H, where by private we mean
that this resource only accepts queries at interface A.> See Figure 4 for a formal
description of these resources and converters.

We now present an alternative formalization of UCE based on context-restricted
indifferentiability, more concretely that every possible UCE-class S*, where = €
{sup, cup, srs, crs, splt, . ..}, can be mapped to a set of contexts C* for which the UCE

hashy,C
statement implies the context-restricted indifferentiability statement HKy )aS:H> RO,
cr

3The choice to consider a private random oracle stems from the fact that in the UCE framework
the hash key is just chosen uniformly at random instead of allowing an arbitrary efficient simulator
with access to the random oracle to generate this key.
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!

Initialization Initialization
k& HE k& HE

Interface i € {A,E} Interface A

Input: getkey Input: (hash,z) € H.X
output k at i output H(k,z) at A

Interface E
Converter hashy Input: getkey
output k at E

!

Initialization
output getkey at in

let k£ denote the result

Interface out Initialization

Input: (hash,z) € HX k& HK
output H(k,xz) at out
J for all x € H.X do
Tlz] + L

Converter oy

!

Interface A

—_ Input: (hash,z) € HX
Initialization if T[z] — | then

$
k& HEK Tla] & HY
output T'[z] at A

Interface out
Input: getkey
output k at out

J

Figure 4: Formal definitions of the resources and converters.

and moreover, if the CRI statement were restricted to a specific simulator, the reverse
direction would hold as well.

4.2 Non-Interactive Contexts

In order to map every UCE-class to an equivalent set of contexts, we first introduce
the set of non-interactive contexts, i.e., the communication between the source and the
distinguisher being unidirectional. This restricted set of contexts faithfully encodes
the structural restrictions of the traditional UCE game (cf. page 6), where the
communication between the source and the distinguisher is unidirectional. Recall that
we are in the same general setting as the classical indifferentiability framework, where
one only considers out-bound resources for which communication at one interface
does not affect the other interface.

Definition 4.1. A non-interactive resource P is a resource that at the interface E
accepts at most a single trigger query (usually called retrieve), and a non-interactive
filter is a converter that at the outer interface just accepts a single trigger query
(usually called retrieve). Let ®" denote the set of all non-interactive resources, and
¥ denote the set of all non-interactive filters, respectively.

Each UCE-source naturally corresponds to a set of non-interactive contexts. This
is formally stated in the following lemma by providing a surjective mapping from the
set of non-interactive contexts to the set of UCE sources S.
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ROy

Figure 5: The real (left) and the ideal (right) setting of context-restricted indifferen-
tiability when applied to UCE.

Lemma 4.2. The function ¢: X" x ®" — S that maps every context (f,P) to the
following UCE source S, that internally emulates f and P, is surjective.

1. S queries the interface E of P to obtain z.

2. S queries the outside interface of the filter f to obtain y. The queries at the
inside interface of f are forwarded to the resource P or output as queries to the
hash oracle, respectively.

3. S outputs L = (y, z).

Proof. First, it is easy to see that ¢ is indeed a function from XM x ®" to S, i.e.,
¢(f, P) is a valid UCE source for every context (f,P) € X" x ®". To see that this
function is surjective, fix an arbitrary source S. Now, let fg denote the filter that upon
receiving the query retrieve at the outer interface internally runs S and answers this
query with the leakage L. Each hash query of S is output at the inner sub-interface
in.H and the corresponding answer is forwarded to S. Clearly ¢(fs,[J) = S, where
0 € " denotes the dummy resource. O

4.3 ROM-CRI Security Implies UCE Security

We now show, that for the specific simulator oy that chooses the hash key uniformly
at random, the distinguishing problem of context-restricted indifferentiability for a
fixed context (f,P) is as hard as the UCE game with the source ¢(f, P). In order to
relate more directly to the traditional UCE definition, we first introduce the RO-CRI
advantage, which is depicted in Figure 5 for a specific context (f,P) € C.

Definition 4.3. We define the random-oracle context-restricted indifferentiability
(RO-CRI) advantage of a distinguisher D on a hash function H in a context (f,P) as

Advﬁf?;,gﬁl(o) = AP(f[H, P], f[ROn, P]o),

for a simulator o. If there exists a simulator o such that for all efficient distinguishers
and all contexts (f,P) € C, the RO-CRI advantage is negligible, we say that H is C
random-oracle context-restricted indifferentiable.

The following lemma implies that for non-interactive contexts this definition is
equivalent to the game-based definition of UCE-security, if we fix the simulator to oy.

Lemma 4.4. Let S denote the set of all UCE-sources and ¢: ¥ x ®" — S the
surjective function from Lemma 4.2. For every distinguisher D, there is a distinguisher
D’ (with essentially the same efficiency) with

V(f, P) c Eni x (I)ni: AdVE?:gEJ(D) = AquHC,%(f,P),D"
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where Advy's p denotes the uce-advantage of (S,D) on H. Conversely, for every
distinguisher D' there is an equally efficient distinguisher D such that for all (f,P) €
EM X @™ we have Adviy ¢ py o = Advﬁ%&f,{:(D).
Proof. For every distinguisher D for Advﬁ?ﬁ}}:(D) we can construct a distinguisher
D’ using a wrapper around D as follows: if D queries the interface E of the hash resource
(for the key) or P we return hk or z, respectively; if D queries the outer interface of f,
then y is returned. The bit b is then set to the output bit of D. The key observation
is that the resources f[H, P] and f[RO, P]oy are independent to the order in which D
does those queries. It is now easy to see that Advﬁ?ﬁi}(D) =Advy e o

The reverse direction works with an analogous wrapper that first queries the
system to obtain hk, z, and y. It then invokes D’ with hk and L = (y, z) as inputs
and outputs the bit ¢'. O

We now state the main result of this section, relating the UCE game to context-
restricted indifferentiability. It implies that instead of viewing the source as the first
stage of an adversary, one can view it as the set of contexts in which the hash function
can safely be used.

Theorem 4.5. Let D denote the set of all efficient distinguishers. For every class S*
of UCE sources, there exists a set of contexts C* such that Advﬁ%gf}:(D) is negligible
for every D € D and every context (f,P) € C* if and only if Advis p(-) is negligible
for all (S, D) € §* x D.

Proof. Using the surjectivity of ¢ (Lemma 4.2), we have that for any UCE-class S*
we can define C := ¢~1(S8%) such that ¢(C*) = S®. Hence, by Lemma 4.4 we have
that Advﬁ?ﬁc}}:(D) is negligible for all efficient distinguishers D € D and all contexts
(f,P) € C* iff Advs p(-) is negligible for all (S, D) € §* x D. O

The following corollary establishes the unidirectional implication from UCE-
security to context-restricted indifferentiability. The reverse direction does not
necessarily hold, since the context-restricted indifferentiability notion allows for
different simulators than the natural one oy.

Corollary 4.6. Let D denote the set of all efficient distinguishers. For every class

S* of UCE sources, there exists a set of contexts C* such that if Adv%%,D(-) 18

hashy,C®
negligible for all (S, D) € 8% x D, then HKy C:“» ROW.

Proof. This follows directly from Definitions 3.2 and 4.3 and Theorem 4.5. O

5 Modeling Public-Seed Pseudorandom Permutations in
CRI

In [ST17] Soni and Tessaro introduce the notion of public-seed pseudorandom permu-
tations (psPRP) that are inspired by UCE. In fact, they introduce a generalization
of UCE, called public-seed pseudorandomness (psPR), of which both psPRP and
UCE are instantiations. In the following, we give an analogous equivalence result
to the one of Section 4 between context-restricted indifferentiability and the general
public-seed pseudorandomness notion. The equivalence for the psPRP notion then
just follows as a trivial corollary.
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Algorithm 13 The public-seed pseudorandomness game (single-session)

function MAIN PSPRE’?()\) function O(z)
$ if b=1 then
b+ {0,1
g {0.1} N return F.Eval(1*, k, z)
k < FKg(]_ ) else
f & Iy return f(x)
L& 5o

¥ & DNk, L)
return (V' =)

Figure 6: The public-seed pseudorandomness security game for a function family F,
an ideal primitive I, a source S, and a distinguisher D.

5.1 Public-Seed Pseudorandomness

We first briefly recap the main definitions of public-seed pseudorandomness as in-
troduced in [ST17]. The authors first introduce the notion of an ideal primitive, of
which both random oracles and ideal random permutations are instantiations of.

Definition 5.1. An ideal primitive is a pair I = (X, D), where ¥ = {X)})en is a
family of sets of functions (such that all functions have the same domain and range),
and D = {D)},enis a family of probability distributions, where the range of D) is
a subset of Xy for all A € N. The ideal primitive I, once the security parameter A
is fixed, should be thought of as an oracle that initially samples a function I as its
initial state according to Dy from X. Then, I provides access to I via queries i.e. on
input x it returns I(x).

Moreover, the authors of [ST17| then define the following notion of X-compatible
function families. A function family corresponds to an algorithm that generalizes
hash functions and pseudo-random permutations.

Definition 5.2. A function family F = (Kg, Eval) consists of a key (or seed) genera-
tion algorithm F.Kg and an evaluation algorithm F.Eval.

e F.Kg is a randomized algorithm that on input the unary representation of the
security parameter \ returns a key k, and we let [F.Kg(1})] denote the set of
all possible outputs of F.Kg(1%).

e F.Eval is a deterministic algorithm that takes three inputs; the security pa-
rameter in unary form 1%, a key k € [F.Kg(1")] and a query z such that
F.Eval(1*, k, -) implements a function that maps queries x to F.Eval(1}, k, z).

We say that F is efficient if both Kg and Eval are polynomial-time algorithms.

The goal of such a function family F is then to implement an ideal primitive
I with respect to the UCE-like security game depicted in Figure 6, considering an
adversary that is split into a source S and a distinguisher D. In contrast to the
original definition, we only consider the game for a single session, which can easily be
related to the multi-session one using a standard hybrid argument.

Finally, Soni and Tessaro define the pspr-advantage as follows:

Advi () = 2Pr [psPngvj’(A) _1
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5.2 Ideal Primitives and Function Families in CRI

In the following section, we argue that every ideal primitive I can be understood as
an ideal resource of an CRI statement, and every function family F as an pair of real
resource and protocol, respectively. For simplicity, we ignore the security parameter
A in the following.

For every ideal primitive I and for every function family F = (Kg, Eval), denote
the corresponding resource and converters depicted in Figure 7. Moreover, we also
define the simulator or, which simply chooses a key according to Kg as well.

Resource KGg Resource |

F

Initialization Initialization
k& FKg(1) FE&IL
Interface i € {A,E} Interface A

Input: (eval,z)

Input: getkey
output f(z) at A

output k at i

Initialization Initialization
output getkey at in S F.Kg(1*)

let k£ denote the result

Interface out
Input: getkey
output k at out

Interface out
Input: (eval,z)
output F.Eval(1*, k, z) at out

-

J

Figure 7: The corresponding resources and converters.

5.3 CRI-Security Implies psPR-Security

We now show, that for the specific simulator oyg, if for every specific context (f, P)
the distinguishing problem of context-restricted indifferentiability is hard, then the
UCE game with the fixed source ¢(f, P) is hard as well, and vice versa. In order to
relate more directly, we introduce the psRP-CRI advantage.

Definition 5.3. We define the public-seed pseudorandomness context-restricted in-
differentiability (psRP-CRI) advantage of a distinguisher D on a hash function H in a
context (f,P) as

AdvEEs OM(D) = AP (flevalgKGe, P, I, Plo),
for a simulator o.

The following lemma implies that for non-interactive contexts this definition is
equivalent to the game-based definition of UCE security, if we fix the simulator to oF.

Lemma 5.4. Let F denote a function family and I an ideal primitive. Furthermore,
let S denote the set of all psPR-sources and ¢: X" x ®" — S the surjective function
from Lemma 4.2. For every distinguisher D, there is a distinguisher D’ (with essentially
the same efficiency) with

P € 57 0 AVl D) = AV
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Conversely, for every distinguisher D' there is a distinguisher D (with essentially

the same efficiency) such that for all (f,P) € X" x ®" we have Adv}p?fzr([fl’]l))p, -
PR—-CRI
Adv%ﬁl,f,P,ap (D).

Proof. The proof is analogous to the one of Lemma 4.4. O

We can now state the main result of this section, relating the public-seed pseudo-
randomness game to context-restricted indifferentiability.

Theorem 5.5. Let F denote a function family, I an ideal primitive, and let D denote
the set of all efficient distinguishers. For every family S* of psPR-sources, there exists

a set of contexts C* such that Adv%SFfRP_SFRI(D) 1s negligible for every D € D and every

context (f,P) € C* if and only if Adv%fpst[g(-) is negligible for all (S, D) € 8* x D.

Proof. The proof is analogous to the one of Theorem 4.5. O

This demonstrates that not only UCE is a special case of CRI but also the more
general notion of psPR is still a special case of CRI, where each ideal primitive and
function family correspond to the ideal and real world, respectively. Similarly to
UCE, the psPR notion is still non-interactive and essentially hard-codes a specific
simulator in the security game.

6 Generalizing Split-Security

In this section, we present generalizations of the split-source UCE-class, that cannot
be formalized in plain UCE, based on CRI.

6.1 Split-Security

The split-source UCE-class has been proposed by Bellare et al. after it has been shown
that computational-unpredictable UCE-security and computational-reset-secure UCE-
security is infeasible if indistinguishability obfuscation exists. Note that split-security
is not a stand-alone UCE-class in the sense that it is designed to be combined with
either computational unpredictability or reset-security, respectively.

The general idea of split-security is, that the source must not be able to compute
Obfs(H(-,z) = y). To achieve this, the source must be dividable into two parts
(S0, S1), where Sy chooses a vector (x1, ..., x,) of query points, without having access
to the hash oracle, and S; then just gets the evaluations y; := Hash(z;), without
having access to the hash oracle either. Thus, no part of the source knows both z;
and its evaluation y;, preventing the aforementioned iO attack. A formal description
of the split-source S := Splt[Sp, Si] is found in Figure 8.

6.2 An Alternative Representation of Split-Security

As established by Theorem 4.5, using CP"* := ¢~1(S*") faithfully translates split-
security to CRI. In order to work more easily with split-security and make it more
directly comparable to our later generalizations thereof, however, we introduce an
alternative representation of the split-security CRI context set using a fixed filter
fsP't which encodes the structural restriction of split-security.
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Algorithm 22 Splt SOURCE
function SPLT SOURCEHAH (1)
(Lo,x) & So(1%)
fori=1,...,|z| do
yli] < HasH(x[7])
L & 851014 y)
L+ (Lo, Ll)
output L

Figure 8: The definition of the split-source family in UCE.

Definition 6.1. The split RO-CRI context set is the set of filters and non-interactive
resource pairs of which the filter can be factorized into the filter f?", as depicted in
Figure 9, followed by an arbitrary filter. Formally,

CP = {fo P | fe XM} x O

Observe that the filter f?"* expects the resource P to output a sequence of pairs
(x;,a;), where z; is intended to be unpredictable, then hashes x; || a; and outputs
the result. Note that the distinction into an unpredictable value x; and an auxiliary
value a; solely prepares for our generalizations. This type of resource corresponds to
the first stage of the source Sy that produces the queries* and the leakage Lo (called
Z in the following definition), and we will call it a seed in the following.

Definition 6.2. A seed with n outputs is a resource that initially draws random
values X1,...,X,, A1,...,A,, and Z according to some joint distribution. Then,
it accepts at the interface E a single trigger query (usually called retrieve) that is
answered with Z, and at the interface A n trigger queries answered with (X7, A1) to
(Xn, Ap). Let @524 C ®" denote the set of all seeds with n outputs. Moreover, let
Cqsleed = 3 x (I)%eed.

The second stage of the source S then translates to the additional non-interactive
filter f that gets from fP'* the hashed values y; and can further process them to
obtain the leakage Li. The following lemma establishes that this represents a correct
translation of split-security as well.

Lemma 6.3. Let 8" denote the class of all UCFE sources making at most n oracle
queries and let ¢ denote the surjective function from Lemma 4.2. We then have

¢(Csplt N C’rsleed) — Ssplt N Sn7

and thus, Advﬁ?ﬁg(D) is negligible for every D € D and every context (f,P) €
CPt N Cseed if and only if Advs p(+) is negligible for all (S, D) € (SPtNS") x D.

Proof (Sketch). First, we show that for every f € X" and P € &% the context

(f o fP'*, P) is mapped to a UCE source in S N S" by ¢. To this end, we define Sp
to be the source which initially emulates P. It first queries z at the interface E and all

4Here, we only consider split sources with a fixed number of queries. A polynomial number of
queries could easily be phrased as well.
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.

Outer Interface
Input: retrieve
output retrieve at in.P
if the result can be parsed as (z,a) € X x A then
output z || a at in.H
let y denote the result
output y at out
else
output | at out

- J

Figure 9: The definition of the filter f**'*. The filter is implicitly parametrized in the
two sets X and A, which should become clear from the context in all of our uses.

values © = x1,..., 2, at the interface A of P and set Ly = z. The source S7 internally
emulates f. It initially queries retrieve towards f to obtain L. Whenever f outputs a
query retrieve towards fP', then S; answers by using the next value y;. Now observe
that, by definition of ®" obtaining all queries z1,...,z, from P at interface A on
demand or at the beginning and storing the results y; = H(k,z1),...,yn = H(k,z,)
is equivalent. Thus, it is easy to verify that ¢(f o fP', P) = Spit[Sy, S1].

Second, we show that ¢(Cflplt) D 8PN SN ie., for every split source there exists
at least one context that maps to this source. It is easy to see that Sy can be
embedded accordingly in a resource P € ®%¢ and S in a filter f € X" such that
o(f o P!t P) = Spit[Sy, S1]. The remaining claim about the advantages immediately
follows by Lemma 4.4, concluding the proof. O

6.3 Strong-Split security

Split sources have several limitations. First, the distinguisher cannot influence the
queries at all and, thus, all queries must be solely determined by the honest parties.
This prevents, for example, queries like H(hk,x||a) where a is a value which can be
chosen by the distinguisher (e.g. a is transmitted over an insecure channel) even if x is
unpredictable. In the following section, we introduce a generalization of split-security,
called strong-split security, to address this limitation. Second, split-security does
not allow nested queries like H (hk, H(hk,z)). In Section 6.5 we present a further
generalization to address this issue as well.

Remark. Note that the first limitation is not specific to split-security, but is inherent
to the traditional UCE-game. In their work [FM16] on Interactive Computational
Extractors (ICEs), Farshim and Mittelbach have proposed an alternative relaxation
of this issue. In Section 6.6 we show that ICE security implies strong-split context-
restricted indifferentiability for statistical unpredictability.

In order to allow the distinguisher to influence the queries while ensuring that
the overall query is still unpredictable from the viewpoint of the distinguisher, we
allow him to apply any injective function on the preliminary inputs x specified by
the first part of the source Sy, which will then be evaluated and passed on to Sj.
That is, we use the simple fact that for any injective function f guessing f(x;) is
at least as hard as guessing x;. To formally model this as a context set for RO-
CRI, we use a specific filter f;fSplt. This filter expects the resource P to output a
sequence of pairs (x;,a;), where z; is intended to be unpredictable. We will call such
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s—splt
A

Outer Interface
Input: (retrieve, fi,...fp) €Zh 4~
output retrieve at in.P
if the result can be parsed as (z,a) € X x A then
fori=1,...,pdo
yM A fi(:L‘7CL)
if Vi # j: yfi] # ylj] then
fori=1,...,pdo
output y[7] at in.H
let z[¢] denote the result

if 2z is not set then z < 1P
output z at out

- J

Figure 10: The strong-split filter f;_s”lt for RO-CRI, where Zy« 4 g.x denotes the
set of all efficiently computable functions from X x A to H.X that are injective in
the first argument. Note that it was pointed out in [BM14] that the queries of a
split-source must be distinct; otherwise arbitrary information can be communicated
to the second stage.

a resource P seed in the following. For each of them the distinguisher can then input
p functions f},..., f7 that are injective in the first arguments, upon which the filter
will output (f} (i, a;), ..., f'(zi,a;)) to the hash oracle and forwards the results to
the distinguisher. A formal definition of is depicted in Figure 10. The filter fffs’)'t can
then be combined with an arbitrary non-interactive resource to obtain a strong-split
RO-CRI context.

Definition 6.4. The strong-split RO-CRI context set is the set of filters and non-
interactive resource pairs of which the filter can be factorized into f;_SPIt followed by
an arbitrary filter. Formally,

—splt .__ —splt ni
CEMt = {fo 5P | f € %1} x B,

Analogous to split-security, strong-split security is not a sufficient restriction to
avoid trivial impossibility results. Rather, these notions are meant to be combined
with a notion of unpredictability or reset-security. However, for strong-split security,
requiring the seed to output distinct unpredictable values is still insufficient to
guarantee the security: for instance, if the resource P outputs (x,a1) and (z + 1, a2),
then the distinguisher can easily choose f and g such that f(z,a1) = g(z + 1,a2).
Therefore, we introduce suitable notion of unpredictability in the next subsection,
which when combined with strong-split security presents a plausible assumption for a
hash function family.

6.4 Strict Min-Entropy Seeds

We now define an information-theoretic restriction on the seed called strict min-
entropy seeds. Similar to Farshim and Mittelbach [FM16| we choose to focus on
statistical rather than computational unpredictability to ensure that our notion
excludes interactive version of the attack highlighted in [BFM14].> More concretely,

5We would like to stress that while split-security was originally introduced for the computational
setting, it is still a natural class to consider even when combined with a statistical unpredictability
notion.
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we consider seeds whose outputs at interface A consist of pairs (X, A;), with A; being
an auxiliary value, such that X; has high average conditional min-entropy given the
leakage Z and all previous queries.

Definition 6.5. A strict min-entropy k-bit seed with n outputs is seed with n outputs
(c.f. Definition 6.2), such that

Vi <n: HooXi [{X;}jci {Aj}j<in Z) > k.

Let ®>" M C ®" denote the set of all strict min-entropy k-bit seed with n outputs.

Moreover, let C; "¢ = ¥ x &>~ ™ denote the set of all strict min-entropy k-bit
contexts.

When combining split-security or strong-split security with strict min-entropy
seeds, the security does not depend on the maximal number n of values produced by
the seed.

Lemma 6.6. Let n be polynomially bounded. If H is a C*®" N Ci;cme indifferentiable
hash function, then H is also C**'"* N C3 ™ indifferentiable.

More concretely, let D denote the set of distinguishers. Then there exists p: D x
(CSp't C;kme) — D and ¥: CPt N NCe — — CPt N N CT", such that for every

(f,P) € C*P* N Con' we have

AQVEZEID) < (5 )27+ - AdvRSEL )

with D' == p(D,f,P) and (f',X") :== ¢(f,P).
Proof. The proof is completely analogous to the one of Lemma 6.7. O

Lemma 6.7. Let n be polynomially bounded. If H is a Cls,_smtﬂ e indifferentiable

hash function, then H is also CZiSplt NC; "¢ indifferentiable.
More concretely, let D denote the set of distinguishers. Then there exists p: D X

(Cz—splt n ;;me) D and C;—Sp't N C;Tkme — C;_SP“ N i_kme, such that for every

(f,P) € C;_s')'t NeC "¢ we have
AdvESSR(D) < ("219 ) 27* 4 n - AdvEQSRL (D)

wzth D/ = p(D’f7 P) and (f,,xl) = ’lz)(f, P)

Proof (Sketch). The proof works very similarly to the one of Lemma 6.8 below;
therefore, we only provide a brief sketch. As a first hybrid, we introduce a variant
that uses a beacon instead of a random oracle, where a beacon is a resource with the
same interface as the random oracle but always answers using fresh randomness even
for repeated queries. Distinguishing this hybrid system from the ideal system (that
uses the random oracle) can be bounded with the collision probability for the inputs.
Since every of the input has k bits of conditional min-entropy, given all previous
inputs, the collision for any of them can be bounded with 27% (c.f. the proof below)
and there are at most np queries in total. Hence, the total distinction advantage can
be bounded by ("7)27".

It remains to bound the distinction advantage between the real system (using
the hash function) and our hybrid system (using the beacon) using the strong-split
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r—splt
Converter f,, ~N

Initialization
b« 1P, ¢« 0

Outer Interface

Input: get Input: (repeat, fi,...,fp) € Ifry p v
output b at out c+—c+1
b+ LP if c<r A b# 1P then

Input: (query,fl,...,fp)GIQ’AHHAX forz:17~~~»P40 .
1 output f;(b[i]) at in.H

output retrieve at in.P let b[¢] denote the result

if the result can be parsed as (z,a) € else
X x A then b+ 1P
fori=1,...,pdo
yli] « fi(z,a)
if Vi # j: yli] # ylj] then
fori=1,...,ndo
output y[i] at in.H
let b[i] denote the result
else
b 1P
else

b« LP
o J

Figure 11: The filter f;frsmt.

security for a single message. This can be shown by a simple hybrid-argument with
n additional hybrids where the i-th min-entropy seed X; outputs the i-th message
Y; at interface A and the messages Yi,...,Y;_1 as additional leakage at interface
E. The hybrid then answers the first ¢ — 1 queries by computing the hash function
itself, the i-th message by actually querying the attached system (that uses either the
hash function or the beacon), and the remaining queries by uniform random values,
simulating the beacon. Defining the resource X’ to be the one that chooses uniformly
at random among X1, ..., X, yields the desired bound: n - AvaH{f?,' %%LH(D’ ). O

6.5 The Repeated Split-Source Context Set

We now further generalize our strong-split source class, to allow for repeated queries,
such as H (hk, H(hk,z||1)]|2). The key idea is to introduce a buffer which stores the
results obtained from the hash function. The distinguisher can then choose whether it
wants to see those values, or whether it wants to use them as a new query. The filter

f{,}sPlt is depicted in Figure 11. The parameter r determines the maximal allowed

Cr—splt

nesting depth. Analogously to the strong-split source, we can then define the Cp

context set based on this filter as Cp,*P" := {f o fi,*P" | f € £} x &M,

We now prove that strong-split CRI implies repeated-split CRI when furthermore
restricted to strict min-entropy seeds. This allows to analyze hash functions only for
strong-split security, but use them in contexts where repeated-split security is needed
to implement a certain protocol.

Lemma 6.8. Let k' == min(k,log|H.Y|). If H is a C5 "N C3 ™ indifferentiable

hash function, then H is also C;,}Splt NC: " indifferentiable hash function.
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More concretely, let D denote the set of distinguishers. Then there exists a
translation of the distinguisher p: D X (C;,}Splt N Cfl_kme) — D and a translation of the

context 1 C;,}SpltﬂC;}me — C;fSpltﬂCffk',“e, such that for every (f,P) € Cr;SpltﬂCf;kme

we have
npr

2
with D' == p(D, f,P) and (f',X") == (f, P).

AdVEQSRI(D) < ( )z(k’n . AQVESSE (D)

While this lemma can intuitively be proven using a simple hybrid argument, it
turns out to be quite technical. The proof can be found in Appendix A.

6.6 The Relation Between ICE and Strong-Split CRI

In this section we discuss the relation between RO-CRI and the ICE framework
introduced in [FM16]. More concretely, we show that statistical-unpredictable ICE
security implies strong-split context-restricted indifferentiability, as phrased in Theo-
rem 6.9. Using this relation between the two frameworks, we especially inherit the
random oracle feasibility result from the ICE framework.

The reverse direction, whether strong-split RO-CRI implies some natural notion
of ICE, remains an interesting open problem. In general, there seems to be no natural
mapping from ICE to RO-CRI. This can be explained by the fundamentally different
motivation behind introducing this two generalizations of UCE: ICE tried to allow
interaction by making the two stages of UCE more symmetric, whereas RO-CRI
exploits the asymmetry of UCE to separate them even further into the protocol of
the honest party and the regular distinguisher from indifferentiability.

In terms of random-oracle feasibility, this places RO-CRI as an intermediate
notion between the original UCE notion and the stronger ICE notion, while it is still
open whether a true separation between those frameworks exists.

Theorem 6.9. Let H denote a keyed hash function where the key-space is exponential
in the security parameter. If H € ICE[CP], then H is C;_SPItﬂCZTkme context-restricted
ndifferentiable from a random oracle for any polynomial n and p, and k such that
the guessing probability is negligible.

Proof. We sketch a proof that for the fixed simulator oy, every context (f,P) €
C;fSplt N CZ;Cme and distinguisher D can be turned into a pair of equivalent ICE
distinguishers D; and Dy. Let D; internally emulates the distinguisher D and works
as follows:

e It initially chooses the hash key hk uniformly at random (as oy) and writes it
into the buffer using a WRITE query. This is the only WRITE query D; does.

e In every round, it uses obtains the answer from Lo and passes this to the
distinguisher D to obtain the next query. According whether D queries the
interface A with the function f or obtains the leakage at interface E, it produces
an appropriate output Ly, either (4, f) or (E).

e If the distinguisher D outputs the decision bit, D outputs the same bit.

The second distinguisher Dy internally emulates the context (F57P't, X). It works
as follows:

e In every round it inspects the value Lj.
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— If Ly is of the form (4, f), it passes f to the internal emulation of the
context, to obtain the value x that would be queried to the hash function.
It then writes = to the buffer and queries the hash function. The resulting
value y is returned as Lo.

— If Lo is of the form (E), then it queries the interface E of the internal
resource X and returns the result as Lo.

o [t always sets by = 0.

It is easy to see that the ICE game now behaves exactly the same as the RO-CRI
system. Moreover, the queries of Dy are exactly as unpredictable given the state
and randomness of D; as are the queries in the RO-CRI system given access to the
interface E. Finally, if the hash key hk is unpredictable, then none of the queries of
D1 can be predicted given the complete state and randomness of Dy. This concludes
the proof. O

7 Split-Security of the Merkle-Damgard Construction

7.1 Motivation

Indifferentiability is widely used to prove the security of hash function constructions.
Since CRI is essentially a refined version of indifferentiability, it is hence natural to
consider the RO-CRI security as well.

It is easy to show that any indifferentiable hash function construction is reset-UCE
secure if the underlying compression function is reset-UCE secure. On the other hand,
for split security no corresponding result has been proven so far. In the following we
investigate the split-security of the Merkle-Damgard construction using the RO-CRI
framework. While ideally one could prove that the Merkle-Damgard construction is
split secure if the compression function is so, or that the Merkle-Damgard construction
is strong-split secure if the compression function is so, we will prove a slightly weaker
result:

Consider the Merkle-Damgdard construction that splits the message into blocks of
length m. We show that the Merkle-Damgdrd construction is split-secure for inputs
having at least one block with k bits of min-entropy, if the compression function is
strong-split secure for inputs with min(k, m) bits of min-entropy.

7.2 Formalizing the Theorem

In order for our proof to go through, we require that at least one of the blocks has
high min-entropy and not just the overall message has, as in the definition of strict
min-entropy seeds. Moreover, we require that this block has k bits of min-entropy
given all subsequent blocks. In Lemma 7.4 we then show that having a high min-
entropy density, i.e., the fraction between the min-entropy and the message length, is
a sufficient criteria for this. First, however, let us formally introduce this CRI context
set.

Definition 7.1. For a block length ¢ € IN;, let Pad, denote the usual padding
scheme of the Merkle-Damgéard scheme, that is Pad,: {0,1}* — ({0, 1}*)* that pads
a message x by first appending zeros up to a multiple of the block length ¢, and then
appending an encoding of the number of zeros appended as a last block. Moreover,

for X € {0,1}*, we denote by X* the i-th block of Pad,(X).
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Definition 7.2. A non-interactive resource is said to be a k out of £-bit strict min-
entropy block, denoted P € @,’;‘2;3“, if P € ®$°°d with Ui<p-1)10, 1}" x A as the
output domain of interface A, and there exist random variables C1, ..., C,, such that
C; € {1,...,|RLZ(X")‘} and

Vi<mn: ﬁoo(Xici

(X Yiseo X5 ti<i A < {As}i<i Z2) 2 k.
Moreover, let Cg‘;g%‘k =3 x q);ﬂn;—bt;!k_

Remark. Note, that contrary to the classical indifferentiability of the Merkle-Damgard
construction, we do not require Pad to be prefix-free: when combined with the strict
min-entropy condition H (X) cannot be extended to H (Pad(X)||Y), as for Pad(X)||Y
having high min-entropy given X, ¥ must have so, and thereby the well-known
length-extension attack is excluded. Whether a more advanced construction with a
finalization function, e.g. HMAC, could be proven secure for a more relaxed context
set remains an interesting open problem. We now phrase our main result of this
section.

Using the definition of k£ out of ¢-bit strict min-entropy block, we can now formally
state our theorem about the split-security of the Merkle-Damgard construction.

Theorem 7.3. Let h: {0,1}™ ¢ — {0,1}™ denote a fived input-length compression
function, H: {0,1}* — {0,1}™ denote the hash function obtained by first padding the
message using Pady and then applying the Merkle-Damgard scheme using h, and let
k' = min(k,m). Then, if h is Ci_SpltﬂCﬂTe RO-CRI secure, then H is CSp'tﬂC,:Z;}jllk
RO-CRI secure for any polynomial b and n.

More explicitly, there exists p1, p2: D x (CP*N C,:Z;zk)% D and 1,19 CPEN
C,T’Z;ﬂk — CTSpIt NCY " such that for all distinguishers D and all contexts (f,P) €
C'tN C,:Z;ﬂk we have

b :
AdviZER(D) < (;L) 2% 4 <2> 27 b - AdvEDSRE (D)

+n- AdVE?acx%iru(D”)

with D' .= p1(D,f,P), D" := pa(D,f,P), (f',X") :== 1 (f, P), (f",X") == 1y(f, P), and
o' and o” denoting slightly modified variants of o.

7.3 Proof of Theorem 7.3

Let us first provide an intuitive argument for the case of a single message. Assume
that the message y being hash by the Merkle-Damgérd scheme is split into b blocks,
out of which at least one has k bits of min-entropy. Let ¢ denote the index of this
block, i.e., y. has at least k bits of min-entropy. Hence, according to our assumption
on the compression function, the output ¢ of this block cannot be distinguished from
the output of a random oracle, as depicted in Figure 12. Given that this output is
just a uniformly random value of length m, by induction, neither can be the output of
any subsequent block be distinguished from the output of a random oracle. Therefore,
the final output cannot be distinguished from the uniform random value RO(X). We
now proceed with the formal proof of Theorem 7.3.

Proof of Theorem 7.3. Using Lemma 6.6 it suffices to show

b /
Advi?ER(D) < <2> 27D b AdViEERRL (DY) + - AdviEE S (D)
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Figure 12: The real and the ideal setting for the Merkle-Damgard construction if
block ¢ has high min-entropy.

for all distinguishers D and all contexts (f,P) € C*'* N C,:me.

Next, observe that for any message y € Uig(b—l)z{oa 1}, applying the padding
Pady results in a message that has at most b blocks. Without loss of generality, we
assume in the following that there are always exactly b blocks.

Given any k out of ¢-bit min-entropy block seed P with a single output, we first
introduce two k’-bit min-entropy seeds X’ and X”. Note that the function v and 1o
are just mappings from one context to another one relating the two problems and, in
contrast to the reduction translating the distinguisher, do not need to be efficiently
computable. Therefore, it is sufficient to know that such a random variable C' from
Definition 7.2 exists for the seed X.

Definition of X':
Let X" denote the resource that samples (y, z) using the same distribution as P,
applies the padding, and splits it into the blocks y1, ..., ys. Then, it sample the
random variable C' to obtain the index c¢. Finally, it outputs the pair (o, 1)
with @' = (yo,v1,--.,Yc—1) and ¢y = y. at interface A and 2’ = (2, ¢, Yet1, - -, Yp)
at interface E.

Definition of X”:
Let X” denote the resource that samples (y, z) using the same distribution as
P, applies the padding, and splits it into the blocks y1, ..., ys. Then, it sample
the random variable C' to obtain the index ¢ and chooses ¢ € {0, 1} uniformly
at random, outputs the pair (a’,3’) == (L,q) at interface A, and the value
2= 1(z,¢,Yet1,---,Yp) at interface E.

Observe that X' is a k > K’ bit (strict) min-entropy seed, since X is k out of n-bit
min-entropy block seed. Similarly, since ¢ is chosen independently of all other random
variables, the seed X" is a m > k' bit strict min-entropy seed. Moreover, both of
them output only a single value, i.e., X', X" € ®]7,7¢.

Next, we briefly sketch the two simulators o’ and o they both internally run o.
Whenever o request for the leakage z of the seed, they query the leakage 2’ at the
corresponding inner interface and return the first component z to o.

Now, we introduce two converter systems C' and C” that at the inside interface
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connect to both the interface A and the interface E of the connected system, and at
the outside interface emulates both the interfaces as well.

The system C' works as follows:

First it obtains hk and 2’ = (2,¢,ycy1,---,yp) at the interfaces E.H and E.X
of the connected system. When receiving the input retrieve at the outside
interface A, it outputs (retrieve, f) at the inside interface A, where f is the
function that on input (y.,a’) first splits ' = (yo, ..., ¥yc—1), then computes
the prefix p = k(- .- Ak (oak (Ollyo) 1) - - lye 1), and finally returns p||ye.
Since both p and y. are of fixed length, this function is injective in the first
argument. When obtaining the returned value ¢/, it then computes the suffix s =
Rk (- - B (Pik (Y |Yet1) [[Yet2) - - - ||yp) and returns s at the outside interface A.
When receiving the input retrieve at either the interface E.H or E.X it returns
hk or z, respectively.

The system C” works as follows:

First it obtains hk and 2’ = (2,¢,Zc41,-..,2p) at the interfaces E.-H and E.X
of the connected system. When receiving the input retrieve at the outside
interface A, it first outputs (query, f) at the inside interface A, where f is the
function that on input (g, L) returns ¢||yc+1. This function is injective in the
first argument. Then, for i = ¢+ 2,...,b it outputs (repeat, f) at the inside
interface A, where f is the function that on input (z) returns z||y;. Finally,
it outputs get at the inside interface A and returns the obtained value at the
outside interface A. When receiving the input retrieve at either the interface
E.H or E.R it returns hk or z, respectively.

It is easy to verify, that the composed system C'fs~*Pt[h X'] at the interface A
outputs H(y) and, thus, we have the equivalence fP*[H, P] = C’fs~Plt[h X']. In the

following f{;sPlt denote the filter introduced in Section 6.5. It is then easy to verify
that the final output of the composed system C” f{;sr’lt[ro, X"]o" at the interface A is

just a uniform random value independent of hk and z. Hence, this system behaves
equivalently to fP*[RO, X]o that outputs a single uniform random value as well. In
short, we have fP*[RO, X]o = C”f{?plt[ro, X"o".

Using those two equivalences, and by introducing two hybrids C’ fifSplt[ro, X'|o’
and C” f{_bsPIt[h, X"]a"”, we can rewrite the distinction advantage as:

AD(fSplt[H, P]? fSplt[RO, P]O’) — AD(C/fifSPIt [h, X/] ’ C/fifsplt [I’O, X/] O',)
+ AD(C/fi_s')lt [r07 x/] 0'/, C//f{IJSplt [h, X//])
+ AD (C//f{,_bsplt [h, XH] ’ C//f{I)splt [ro’ X//] 0//).

Finally, observe that the systems C'f{”5""[ro, X0’ and C”f{;)Splt[h,X”]U” both
implement exactly the same hybrid system depicted in Figure 12: The system
c fi_Splt[ro, X']o" actually computes this value by first using the compression function
h on the blocks 1 to ¢ — 1, then uses the fixed input size random oracle on the block c,
and finishes by using h on the remaining blocks. However, note that the value output
by ro is just a uniform random value, as ro is private and not used beside this one
query. The system C” f{fplt[h, X"] skips the initial computes and chooses ¢ uniformly
at random (in X").
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As a result, we can simplify the distinction advantage to

AP (FPI[H, P], P [RO, Plo) = AP (£, 7P [h, X'], ;> [ro, X'] ")
n ADC”(fL—bsplt [h, X”] ’ f{,_bsplt [I’O, X”] (T”).

Applying the definition of Advﬁ?:SURI(D), Lemma 6.3, and Lemma 6.8 (with
r=b,n=1, and p = 1) concludes the proof. ]

7.4 A Sufficient Condition Based on Min-Entropy Splitting

To conclude this section, we now present a sufficient condition for a seed to satisfy
Definition 7.2 based on the length of the message and its overall min-entropy. More
concretely, we prove that if a message is split into b blocks of size n, and has overall
min-entropy of k£ bits, then there exists a block with % —logy(b) bits of min-entropy,
given all succeeding blocks. In order to more closely resembles the chain rule of
Shannon entropy, the proposition is stated with conditioning on all preceding message
X1...Xc_1 instead of all succeeding ones. The converse result can easily be obtained
by simply relabeling the blocks.

Lemma 7.4. Let Xy,...,Xp and Z be random variables (over possibly different
alphabets) with Hoo (X7 . . - X | Z) > k. Then, there exists a random variable C over
the set {1,...,b} such that Hoo(Xc | X1... Xc—1CZ) > k/b — log,(b).

Proof. Let Yo := (X1,...,Xc—1), with Yj denoting the empty string A. Second, let
for every z in the support of Z,

P> = maXx PX1...Xb|Z(x17 <o T,y Z)u
T1s-.yTh

that is, Hoo(X1...Xy|Z) = —logE.[p.]. Moreover, once C is defined (see below),
let

¢z = Eey[maxPx jcvoz(w, ¢,y,2) | Z = 2]

and note that Hoo(Xc |CYoZ) = —logE.[q.]. We now proceed by showing that for

all z, g, <b- pi/ b To this end, we extend the probability distribution Px,  x,z by
defining the random variable C' as follows:

1 if Px,|z(71,2) < pi/"
2 else if Px, x,z (71,72, 2) < pz/b
C=x:
b—1 elseif PX1...Xk_1|Z(x17 ey Lph—1, Z) < p,(zb_l)/k
b else.

Observe that with

ycw’«’ = {y ‘ PC’YC|Z(C7y7 z) > O}
Xepy = {z | PXCCYC|Z(937C,?J,Z) > 0}
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we can bound ¢, as follows:

g, = Ec’y[mxax PXC|CYCZ($7 ¢y, 2) | Z = 2]

:Z Z PCYC|Z(Cayvz)' max PXc|CYCZ(x’C7y’Z)

reX,
c=1y€eVe,. Y

b
Pxocove|z(T, ¢y, 2)
= Z Z PCYC|Z(va72) .wgl)(ax FC)' c| (C7 72)7
c=1yeYe,. G2y CcYg|z\6 Y,

b
:Z Z max PXCCYC\Z(%CayaZ)

TEX,
c=1 yeyc,z oY

b
< E Z max P T,y %),
< e XCYC|Z( 'Y )

c=1 yeyc,z

We now further bound this term using a case distinction on c¢. First, consider the
case ¢ = 1. Since Y7 = A is constant, we have Vi, C {A\} and Px v, z(7, A, 2) =
Px,z(x, ). Moreover, x € X,  implies Px, ¢|z(,1,2) > 0, which by the definition

1/b

of C'in turn implies Px |z (z,2) < pz’". Hence

Z max Py y,z(z,y,2) < max PX1|Z($7Z)§p,i/b-
z,y mEXl,z,)\

For all i € {2,...,b— 1} observe that by the definition of C' we have that X; ., C

{37 | Px, Y|Z(33 Y, 2) < Pi/b} and yzz - {y | PY|Z(?J= z) > P(ifl)/b}. From the latter
we can conclude that |Y; .| < m and, hence, we obtain
P2

1/b
z/b 1/b
> Ig)lgfnymz 2,y,2) < Y Pl (Z ~ions = P
yeyi,z o yeyz,z pz
(b 1)/b

Finally, for ¢ = b, we have that V. € {y | Py, z(y, 2) > } and, therefore, we
obtain |V .| < on 1)/b Using the definition of Y, = (Xl, ..., Xp—1) and p,, we get

maXzey, , PXbe|Z(33 y,2) < p, for every y = (z1,...,2p_1). Hence,
1/b
Z zénax PXbe‘Z X y? Z pZ — _ Z/
yeybz b yeyb z Z

as well. In summary,

g, = Ec’y[mwax PXC|CYCZ($7 ¢y, 2) | Z = 2]

b
SE Z max Px_y,z(z,y,2)
TEX: 2y

c=1 yeyc,z

< Zpl/b

<b- pl/b
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Using the monotonicity of the expected value, Jensen’s inequality, and the assumed
inequality Hoo (X1 ... Xp| Z) > k yields

9~ Me(XelOYe?) | [g.] < E.[b-pl/?) < b E.[p.]'/?

=b- (2*ﬁm(X1---Xb|Z))l/b < glogb  o—k/b _ o—(k/b-logb)

concluding the proof. O

This lemma is a generalization of the randomized chain rule proven by the
authors of [DFR+4-07] (similar variants exists also in [BK12; Wul07]) stating that there
exists a binary random variable C' such that Hoo(X1-cC) > Ho(X0X1)/2. Note
that the main difference of our result is, that it conditions on all previous blocks,
i.e., it essentially represents the min-entropy equivalence of the strong chain rule
H(XO) + H(Xl ’ Xo) = H(X()Xl) instead of H(X(]) + H(Xl) > H(XoXl)

8 Conclusion

In this work, we have introduced the context-restricted indifferentiability framework
that introduces the concept of “semi-composability”, i.e., it allows to phrase explicitely
in which contexts a resource can be instantiated with an construction. This stands in
stark contrast to both the usual composable frameworks that ensure a resource can be
instantiated in all contexts, and most game-based definitions where the composition
guarantees are rather concealed.

While the CRI framework is defined as a generalization of indifferentiability, as a
first result we have shown that it generalizes the UCE framework as well, thereby
proposing an alternative view on the multi-stage definition of UCE. Moreover, we
have shown how our alternative view can lead to meaningful generalizations of UCE
that do allow some restricted interaction between the source and the distinguisher,
introducing the notion of strong-split security as an example.

Finally, we proposed to use CRI as a fine grained version of indifferentiability
to analyze the soundness of hash-function constructions and investigated the split-
security of the Merkle-Damgard construction as an example. In general, we believe
that using CRI can shed some more light on the security of various well-known and
proposed constructions in a similar way considering indifferentiability instead of just
collision resistance did.

A Proof of Lemma 6.8

Lemma 6.8. Let k' := min(k,log|H.Y|). If H is a Cf,_sPlt NC0¢ indifferentiable
hash function, then H is also CL}Splt NC: " indifferentiable hash function.
More concretely, let D denote the set of distinguishers. Then there exists a

translation of the distinguisher p: D X (C;}Splt N Cz_kme> — D and a translation of the

context 1) CL}SPItﬁC;;me — C;_SpltﬂCf;kTe, such that for every (f,P) € Cr;SpltﬁCf;kme
we have
npr

Aavigio) < ("

)2_(k/_1> Lo AV (D)

with D' = p(D,f, P) and (f/,X’) = w(f, P)
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Proof. Let (f,P) € Cp splt NC; M. By definition, we then have f :== g ofL}Splt for some
filter g. This filter can also be thought of as an reduction of the distinguisher (which
follows from the composition-order independence [MR11]), and thus we can rewrite

Advi?E (D) :=AP(f[H, P], f[RO, Plo)

AD”(fr spIt[H P],f; rsplt[RO P] )
with D” = p;(D) = Dg.

Consider the beacon resource B that has the same interface as the random
oracle interface, but response with a fresh random value for each query (i.e., it
ignores the consistency condition for repeated queries). Moreover, we introduce
the following shorthand notation: SH = flg;SPIt[H, P], SRO = £, sPIt[RO Plo, and
SB :— 7 *P*[B, P]o, which allows the advantage of the distinguisher D" to be expressed
as

AP (f[H, P],f[RO, P]o) = AP"(SH sB) 4+ AP"(SB SRO),

We now describe the reduction ps that bounds the first term of the sum with
(ngr)Q*kl +r- Advﬁf:f)f &B},(D’ ) using a simple hybrid argument.

Let {Xi};c[q denote the sequence of hybrid resources that behave as follows: at the
interface E, the resource first outputs the index ¢ and subsequently behaves exactly as
P. At the interface A, if ¢ = 1 then it behaves exactly as P, and if ¢ > 1 then it outputs
n independent uniformly at random chosen values from the set H.). It is easy to see,
that if P € &7 ko ¢, then X; € @5~ 7€ for all i. In addition, let X’ denote the resource
which Chooses i€ [q] umformly at random and then behaves like X;. Furthermore,
let f' = f;_s')lt and, hence (f',X) € C;~ sPIt o - Analogously to above, let us
define the following shorthand notation: TH := f5~P*[R, X/}, TH .= £5~*P*[R  X;], and

R.— ££75P"[R, X]o and TR := £5P"[R X{]o for R € {RO, B}.

Now, consider the reduction D’ := pa(D”) = pa(p1(D)) where ps is implemented
using a special type of system C that translates one setting into the other. Formally
C is a converter that has an inside and an outside interface, where the inside interface
connects to all the (merged) interfaces of the attached resource (here interface A
and E) and the outside interface becomes the interfaces of the composed resource.
Now consider the following reduction system C, which on the inside expects to be
connected either to the resource TiH or TIB. At the outside interfaces, it simulates
the according interfaces of fL;Splt[H, P] and f{,}Splt[B, Plo. The system C first gets the
index 7 and the hash key hk at the inside interface. In every sequence of queries of the
form (query, f1), (repeat, f2), (repeat, f3),..., the queries 1 to ¢ — 1 are simulated
internally as queries to the beacon by sampling a value uniformly at random and
storing it in a buffer . The i-th query in each such sequence is then answered using
the actual resource connected at the inside interface. For the remaining queries, the
system C computes the hash function H itself. A formal description of the reduction
system is provided in Figure 13.

The following system equivalences are easy to verify:

=gH (1)
CWB =gB (2)
CWE, =CcwWl Vvie {2,...,q}. (3)
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Resource C

Initialization
b+ 1P
7+ 0
output retrieve at in.E.H
let hk denote the result
output retrieve at in.EX
let ¢ denote the result

QOuter Interface A
Input: get
output b at out.A
b+ LP

Input: (query, fi,..., fp)
je1
if - =1 then
output (retrieve, fi,..., fp) at in.A
let b denote the result
else
b HyP

Input: (repeat, fi,..., fp)
j—j+1
if b# 1P then
for{=1,...,pdo
if j <i then
b & HY
else if j = then
output (retrieve, (z,a) — fi(x)) at in.A
let b[¢] denote the result
else
ble] + H(hk, fi(b]6]))

Outer Interface Ei i € {H, X}

Input: retrieve
output retrieve at in.E.i
let y denote the result
output y at out.E.i

Figure 13: The reduction system C.
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As a consequence, we can rewrite the second term as

AP"(sH sB)y = AP (CTH CTB)
= AP"(cTH, cTB) + AP (CTB, cTh)
+ AP(cTH, cT8) 4+ AP(CTS, T
+ ...
+ AP(CTH CTB)

=> AP (T, CTP)
=1

=r-AP"(CTH, CTB)
=7 AP(TH TB)
=r. Advﬁ?f%ﬁi(D’) +r- AD/(TRO7 TB)

where in the third step we used Equation (3). In the forth step we used that
the distinguishing advantage of D” on the problem with R’ is the average of the
distinguising advantage of D on resources with the the fixed i. Hence, the sum of
these r terms is equal to r times the average.

The overall claim is then directly implied by the following two bounds, which
remain to be shown:

A0, 79) < (1) ()
AD”(SB, SRO) < (TL];T‘) 27]6/ (5)

In both cases the two resources behave exactly identically until a repeated query to
the oracle occurs. Hence, we can bound the distinction advantage by the probability
of managing non-adaptively to query twice the same input [Maul3|. In the following,
we only prove 5, as 4 follows by an analogous argument.

Let Z1,Zs, ..., Znpr denote the queries, which are submitted to the beacon. The
collision probability can then be bounded using the union bound

Pr(Ji#j Zi=2;) <Y Pr(Zi = Z).
i#]

Observe that all queries are either of the form f(Y;, As), where (Ys, As) is the s-th
pair output by the entropy source, or f(Y'), where Y is an output of the beacon. If
either Z; or Zj is of the latter type, then the collision probability is trivially upper
bounded by ﬁ < 27K using that f is injective. If both of them are of the former

type, then that by definition of the filter f];?plt the two inputs Z;, Z; cannot collide
if they depend on the same underlying value X from the entropy source. Hence,
assume w.l.o.g. that Y; = f(Y,, As) and Y; = f(Y;, A;) with s > ¢. For every pair of
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fixed auxiliary information (as, a;), we obtain the following bound:

Pr(fi(Ys,as) = fj(Yt, ar))
=Y Pr(filYeas) = 2 A fi(Yi,a0) = 2)

— ZPr(Yt = fj_l(z,at)) Pr(Ys = f; Nz, a4) | Vi = fj_l(z,at))
< ZPr(Y} = fj_l(z,at)) -1r1%zjtxPr(Y;9 =t |V = fj_l(z,at))

=> Pr(Yi=y)- max Pr(Y; =y, | ¥i = y1)

Yt

_ 9 He(Vil¥)) _ gk < oW

Averaging over the choice of (as, a;) yields the desired result

Pr(fi(Ys, As) = f;(Vi, Ay)) < 27F

and in summary, the distinction advantage AP(SB,SRO) can be bounded as

Pr(3i#j Zi=2) <> PrZi=2))< <"§T) o= O
i
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