
Diss. ETH No. 14376

Multi-Party Computation:
Efficient Protocols, General Adversaries,

and Voting

A dissertation submitted to

ETH ZURICH

for the degree of
Doctor of Technical Sciences

presented by

Martin Hirt
Dipl. Informatik-Ing. ETH

born July 26, 1970, in Biel
citizen of Birrhard AG, Switzerland

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Prof. Dr. Birgit Pfitzmann, co-examiner

2001

Acknowledgments

First and foremost I would like to thank my advisor Ueli Maurer, who
introduced me to this fascinating world of riddles and paradoxes, called
“cryptography”. He supported me extensively during my doctoral stud-
ies at ETH, advised me professionally and personally, and encouraged
me whenever necessary.

Special thanks go to Matthias Fitzi and to Kazue Sako. Many results
in this thesis would not be here without our endless discussions and
the resulting cooperations. I also would like to thank all my co-authors,
team mates, and colleagues: Daniel Bleichenbacher, Christian Cachin, Jan
Camenisch, Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Serge
Fehr, Clemens Holenstein, Olaf Keller, Reto Kohlas, Lennart Meier, Bar-
tosz Przydatek, Tal Rabin, Renato Renner, Markus Stadler, Stefan Wolf,
and all those that I forgot to mention.

Also, I would like to sincerely thank my co-referee Birgit Pfitzmann.
She gave me comprehensive and constructive comments on all parts of
this thesis, which helped much to improve the clarity and the integrity of
the text.

Finally, I’m indebted to my family for their support during my stud-
ies, especially to my wife Berteline and to my little son Joshua.

Lastly, I’m grateful to ETH Zurich and Swiss National Science Foun-
dation, who enabled my studies with their generous financial and ad-
ministrative support.

Abstract

Secure multi-party computation allows a set of players to jointly compute
an arbitrary function of their inputs, without revealing these inputs to
each other. For example, the players can compute the average of their in-
comes in such a way that no player learns the income of any other player.
Or, as a more applied example, a set of voters can compute the sum of
their votes without revealing any particular vote.

The classical results in the literature state that n players can compute
any function in such a way that any subset of up to t < n/2 players
obtains no (zero) information about the other players’ inputs, except for
what can be derived from the public function output. If the bad players
may deviate from the protocol and try both to obtain information about
the other players inputs as well as to falsify the public output of the com-
putation, then up to t < n/3 can be tolerated. Both bounds are tight.

The achievements of this thesis are three-fold: First, we investigate
the efficiency of multi-party protocols. Especially those protocols that al-
low the bad players to deviate from the protocol are very inefficient. We
show that protocols that tolerate misbehavior of the players are almost
as efficient as protocols that require all players to follow the protocol cor-
rectly. The framework that allows this speed-up is generic and might be
used for other distributed tasks as well.

Second, we generalize the existential results for multi-party compu-
tation. We show that one can tolerate certain collusions to be larger than
the mentioned threshold t, at the cost that some other collusions of size t
cannot be tolerated. This models well the fact that in the real-world, some
players might be more likely to cheat than others. For various models, we
give complete characterizations of the collusions that can be tolerated.

Third, we study secret-ballot voting, a particular application of multi-
party computation. We are especially interested in the so-called “receipt-

6

freeness” property, which essentially means that voters should not be
able to sell their right to vote. Receipt-freeness is known to be a sub-
tle property, because one has to deal with voters who are willing to do
anything for convincing the vote-buyer that they have submitted the re-
quested vote. We propose a modular framework for such protocols, and
construct two concrete receipt-free voting protocols that are more effi-
cient than any receipt-free voting protocol in the literature.

Zusammenfassung

Sichere Multi-Party Berechnungen erlauben einer Menge von Spielern,
gemeinsam eine beliebige Funktion von mehreren Inputs zu berechnen,
ohne dass sich die Spieler gegenseitig die Inputs geben müssen. Zum Bei-
spiel können die Spieler den Durchschnitt ihrer Einkommen bestimmen,
ohne dass ein Spieler das Einkommen eines anderen Spielers erfährt.
Oder eine Menge von Wählern kann die Summe ihrer Stimmen berech-
nen, ohne dass eine einzige Stimme bekannt wird.

Die klassischen Resultate in der Literatur besagen, dass n Spieler jede
beliebige Funktion so berechnen können, dass eine beliebige Teilmenge
von bis zu t < n/2 Spielern absolut keine Information über die Inputs der
anderen Spielern erhält, ausser natürlich, was aus dem publiken Ergebnis
der Berechnung gefolgert werden kann. Die Korrektheit des Ergebnis-
ses und die Geheimhaltung der Inputs der ehrlichen Spieler kann selbst
dann noch gewährleistet werden, wenn bis zu t < n/3 Spieler unehrlich
sind und vom vorgeschriebenen Protokoll abweichen.

In dieser Dissertation betrachten wir drei Themenbereiche: Erstens
behandeln wir die Effizienz solcher Multi-Party Berechnungen. Insbe-
sonders jene Protokolle, die selbst aktiven Attacken von Spielern wider-
stehen, sind sehr ineffizient. Wir zeigen in dieser Arbeit, dass Protokolle,
die robust sind gegen aktive Attacken, fast so effizient realisiert werden
können wie die effizientesten nicht-robusten Protokolle aus der Literatur.

Zweitens verallgemeinern wir die bekannten Schwellenresultate aus
der Literatur. Wir führen allgemeine Gegnerstrukturen ein und zeigen,
dass gewisse Gegnermengen durchaus grösser als die erwähnte Schwelle
t sein dürfen, falls dafür andere Gegnermengen kleiner als t sind. Solche
allgemeinen Gegnerstrukturen modellieren zum Beispiel den Umstand,
dass gewisse Spieler a priori mit grösserer Wahrscheinlichkeit betrügen

8

werden als andere Spieler. In diversen Modellen kann man mit allge-
meinen Gegnerstrukturen auch echt mehr Betrüger tolerieren als mit den
Schwellenresultaten.

Drittens betrachten wir das Problem von sicheren elektronischen
Wahlen und Abstimmungen, einer der wohl populärsten Anwendun-
gen von Multi-Party Berechnungen. Dabei konzentrieren wir uns vor
allem auf das Problem von Stimmenverkauf und stellen uns die Frage,
wie dieser verhindert werden kann. Dazu schlagen wir ein Framework
vor, in welchem effiziente und sichere Wahlprotokolle konzipiert wer-
den können, die Stimmenverkauf verhindern. Ausserdem entwickeln
wir zwei konkrete Wahlprotokolle innerhalb dieser Umgebung, welche
beide effizienter sind als alle bisherigen publizierten Wahlprotokolle.

Contents

1 Introduction 11

1.1 Secure Multi-Party Computation 14
1.2 Voting . 19
1.3 Contributions of this Thesis 26

2 Formal Definition of MPC 33

2.1 Players, Processors, and Communication 33
2.2 Variables and Views . 35
2.3 Protocols, Specifications, and Protocol Generators 35
2.4 Classes and Structures . 37
2.5 Adversaries and Definition of Security 38
2.6 Restricted Models of Special Interest 40

3 MPC Protocols with Threshold Security 43

3.1 Passive Model . 47
3.2 Active Model . 49
3.3 Active Model with Broadcast 55
3.4 Fail-Stop Model . 57
3.5 Mixed Model with Perfect Security 57
3.6 Mixed Model with Unconditional Security and Broadcast . 61
3.7 Mixed Model with Unconditional Security without Broad-

cast . 62
3.8 Framework for Efficient Resilient Protocols 63
3.9 Efficient MPC Protocol with Perfect Security 66

10 Contents

4 General Adversaries in MPC 85

4.1 Processor Simulation . 88

4.2 Passive Model . 101

4.3 Active Model . 107

4.4 Active Model with Broadcast 108

4.5 Mixed Model with Perfect Security 110

4.6 Mixed Model with Unconditional Security with Broadcast 113

4.7 Mixed Model with Unconditional Security without Broad-
cast . 114

4.8 Counting Adversary Structures 115

5 Receipt-Free Secret-Ballot Voting 119

5.1 Introduction . 119

5.2 Preliminaries . 122

5.3 The Encryption Function . 131

5.4 Re-encrypting and Proving Re-encryptions 134

5.5 Voting Protocol based on Ballot Shuffling 136

5.6 Voting Protocol based on Randomizers 145

5.7 Analysis of the Benaloh-Tuinstra Protocol 155

5.8 Analysis of the Kim-Lee Protocol 156

6 Concluding Remarks 159

Bibliography 163

Chapter 1

Introduction

Reykjavik, in the fishing harbour. Alice and Bob meet accidentally. Both don’t
know Reykjavik. Both are tourists. Bob is lost. He would like to ask Alice for
the way to his hotel. Guesthouse Isafold. And maybe whether she would like to
drink a hot chocolate with him. But he doesn’t know her. And if she says no? “I
would ask her, if only I knew that she would accept”, he thinks. But he is shy.
Too shy.

Alice is lost as well. She would like to ask Bob for the way to the youth
hostel. And maybe whether Bob would not be willing to accompany her. It’s
already getting dark. She would of course then invite him for a cup of hot milk
with honey. And some banana cake. In order to thank him. And maybe . . . who
knows. But what if he says no? Should she dare to ask? “If I knew that he would
not laugh at me, I would ask”. But Alice is shy. Too shy.

They cross each other. Watching each other. Not asking each other. Finally,
they both find their way. Bob to his guesthouse, Alice to the youth hostel. The
wrong way. They will never meet again.

If only they would know the techniques of secure multi-party computation.

One of the famous problems in the area of distributed protocols is
the so-called “dating problem”: Alice and Bob want to find out whether
they both want to date each other, but each of them does not want to tell
whether s/he wants to date or not. A bit more formally, Alice and Bob
both hold a bit xA and xB , respectively, and they want to compute the
ANDof the two bits. And of course, if one of them inputs 0, then s/he
should not learn the bit of the other one.

12 Introduction

This problem is a very simple instance of a general problem: How can
a set of players (e.g., Alice and Bob) compute an arbitrary function (e.g.,
the AND) of their private inputs (e.g., xA and xB) in such a way that they
all learn the result, but they all learn nothing additional about the other
players’ inputs? Surprisingly, this problem can be solved. The technique
to solve is called secure function evaluation (SFE).

There are many other attractive problems that are instances of this
general paradigm: In Yao’s millionaires problem, two millionaires want
to find out which of them is richer, without revealing further information
about the own fortune. In Chaum’s spymaster problem, a set of spy-
masters want to find all double-spies, without revoking the anonymity
of “honest” spies.

An even more powerful concept than SFE is multi-party computation
(MPC). Here, the players cannot “only” evaluate functions of their in-
puts, but they can enlist the assistance of a (fictive) trusted party. This
trusted party helps the players in every possible aspect (where securely
evaluating functions of the players’ inputs is just one possibility). This
trusted party of course does not really exist, rather it is simulated among
the players in a secure way. In general, the players that simulate the
trusted party need not be the same as the players that want to use it.
Figure 1.1 illustrates the idea of simulation.

Figure 1.1: Simulation of a trusted party. The faces represent
the players that want to cooperate, and the candies
represent the players that simulate the fictive trusted
party (with the nimbus).

One particular way of using this trusted party is to compute an agreed
function of the players’ inputs, as mentioned above: Every player sends
his private inputs to the trusted party, who then evaluates the function

13

and hands the output to the authorized players. The goal of secure func-
tion evaluation is to imitate this scenario without need for a trusted party.
SFE excludes reactive scenarios, where the trusted party is needed in sev-
eral rounds of interaction, remembering some internal state. We refer to
this latter case as trusted party simulation (TPS).

Multi-party computation has many practical applications. Using this
technique, virtually any system involving a trusted party can be realized
without need for such a party. As an example, todays stock markets heav-
ily rely on the honesty and independence of some central service, which
every investor must trust. By using multi-party computation, the func-
tionality of this service can be distributed among a set of players (e.g.,
among the investors themselves), and thereby the strong trust assump-
tion can be weakened substantially.

One of the most prominent applications is secret-ballot voting. Voting
can be seen as a special case of secure function evaluation. The input
of each player is his vote, and the function to be computed is the sum
of the votes. First solutions for secure electronic voting have been pre-
sented years before first solutions for general MPC were found. Maybe
one should rather say that MPC is the generalization of voting, instead
of saying that voting is a special case of MPC. And indeed, many new
research threads and techniques were first proposed for voting schemes,
and later adapted and generalized for MPC.

Surprisingly, multi-party computation even provides an ultimate (yet
impractical) solution for the problem of software piracy: The manufac-
turer’s interest is not to give the software to the client (to prevent the
pirate from copying the software), and the client’s interest is not to give
his private documents to the vendor. Although these interests appar-
ently contradict each other, they both can be realized with a secure multi-
party computation: The fictive trusted party takes the program from the
vendor, and then reactively takes key strokes and mouse clicks from the
client and provides him with screen shots from the software. Formally,
the trusted party evaluates the universal program, where the software of
the vendor and the user activities of the client are inputs, and the screen
shots are outputs. Obviously, simulating this trusted party among the
vendor and the client would in practice be horribly inefficient.

14 Introduction

1.1 Secure Multi-Party Computation

In this section we give a short introduction of the problem of secure
multi-party computation. We start by enumerating the various models
and parameters used for MPC. With this formalism, we can elaborate
more precisely what a MPC protocol is at all. Finally, we summarize the
most important literature on this topic and mention some related work.

1.1.1 Models for MPC

1.1.1.1 The communication model

The players communicate with each other over channels. Virtually all pro-
tocols assume the existence of pairwise channels among the players. Of-
ten, also broadcast channels are assumed. A broadcast channel is a channel
from one player to all other players (or to a subset of the players), where
it is guaranteed that all recipients receive the same data. The topology of
the network of channels can be complete or incomplete, i.e., the connectivity
can be limited.

These channels can be assumed to be secure (authentic and secret), au-
thentic (but tappable), or insecure. Furthermore, every channel is either
synchronous or asynchronous. Synchronous means that the delay of mes-
sages in the channel is bounded by a known constant.

The model with pairwise synchronous secure channels among every
pair of players is called the secure-channels model.

1.1.1.2 The adversary model

The dishonesty of players is modeled by a central adversary that corrupts
players. We distinguish three corruption modes: A passively corrupted
player gives all his internal data to the adversary, but continues execut-
ing the instructions of the protocol. An actively corrupted player is un-
der full control of the adversary and misbehaves in arbitrary manner. A
fail-corrupted player follows the protocol instructions till the adversary
instructs the player to crash; from then on, the player does not send any
message to any other player. Note that a fail-corrupted player does not
give his internal data to the adversary, unless he is passively corrupted at
the same time.

1.1 Secure Multi-Party Computation 15

The adversary model defines which players can be corrupted in
which mode. In the previous multi-party literature, the adversary is lim-
ited to either passively corrupt a certain number of players, or to actively
corrupt a certain number of players. Accordingly, we speak of a passive
t-adversary or an active t-adversary, where t denotes the maximum number
of corruptions.

Furthermore, one must define the point in time when the adversary
is allowed to corrupt players. A static adversary must perform all cor-
ruptions before the protocol execution, i.e., the set of corrupted players
is fixed (but typically unknown) during the whole computation. More
generally, the adversary may be allowed to corrupt players during the
protocol execution, depending of information gathered so far. Such an
adversary is called adaptive or dynamic. Recently, mobile adversaries were
also considered. Like an adaptive adversary, a mobile adversary can cor-
rupt players at any time, but he can also “release” corrupted players, re-
gaining the capability to corrupt further players. The concept of a static
adversary models the scenario where some of the players are (per se) dis-
honest, and adaptive corruption rather models the scenario of buying (or
coercing) players. Mobile adversaries correspond for example to virus
attacks.

Finally, the adversary model also determines the adversary’s comput-
ing power. Most common assumptions are that the adversary is either
unlimited, or is computationally bounded in a polynomial in a security pa-
rameter. For specific protocols, also storage-bounded adversaries were con-
sidered.

1.1.1.3 The computation model

A secure multi-party computation must be specified in some specifica-
tion language. Many protocols in the literature are apparently restricted
to secure function evaluation, and they require that the function is spec-
ified as a circuit over a fixed finite field (F, +, ∗). The circuit consists of
addition gates, which take two inputs and output the sum, and multipli-
cation gates, which take two inputs and output the product (i.e., fan-in
is 2). The output of a gate can be connected to the input of any number
of gates (i.e., fan-out is unlimited). Note that any computable function
can be expressed as such a circuit, so this requirement does not limit the
functions that can be computed. Some protocols in the literature require
that the circuit is over a Boolean field, i.e., |F| = 2, other protocols allow
(or even require) larger fields.

16 Introduction

Other MPC protocols explicitly support more general specifications
with involving a fictive trusted party (TPS, reactive MPC). The values
held by the trusted party are taken from a finite field (F, +, ∗), and the
party can send and receive field elements, and can perform arbitrary
computations (e.g., expressed as a sequence of gates) on known field ele-
ments.

Note that most (but not all) protocols in the literature that consider
only SFE can easily be extended to capture TPS.

1.1.2 The Security of MPC

The goal of secure multi-party computation is to obtain a protocol among
the players, which achieves essentially the same as would be achieved
with using a trusted party. More formally, we consider a specification
as a protocol among the players and a (fictive) trusted party, and we
want to construct a protocol which does not involve the trusted party,
but behaves like the specification. The adversary may interact in the
protocol, complying with the adversary model. We require that what-
ever any admissible adversary can achieve in the MPC protocol, he could
also achieve in the specification with the trusted party (e.g., he can make
the corrupted players input wrong values, forget their outputs, etc, but
nothing beyond). In other words, the adversary has no advantage in the
protocol with the simulated trusted party compared to a protocol with a
real trusted party. When this holds in an absolute sense, we say that the
protocol is perfectly secure. When the adversary is allowed to have an ad-
vantage with some negligible probability, then we say that the protocol is
unconditionally secure. When the adversary has no advantage only in case
he is computationally bound, then the protocol is called cryptographically
secure.

1.1.3 Generic Approach for MPC

There is a general and natural approach for MPC, which is used by almost
all MPC protocols in the literature. This approach is based on secret shar-
ing. A secret-sharing scheme describes how a value (a secret) can be split
into pieces (shares), such that any small-enough set of pieces gives no in-
formation about the secret, but any large-enough set of pieces uniquely
determines the secret. Such a sharing scheme allows a player (the dealer)
to distribute a secret among the players in such a way that the adversary

1.1 Secure Multi-Party Computation 17

(which can corrupt only few players) does not learn anything about the
secret, but still enough players together can reconstruct it.

The key idea for realizing an MPC protocol is that every value held by
the trusted party is instead kept secret-shared among the players. When
a player is to send a value to the trusted party, then instead the player
secret shares the value among all players, i.e., gives a piece of this value
to each player. The computation that the trusted party should perform is
then realized as a protocol among the players, where from two sharings a
sharing of the sum (or the product) is obtained. Finally, when the trusted
party should send a value to a particular player, then the secret is recon-
structed for that player, i.e., every player sends his piece of the output to
the designated receiver.

1.1.4 History and Literature

The problem of general-purpose multi-party computation was first sug-
gested by Yao [Yao82]. As a first general solution, Goldreich, Micali,
and Wigderson [GMW87] presented a passively secure protocol that al-
lows n players to securely compute any given function even if a passive
adversary corrupts any t < n players, and an actively secure protocol
that tolerates an active adversary corrupting any t < n/2 of the players.
The security of the protocols is cryptographic, that is the adversary is as-
sumed to be polynomially bounded. Chaum, Damgård, and van de Graaf
[CDG87] improved the bound for the active model in the sense that the
input of one player can even be information-theoretically hidden. Galil,
Haber, and Yung [GHY87] considered efficiency and several corruption
types in the cryptographic model. Ben-Or, Goldwasser and Wigderson
[BGW88] proved that in the secure-channels model without broadcast,
perfect security for n players can be achieved even if the adversary can
corrupt any set of less than n/2 players (passive case) or, alternatively,
any set of less than n/3 players (active case). These bounds are tight.
The same results were obtained independently by Chaum, Crépeau and
Damgård [CCD88] in an unconditional model with exponentially small
error probability. The bound for the active model was improved by Rabin
and Ben-Or [RB89] and independently by Beaver [Bea91b] by assuming
a broadcast channel and tolerating a negligible error probability. They
proposed protocols that provide unconditional security against an active
adversary that may corrupt any t < n/2 of the players. Combining the
advantages of unconditional security (against an adversary that corrupts
a certain fraction of the players) and cryptographic security (against an

18 Introduction

adversary with limited computing power), Chaum [Cha89] presented a
protocol which provides unconditional security against an adversary that
is limited by the number of players he can corrupt, and provides crypto-
graphic security against an adversary who may corrupt any number of
players.

The types of tolerable adversaries have recently been generalized
in a number of directions: [OY91, CH94] consider mobile adversaries,
[CFGN96] give adaptively secure protocols, and [CG96] consider inco-
ercibility. Various minimality and complexity criteria are considered in
[Kus89, BB89, Bea89, FY92, FKN94, Rab94, CGT95, CKOR97]. Asyn-
chrony was studied in [BCG93, Can95].

Excellent overviews on various aspects of multi-party computation
are given in the theses of Franklin [Fra93] and Canetti [Can95].

1.1.5 Related Work

There are two lines of research which are closely related to general MPC.
One is the research on secret-sharing schemes, and the other one is the
research on broadcast protocols.

1.1.5.1 Secret Sharing

Secret-sharing is one of the central ingredients of almost any MPC pro-
tocol. First secret-sharing schemes have been reported independently by
Blakley [Bla79] and Shamir [Sha79]. Secret-sharing that is secure with
respect to active corruption was proposed by Chor, Goldwasser, Micali,
and Awerbuch [CGMA85]. Ito, Saito, and Nishizeki [ISN87] and Benaloh
and Leichter [BL88] introduced the notion of general (non-threshold) ac-
cess structures for secret sharing for the passive model, and Gennaro
[Gen96] extended it to the active model with broadcast (and error proba-
bility).

1.1.6 Broadcast

A very important primitive for realizing MPC protocols is broadcast or
Byzantine agreement. A broadcast protocol is a protocol that allows a
dealer to send an arbitrary message to all players, where the protocol en-
sures that all players receive the same message, even if the dealer is mali-
cious. The first broadcast protocol was proposed by Pease, Shostak, and

1.2 Voting 19

Lamport [PSL80, LSP82], but this protocol had running time exponential
in the number of players. More efficient broadcast protocols were pre-
sented in [DFF+82, FM88, BGP89, CW89]. With unconditional security
(and pairwise synchronous secure channels), broadcast can be achieved
if and only if up to t < n/3 of the n players misbehave. In the crypto-
graphic model, up to t < n/2 players (with synchronous channels) or up
to t < n/3 players (with asynchronous channels, [Can95, CKS00]) may
misbehave.

In the active model with broadcast (where MPC is possible for t <
n/2), broadcast must either be simulated with a cryptographic broadcast
protocol, and the unconditional security of the MPC protocol is lost. As
an alternative, there exist broadcast protocols with unconditional security
for t < n/2, under the assumption that in an initialization phase broadcast
is available [BPW91].

1.2 Voting

Secret-ballot voting is one of the most attractive applications of multi-
party computation. A secure voting scheme guarantees the correctness
of the tally while preserving the privacy (and independence) of the votes.
The function to be securely computed is the sum of the votes.

1.2.1 Models for Voting

Most voting schemes in the literature are for the cryptographic model
with insecure channels. Additionally, it is common to assume a bulletin
board. A bulletin board is a public storage of data, where every partici-
pant can write to (into his own section), but nobody can delete from. The
bulletin board can be considered as an authenticated broadcast channel
with memory.

Some voting protocols additionally assume anonymous channels,
where the recipient of a message does not know (and cannot find out)
who is the sender.

Voting protocols can also be categorized according to the kind of vote
they support. Some voting schemes are restricted to yes/no-votes. More
general protocols support 1-out-of-L votes, or even K-out-of-L votes,
where every voter may vote for any K candidates out of a list of L candi-
dates. Some schemes capture also more general settings (e.g., each voter

20 Introduction

can assign five votes, where to each candidate up to two votes can be as-
signed, except for those candidate that are currently in office, they may
receive up to three votes).

1.2.2 Security Requirements

The security of voting schemes can (and should) be defined analogously
to the security definition of MPC, namely with help of a fictive trusted
party, which is to be simulated by a protocol. In the specification, each
voter sends his vote to the trusted party, who then selects those votes
that are valid, adds them up, and publishes the tally. A voting protocol is
secure if the adversary cannot achieve more than what he could achieve
in this specification.

This kind of security definition is rather unusual in the voting re-
search community. The standard approach to define security of a voting
scheme is to give a list of properties that must be satisfied. For confor-
mance with most of the literature, we follow this approach as well.

In the following, we give a list of common security requirements for
secure voting schemes:

• SECRECY. It is infeasible to find out which voter has submitted
which vote. Either the votes are never seen in clear, or they are
available in clear, but it is unknown which vote belongs to which
voter. Secrecy should also be satisfied for partial information on
votes, as well as for relation between votes of several voters.

• ANONYMITY. It is infeasible to find out whether or not a particu-
lar voter has participated the vote. Note that this requirement can
hardly be achieved by electronic voting schemes, unless some phys-
ical or organizational assumptions are taken.

• ELIGIBILITY. Only entitled voters are able to submit a vote (respec-
tively, the votes of unauthorized voters are not counted).

• NO DOUBLE-VOTING. Every entitled voter can cast only one single
vote.

• VALIDITY. Only valid votes are counted, e.g., “yes” and “no” votes.
This property is of particular importance when votes are repre-
sented as number (e.g., 0 for “no” and 1 for “yes”), and the tally
is the sum of votes.

1.2 Voting 21

• CORRECTNESS. The tally that pops up at the end of the vote is the
correct sum of all valid votes.

• LOCAL VERIFIABILITY. Every voter can verify whether his vote is
included in the published tally.

• GLOBAL VERIFIABILITY. Anyone can verify that all valid votes have
been counted, and that the published tally is correct.

An additional requirement that prevents vote-selling will be dis-
cussed in Section 1.2.4.

1.2.3 Approaches

Apparently, the secrecy of the votes contradicts the ability of adding up
votes. There are two approaches to reconcile these requirements: In the
first approach, all ballots are published (and tallying is trivial). Secrecy
is achieved by hiding which ballot belongs to which voter. This is ei-
ther achieved with using a mix-net, where the set of ballots of all voters
is shuffled consecutively by a set of mixers, or by assuming anonymous
channels. In the second approach, the ballots are published only in an en-
crypted form (and the secrecy of the ballots is obvious). A special kind
of encryption function, so-called homomorphic encryption, allows to add
up the encrypted ballots without decrypting them, and only the sum is
decrypted.

1.2.3.1 Voting schemes based on mix-nets

In mix-net voting schemes, the ballots of all voters are shuffled through a
mix-net, such that afterwards, it is unclear which ballot belongs to which
voter. More precisely, the voter encrypts his vote consecutively with the
public key of each mixer, then all these multi-encrypted votes are se-
quentially decrypted and permuted by each mixer. The output of the
last mixer is a shuffle of the votes in clear, but in random order. These
votes can then be tallied publicly. In order to guarantee correctness of the
tally, every mixer must additional publish a proof that he did not modify
or substitute votes. This process is illustrated in Figure 1.2.

For the first mixer, the secrecy of the votes is based on the infeasibility
of decrypting, and with each mixer, the level of encryption is decreased,
but the level of anonymity of the voter is increased. The correctness is

22 Introduction

based on the soundness of the public proofs. Because at the end all votes
are known in clear, invalid votes can be discarded easily.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
���������
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

+1
+1 +1

Voters

Bulletin Board

0 −1

−1

−1
+1

+1

Ballot
+1

Figure 1.2: A mix-net voting scheme with three mixers. Each
mixer decrypts and permutes a collection of multi-
encrypted votes, and hands it to the next mixer. The
asterisk stands for the public proof of correct mixing.

1.2.3.2 Voting schemes based on blind signatures

This approach can be seen as an abstraction of mix-net voting schemes.
Here, each voter casts his vote unencrypted, but anonymously. The secu-
rity of this scheme is based on hiding which vote belongs to which voter.
Additional efforts are needed to ensure that only entitled voters can cast
a vote: Each voter is to get a blindly signed public key from a registration
authority, with which he signs his vote and sends it over an anonymous
channel to the bulletin board. This approach is illustrated in Figure 1.3.

1.2.3.3 Voting schemes based on homomorphic encryption

A homomorphic encryption scheme supports addition of ciphertexts
without knowledge of the secret key. With this primitive, one can con-
struct very efficient voting protocols: The voter encrypts his vote with a
homomorphic encryption scheme and posts it to the bulletin board. The
authorities can tally the encrypted votes and decrypt the sum (see Fig-
ure 1.4). In addition, each voter must prove the validity of the submitted
vote. In this approach, it is clear which (encrypted) vote belongs to which
voter, and the secrecy of the votes is based on the infeasibility of decrypt-
ing votes.

1.2 Voting 23

Bulletin Board

0 −1

−1

−1

−1

Voters

Tallier

PK

Registration

−3

+1

Sign(Vote)
Cert(PK)

Cert

Figure 1.3: A voting scheme based on blind signatures. Each
voter obtains a certificate from the registration au-
thority for a temporary public key, signs his vote
with the corresponding secret key, and send it to-
gether with the certificate over an anonymous chan-
nel to the bulletin board.

���
���
���

���
���
���

���
���
���

���
���
������

���
���

���
���
��� ���

���
���

���
���
���

���
���
���

���
���
��� ���

���
���

���
���
���

���
���
���

���
���
���

Authorities

Bulletin Board

−1

−1

−1

−1
−3

BallotsDecrypt

−3

Ballot Ballot

Voters

+1

0

Figure 1.4: A voting scheme based on homomorphic encryp-
tion. The (encrypted) tally can be publicly computed
given the (encrypted) votes. The asterisks stand for
the validity proofs and the decryption proof.

1.2.3.4 Comparison of the approaches

Each approach has its advantages and disadvantages. We summarize the
main parameters in Table 1.1. We emphasis that for both mix-net and
blind-signature schemes write-in votes are possible, but not for homo-
morphic schemes. On the other hand, in contrast to the other approaches,
homomorphic voting protocols allow incremental tallying (the encrypted
votes can be added as soon as they arrive), which allows publication of

24 Introduction

the tally much faster than with the other approaches.

mix-net blind
signatures

homomorphic
encryption

mathematical
structure medium none much

flexibility write-ins write-ins inflexible

voter-
interactivities ≥ 1 rounds > 1 rounds 1 round

incremental
tallying no no yes

costs
voting phase
tallying phase
verification phase

medium
medium

high

small
very small
local only

high
small
small

Table 1.1: Summary of the main advantages and disadvantages
of several approaches to secret-ballot voting.

1.2.4 Receipt-Freeness

An important concept that was neglected so far is vote-buying, respec-
tively vote-selling. A secure voting scheme should disable the voters
from selling their vote. It is inevitable that a voter can accept money
for promising his vote (but this can also be considered as a strong kind of
propaganda), but at least the voting scheme should prevent that the voter
receives the money only in case he keeps his promise. In other words, the
voting scheme should not give the voter any mean to prove which partic-
ular vote he has cast. Voting protocols that disable the voter from proving
the cast vote are called receipt-free.

Receipt-freeness is not well understood. There are many flavors and
variants, and no clear definition is known. This might also be one rea-
son why many proposed receipt-free voting protocols later turn out to be
insecure, or at least to have some security-relevant weaknesses.

1.2 Voting 25

1.2.5 Previous Work

Secret-ballot voting protocols were first proposed by Chaum [Cha81],
based on the idea of a mix-net. Cohen (Benaloh) and Fischer [CF85]
suggested the approach with homomorphic encryption. The first vot-
ing scheme based on blind signatures and anonymous channels was pro-
posed by Fujioka, Okamoto, and Ohta [FOO92]. Later, many schemes
based on these approaches were published [BY86, Ive91, PIK93, Sak94,
SK94, CFSY96, CGS97].

The concept of receipt-freeness was first introduced by Benaloh and
Tuinstra [BT94]. Based on the assumption of a voting booth that physi-
cally guarantees secret communication between the authorities and each
voter, they first proposed a single-authority voting protocol which, while
being receipt-free, fails to maintain vote secrecy. Then they extended this
protocol to a multi-authority scheme which does maintain secrecy. How-
ever, we show that this scheme is not receipt-free, in contrast to what is
claimed in the paper (cf. [HS00]).

Another receipt-free voting protocol based on a mix-net channel was
proposed by Sako and Kilian [SK95]. In contrast to [BT94], it assumes
only one-way secret communication from the authorities to the voters.
The heavy processing load required for tallying in mix-net schemes, how-
ever, is a significant disadvantage of this protocol. Furthermore, this
scheme is vulnerable to the so-called randomization attack [Sch99]: The
coercer can force a voter to vote randomly. The relevance of this attack
depends on the vote policies; in certain settings, the attack might be sig-
nificantly more powerful than coercing the voter not to vote at all (this
kind of coercion cannot be prevented anyway). See also [MH96] for other
security-relevant remarks and improvements of this protocol.

Later, a receipt-free voting scheme using blind signatures was given
by Okamoto [Oka96]. Here, the assumption was that of anonymous one-
way secret communication from each voter to each authority. Achieving
communication that is both secret and anonymous would, however, be
extremely difficult. Also, this scheme requires each voter to be active in
three rounds (authorization stage, voting stage, and claiming stage), which
is a big disadvantage in many realistic settings. The receipt-freeness
property of the first scheme was broken, and a modified protocol was
proposed in [Oka97].

Finally, a receipt-free voting protocol based on homomorphic encryp-
tion was presented in [HS00]. This protocol is more efficient than other

26 Introduction

receipt-free protocols. However, also this protocol is vulnerable to the
randomization attack [Sch99].

Another stream of research which relates to receipt-freeness is inco-
ercible multi-party computation. Without any physical assumption, de-
niable encryption [CDNO97] allows an entity to lie later about how the
ciphertext decrypts, and this technique is used to achieve incoercible
multi-party computation [CG96]. However, the concept of incoercibil-
ity is weaker than receipt-freeness. It would allow a voter to lie about his
vote, but it cannot help against a voter who wants to make his encryp-
tion undeniable and is willing to deviate from the protocol, and hence it
cannot prevent vote-buying.

1.3 Contributions of this Thesis

1.3.1 Mixed Models for MPC

We consider unconditionally secure multi-party computations for the
secure-channels model, where the adversary has unlimited computing
power. In the literature, protocols for both the passive model and for
the active model were known, and tight bounds for both models were
proven. In the passive model, secure MPC is possible if and only if at
most t < n/2 of the n players are corrupted, and in the active model,
secure MPC is possible if and only if at most t < n/3 players are cor-
rupted. If we assume existence of authentic broadcast channels, then the
necessary and sufficient condition in the active model is that t < n/2.

We unify the classical passive model and active model by introduc-
ing the mixed model, where the adversary simultaneously actively corrupts,
passively corrupts, and fail-corrupts some of the players. We character-
ize an adversary by three thresholds: a (ta, tp, tf)-adversary may actively
corrupt up to ta players and take full control over them, may passively
corrupt up to tp players and read their internal information, and may
fail-corrupt up to tf players and make them crash irrevocably. Note that
the same player can be both passively corrupted and fail-corrupted at the
same time.

We study multi-party protocols for the mixed model, with and with-
out assuming broadcast channels, with unconditional and with perfect
security, and prove tight bounds on these thresholds for secure MPC pro-
tocols to exist.

1.3 Contributions of this Thesis 27

Special cases of adversaries that perform different kinds of player cor-
ruptions have previously been studied in the literature. Chaum [Cha89]
considered general multi-party protocols that are secure against an ad-
versary that can corrupt either up to d players actively or, alternatively,
can corrupt up to c players passively, but in his model only one type
of corruption occurs at the same time.1 In other words, the adversary
chooses between active or passive corruption and all corrupted players
are corrupted in the same way. The protocols achieve correctness (with
negligible error probability) with respect to any d actively corrupted play-
ers, or privacy with respect to any c passively corrupted players, where
2c + d < n is required. Meyer and Pradhan [MP91], and Garay and
Perry [GP92] treated the case of simultaneous active and fail-corruptions
for Byzantine agreement. The simultaneous presence of active and pas-
sive player corruption was considered by Dolev et al. [DDWY93] in the
context of secure message transmission over general networks. In con-
trast to [Cha89], the models of [MP91, GP92, DDWY93] (as well as this
text) consider a mixed adversary that simultaneously performs different
kinds of corruption.

The classical passive and active models can be seen as special cases
of this mixed model. Note, however, that there is a subtle difference be-
tween the passive model and the mixed model with ta = tf = 0. In both
models, the adversary is allowed to corrupt up to t < n/2 of the players
that participate in the simulation of the trusted party. However, inputs
can be received from “external” players not involved in the simulation.
In the passive model, these external players are assumed to follow the
instructions of the protocol (i.e., being at most passively corrupted). In
the mixed model, any number of these players may even be actively cor-
rupted and misbehave arbitrarily.

The above results have been published in [FHM98].

1.3.2 Efficient Multi-Party Protocols

Since the introduction of secure multi-party computation, all proposed
multi-party protocols that provide security against misbehaving players
suffer from high communication complexity. This is in sharp contrast
to their private (but non-resilient) counterparts, for which reasonably ef-
ficient solutions are known. The communication overhead of resilient

1For instance, the thresholds c = 1 and d = b(n − 1)/2c given in the example in Sec-
tion 3.1 of [Cha89] cannot be tolerated if simultaneous passive and active corruption occur.

28 Introduction

multi-party protocols over private protocols results mainly from the so-
phisticated techniques to achieve resilience against faults. Specifically,
these techniques make extensive use of a broadcast primitive, which
must be realized with a protocol for Byzantine agreement. Such proto-
cols are known to be very communication-intensive. The necessity of the
broadcast channel is independent of whether or not actual faults occur:
often broadcast is used to complain about an inconsistency, but in case
that no inconsistency is detected, still the players must broadcast a con-
firmation message (the inherent information of the message is one bit).

The most efficient broadcast protocols in the literature require O(n2)
bits to be communicated in order to agree on a single bit among n players
[BGP89, CW89]. However, these protocols require n rounds of commu-
nication. The most efficient broadcast protocols with a constant number
of rounds requireO(n4) bits of communication [FM88]. These high com-
plexities indicate that broadcast is an efficiency bottleneck, in both the
information-theoretic setting and the cryptographic setting; reducing the
number of broadcast invocations is therefore important for reducing the
overall communication complexity of distributed protocols.

There is a line of research that focused on reducing the communi-
cation complexity of multi-party protocols. First, several works [BB89,
BMR90, BFKR90, IK00] concentrated on reducing the round complex-
ity of such protocols. However, the price for the low round complex-
ity is a substantially increased bit complexity. With the current results,
namely O(n6) field elements per multiplication, the main efficiency bot-
tleneck seems to be the communication complexity rather than the round
complexity. First steps towards lower bit complexities were taken in
[BFKR90]. The proposed protocol is very efficient, but it only tolerates
t-adversaries with t = O(log n). Protocols with optimal resilience were
proposed in [FY92] and in [GRR98]. Their approach is to first perform
a private protocol with fault-detection (for the whole protocol in [FY92],
and for a part of the protocol in [GRR98]), and only in case of faults to
repeat the computation with a slow but resilient protocol. Although this
approach can improve the best-case complexity of the protocol (when no
adversary is present), it cannot speed up the protocol in the presence of
a malicious adversary: a single corrupted player can persistently enforce
the robust but slow execution, annihilating (and even inverting) any effi-
ciency gain.

We propose a framework for efficient resilient distributed protocols.
This framework is general and is not restricted to MPC. The main idea of
the framework is as follows: Whenever a fault occurs (and slows down

1.3 Contributions of this Thesis 29

the protocol execution), a set of players which contains at least a cer-
tain number of corrupted players (but possibly also some honest ones)
is identified and eliminated from the further protocol execution. Note
that only players that simulate the trusted party are eliminated, and not
players that send input or receive output. These eliminations ensure
that faults occur only rarely, namely at most t times during the entire
computation, which in turn allows to reduce the number of consistency
checks performed in the protocol: Rather than after each gate, the consis-
tency checks are performed only after a series of gates, a so-called segment.
During the entire computation up to t segments can fail and require re-
computation, but with an appropriate size of the segments, the total cost
of re-computation will be much smaller than the savings due to the re-
duced number of the checks.

Rigorously applying this framework to the active protocol of
[BGW88] yields an actively secure protocol which communicates O(n3)
field elements per multiplication, in contrast to the most efficient previ-
ous protocols that communicate Ω(n6) field elements. A later result (not
contained in this thesis), which is based on the same framework, even
achieves a communication complexity of O(n2) field elements per multi-
plication [HM01].

The above results have been published in [HMP00].

1.3.3 General Adversaries in MPC

All prior results in secure multi-party computation specify the sets of po-
tentially corrupted players by their cardinality, i.e., by a threshold. We
define more generally the security of a multi-party computation pro-
tocol with respect to an adversary structure, a monotone set of subsets
of the players, where the adversary may corrupt the players of one set
in this adversary structure. An adversary structure is monotone in the
sense of being closed with respect to taking subsets. Non-threshold
adversaries have been introduced in the context of secret-sharing (e.g.,
[ISN87, BL88, Gen96]).

As an example of an adversary structure, consider the set P =
{P1, P2, P3, P4} of players and the adversary structure

Z =
{
∅, {P1}, {P2}, {P3}, {P4}, {P1, P2}, {P1, P3}, {P1, P4}

}
.

In this example, the adversary can choose either to corrupt no player, or
to corrupt a single player, or to corrupt P1 and one additional player.

30 Introduction

General adversaries are not necessarily restricted to a single corrup-
tion type. Most generally, an adversary structure is a set of triples of sub-
sets of the player set, where the first subset in the triple denotes which
players may be actively corrupted, the second subset denotes which
players may be passively corrupted, and the third subset denotes the
set of players that may be fail-corrupted. In this text, we will discuss
only univariate structures (for passive, active, or fail-corruption), and bi-
variate adversary structures that capture simultaneous active and pas-
sive corruption. For general adversary structures that also capture fail-
corruption, tight bounds for secure multi-party computation protocols
to exist are not known yet and are subject of ongoing research. Inter-
estingly, when considering general adversaries with simultaneous active
corruption and fail-corruption, the necessary condition for trusted-party
simulation TPS is strictly stronger than the condition for secure function
evaluation SFE.

We prove tight bounds on adversary structures for secure multi-party
protocols to exist, and present a construction for protocols for all ad-
missible adversary structures, for various flavors of the secure-channels
model. The bound in the passive model is that no two sets in the ad-
versary structure cover the full player set, and in the active model that
no three sets cover the player set. For example, the adversary structure
from the previous example satisfies the condition that no two sets cover
the player set, and hence there exists a passively secure protocol for this
structure.

We introduce the technique of player simulation and show that with
this technique, secure MPC protocols can be constructed for any admis-
sible adversary structure. To simulate a player of a given MPC proto-
col means that all activities of this player are simulated in a MPC sub-
protocol. Of course, any number of players involved in an MPC protocol
can be simulated by other MPC protocols, and even those player that
simulate a player can again be simulated, and so forth. We derive and
rigorously prove the adversary structure tolerated by the resulting pro-
tocol as a function of the adversary structure of the basic protocol and the
adversary structure of the simulation protocols.

Then, with this technique in hand, we propose an algorithm which
takes any admissible adversary structure as input, and outputs a simu-
lation hierarchy such that the resulting protocol will tolerate the desired
adversary structure. Here, the starting protocol and each simulation pro-
tocol is a well-known threshold protocol; and still, the resulting protocol
tolerates the general adversary structure as required.

1.3 Contributions of this Thesis 31

As corollary of our result, one can derive broadcast protocols and
secret-sharing schemes for general adversary structures. The problem
of broadcast for general adversary structures was later solved more ef-
ficiently [FM98]. The problem of secret-sharing for general adversary
structure was solved earlier for the passive model [ISN87, BL88] and for
the active model with broadcast and error probability [Gen96]. Our solu-
tion was the first for the active model without broadcast.

The results on general adversary structures have been published in
[HM97, FHM99, HM00].

1.3.4 Voting

We study the problem of receipt-freeness in secret-ballot voting. The
body of known receipt-free voting protocols is pretty small, and only few
researchers investigate in this subject. Known receipt-free voting proto-
cols have two major disadvantages when compared with other voting
protocols: They tend to be slow, and they tend to be involved. The sec-
ond property, though not necessarily a disadvantage by itself, increases
the risk of overseeing attacks and insecurities. Indeed, many published
receipt-free voting protocols are either completely or partially broken.

In this thesis, we restrict to receipt-free voting schemes based on ho-
momorphic encryption. We present a modular approach for construct-
ing such protocols, and realize two concrete protocols. Furthermore, we
show for two published voting schemes that they are not receipt-free,
opposed to what is claimed in the papers and was believed before.

The general approach for achieving receipt-freeness is that the voter
does not generate his encrypted ballot by himself, but rather in cooper-
ation with the authorities. This will ensure that even the voter cannot
decrypt his own ballot, and hence cannot prove the vote to a vote-buyer.

In the first proposed protocol, a special representation of the ballot
is used, which allows ballot shuffling. This means that for any given en-
crypted ballot for some (unknown) candidates and a permutation on the
set of all valid candidates, one can compute a new ballot for the permuted
candidates and with different randomness, without need for decrypting
the original ballot. For example, if an encrypted ballot for candidates
{1, 5} is shuffled with the permutation (1, 3, 4)(2, 5, 6), then the new en-
crypted ballot will be for the candidates {3, 6}. With consecutively us-
ing this primitive, the voter can guide the authorities to construct an en-

32 Introduction

crypted ballot of the vote he wants to cast, and still the authorities do not
learn the vote (and the voter cannot decrypt the encrypted ballot).

The second scheme is based on the idea of randomization. The voter
sends an encryption of his vote to a designated authority, the randomizer,
who changes the randomness used for encryption, such that the voter
cannot decrypt his own encrypted ballot. This new encrypted vote is
then tallied. The main problem to be solved is the verification of the
validity of the new encryption. We present a protocol which allows the
voter and the randomizer to jointly generate an non-interactive validity
proof of the new encryption, without the randomizer learning the vote,
and without the voter learning the randomness of the new encryption.

Both voting schemes are more efficient than any receipt-free voting
scheme in the literature, where the second approach is significantly more
efficient than the first approach. However, in the first approach, in certain
(well-defined) cases, even authorities cannot coerce the voter, whereas in
the second approach, such coercion is possible.

Finally, we show that the voting protocols of [BT94] and [LK00] are
not receipt-free, opposed to what was believed before.

Both proposed voting schemes are yet unpublished, but the scheme
based on ballot shuffling is inspired by the protocol of [HS00]. The secu-
rity analysis of the protocol of [BT94] is also contained in that paper; the
analysis of the protocol of [LK00] is yet unpublished.

Chapter 2

Formal Definition of MPC

In this section, we formally state our model for secure multi-party com-
putation, and define security for such protocols. These definitions are
stronger than required, and often are restricted to the settings that we
consider. In particular, we restrict to the so called secure-channels model
[BGW88, CCD88], where pairwise secure and authentic synchronous
channels between every pair of players are assumed. The adversary is al-
lowed to have unlimited computing power and may be adaptive. We de-
fine security of MPC protocols with using the trusted party approach, i.e.,
we compare the protocol with a specification involving a trusted party,
and require that the adversary cannot achieve anything in the protocol
that he could not achieve in the specification as well. This security defi-
nition is highly inspired by Canetti’s definitions [Can00]. For the sake of
simplicity, the definitions (as well as the security proofs in the following
chapters) only capture static adversaries. However, both the definitions
and the proofs can be naturally extended to also cover the case of adap-
tive adversaries. The definitions proposed in this section were originally
developed in [HM00]. Alternative definitions of security can be found in
[Bea91b, MR91, MR98].

2.1 Players, Processors, and Communication

Players are assumed to perform two entirely different tasks: On one
hand, they provide input and receive output, depending on some real-
world concerns, and on the other hand, they are supposed to perform the

34 Formal Definition of MPC

operations of the actual protocol. It is necessary to clearly distinguish be-
tween these two tasks. Therefore, in the sequel we refer to a player only as
the entity that provides input and receives output, and to the associated
processor as the entity that performs the operations of the protocol. This
distinction is important for taking into account the fact that in a general
multi-party specification with several input stages, the players’ inputs
can depend on information obtained during the execution of, but outside
of the protocol (e.g. insider information in a stock-market protocol). In-
tuitively, one might think of processors as computers, and of players as
the humans using the computers.

Processors are denoted by Pi. A processor can send values to and
receive values from other processors, and can perform arbitrary compu-
tations on his known values. Formally (and without loss of generality)
we assume that each processor can compute arithmetic operations in a
fixed finite field (F, +, ∗), can select elements from this field at random,
and can communicate with other processors over perfectly authenticated
and confidential synchronous channels. We assume that the field F is the
same for all processors.

In addition to processors associated with players, we also introduce
the abstract concept of a virtual processor, which offers the same function-
ality as a processor but only appears in the construction of a protocol.
In particular, the trusted party of a specification (or other simulated pro-
cessors) are virtual processors. One can think of virtual processors as of
computer servers.

Formally, a processor can be modeled as a probabilistic Turing Ma-
chine, with a (read-only) input tape, a (write-only) output tape, and a
(read-write) working tape. The player associated with a processor can
write his input tape and can read his output tape. The input and out-
put tapes of virtual processors are not used. Every pair of processors
can communicate via a pair of tapes, where one tape is read-only for the
first and write-only for the second processor, and the other tape is write-
only for the first and read-only for the second processor. If broadcast
channels are assumed, then furthermore for every processor there exists
a tape which is write-only for this particular processor and read-only for
all other processors. All tapes (in particular the communication tapes) are
private and authentic, i.e., only the involved processors can read from (or
obtain any information about) or write to a tape. Furthermore, communi-
cation tapes are synchronous: We assume the existence of a global clock,
and data written to a communication tape can be read at the next clock
cycle.

2.2 Variables and Views 35

2.2 Variables and Views

We assume a global variable space X , consisting of all variables used dur-
ing the protocol execution. A variable x ∈ X can take on a value from the
given finite field (F, +, ∗). Every quantity ever generated during a pro-
tocol execution, including inputs, local data (e.g. shares) and outputs, is
assigned to a variable. For a particular protocol execution each variable
takes on only one particular value, i.e., variables are not to be understood
in the sense of an imperative programming language but rather as labels
for values or, more precisely, as a fixed binding between a name and a
value.

In order to guarantee that variables take on only one particular value,
every variable can be seen only by one designated processor. This is mod-
eled by associating a visibility space with every processor P , capturing
the set of variables known to P . The set of visibility spaces of all pro-
cessors define a partition on the variable space X . During the protocol
execution, values are bound to variables. The view ν(P) of a processor is
the set of bindings of all variables in his visibility space. The view ν(B)
of a set B of processors is the union of the views of the processors in B.
Note that a processor may have full or partial knowledge about a vari-
able even if the variable is not in his view. Somewhat sloppily, we also
denote the visibility space of P by ν(P).

2.3 Protocols, Specifications, and Protocol Gen-
erators

A protocol π among a set P = {P1, . . . , Pn} of processors that involves
variables from a variable space X is a sequence d1, . . . , dl of statements.
There are four types of statements: An input statement input(Pi, x) in-
structs the processor Pi ∈ P to read a value from his input tape (i.e., from
his associated player) and to assign the value to the variable x ∈ X . A
transmit statement transmit(P1, P2, x1, x2) instructs the processor P1 ∈ P
to send the value of the variable x1 ∈ X to the processor P2 ∈ P , who
then assigns the received value to variable x2 ∈ X . An output statement
output(P, x) instructs the processor P ∈ P to output the value of the vari-
able x to his associated player. Finally, computation statements are of one
of three forms: A comp(P, +, x, x1, x2)-statement (a comp(P, ∗, x, x1, x2)-
statement) instructs the processor P to add (multiply) the values of

36 Formal Definition of MPC

the variables x1 and x2 and to assign the result to the variable x. A
comp(P, ran, x)-statement instructs the processor P to select an element
from the field at random and to assign the value to the variable x.

Assigning a value to a variable (in an input or computation statement)
means to define its (global) value and to include it in the processor’s view,
and is only admissible if no value has previously been assigned. A pro-
cessor can only use (in a computation, transmit, or output statement) the
values of variables that are globally defined and are included in the pro-
cessor’s view.

A multi-party computation specification (or simply called specification)
formally describes the cooperation to be performed and the processors
that give input to, or receive output from the computation. Intuitively, a
specification specifies the cooperation in an ideal environment involving
a trusted party. Formally, a specification is a pair (π0, τ) consisting of
a protocol π0 among a set P0 of processors, and the name of a virtual
processor τ ∈ P0. The protocol π0 of the specification is also called the
ideal protocol.

A multi-party protocol generator G for the set PG of processors is a func-
tion that takes as input a multi-party computation specification (π0, τ)
involving processors from a set P0 and returns a protocol π for the pro-
cessors

(P0\{τ}
)∪PG. A statement index function for a specification (π0, τ)

and protocol π is a strictly monotone function f ,

f : {1, . . . , |π0|+ 1} → {1, . . . , |π|+ 1} ,

where f(1) = 1 and f(|π0|+ 1) = |π|+ 1.

The intuition is that a protocol generator G simulates the virtual
trusted processor τ by a multi-party computation protocol among the
processors in PG. Each statement of the ideal protocol π0 is expanded
into a sequence of statements, and all these sequences are concatenated
to the resulting protocol π. In order to keep track of which subsequence
of π resulted from a given statement di of the ideal protocol π0, the state-
ment index function maps the index i of each statement di in π0 to the
index f(i) of the first statement in the corresponding expansion in π, i.e.,
the i-th statement of π0 “is computed” by the sequence f(i) to f(i+1)−1
of statements of π (since i = |π0| is possible, the domain of f includes
|π0|+ 1).

Furthermore, we say that a protocol generator is natural if the simu-
lation of a statement only involves variables that also occur in the state-
ment itself, plus optionally some auxiliary variables which are uniquely

2.4 Classes and Structures 37

associated with one of the involved variables. Formally, a protocol gener-
ator with statement index function f is natural if there exists a surjective
function from the variable space of the real protocol π onto the variable
space of the ideal protocol π0, where for every i = 1, . . . , |π0| + 1 and
j = f(i), . . . , f(i + 1) − 1, every variable involved in the j-th statement
of the real protocol π maps to a variable involved in the i-th statement of
the ideal protocol π0.

Note that throughout this text, we will only consider protocol gen-
erators that are natural. Some of the techniques we will use (so-called
processor simulation, Section 4.1) are only secure for natural protocol
generators. To the best of our knowledge, all protocol generators in the
literature satisfy this property.

2.4 Classes and Structures

We consider three corruption types: active corruption, passive corrup-
tion, and fail-corruption. Adversaries are classified according to which
processors may be corrupted by which type. We define an adversary class
C to be a triple of subsets of the processor set P , i.e., C ∈ 2P × 2P × 2P .
An adversary of class C = (D, E, F) actively corrupts the processors in
D (disruption), passively corrupts the processors in E (eavesdropping),
and fail-corrupts the processors in F (see next Section for a more formal
definition of corruption). We require that D is disjoint from both E and
F , but E and F may overlap.

We define the notion of subclasses: A class C′ = (D′, E′, F ′) is a sub-
class of a class C = (D, E, F), denoted C ′ ⊆ C, if and only if every adver-
sary of class C ′ can also be considered as an adversary of class C:

(D′, E′, F ′) ⊆ (D, E, F)⇔ D′ ⊆ D, E′ ⊆ (E ∪D), and F ′ ⊆ (F ∪D).

To restrict a class (D, E, F) to a processor set P ′ means to only consider
the processors in P ′:

(D, E, F) P′ = (D ∩ P ′, E ∩ P ′, F ∩ P ′).

Furthermore, we consider collections of such adversary classes: An
adversary structureZ is a set of adversary classes closed under taking sub-
classes, i.e., C ⊆ 2P × 2P × 2P , where C ∈ Z, C ′ ⊆ C ⇒ C′ ∈ Z . For a

38 Formal Definition of MPC

structureZ ,Z denotes the basis of the structure, i.e., the set of all maximal
classes in Z :

Z = {C ∈ Z :6 ∃C′ ∈ Z : C ⊂ C′}

For a set B of classes, 〈B〉 denotes the closure of the set with respect to
taking sub-classes, i.e.,

〈B〉 = {C′ ⊆ C : C ∈ B} .

Particularly, the closure of a basis is the original structure, i.e., for all
adversary structures Z , it holds that Z =

〈Z〉
.

To restrict an adversary structure Z means to restrict every class in Z :

Z P′ =
{
C P′ : C ∈ Z}

.

In some cases, we will restrict ourself to certain corruptions types.
When only active and passive corruption is considered, then we will de-
fine a class C to be a pair (D, E), and accordingly, a bivariate adversary
structure Z to be a set of such pairs, i.e., Z ⊆ 2P × 2P . In addition, when
only a single corruption type is considered (active or passive), then the
adversary class is simply the set of the corruptible processors, and the
univariate adversary structure Z is a set of such sets, i.e., Z ⊆ 2P . All
above definitions also apply to these restricted classes and structures.

2.5 Adversaries and Definition of Security

We consider three types of corruptions:

• Passive corruption: The adversary can read the internal informa-
tion of the corrupted processors.

• Active corruption: The adversary can take complete control over
these processors, and can make them (mis-)behave in any desired
manner.

• Fail-corruption: The adversary can make the processor fail, i.e., can
ultimately prevent the processor from sending any more messages
to any other processor.

2.5 Adversaries and Definition of Security 39

An adversary is characterized by the subset of processors that can be
corrupted in each corruption type: A (static) adversary of class (D, E, F)
(for short: a (D, E, F)-adversary) is a (probabilistic) program (or strat-
egy), which passively corrupts the processors in E (eavesdrop), actively
corrupts the processors in D (disrupt), and fail-corrupts the processors
in F . The variables held by the passively and actively corrupted players
(i.e., ν(E∪D)) are included in the adversary’s view. Furthermore, the ad-
versary can take full control over the communication tapes of the actively
corrupted processors, i.e., can send messages in their name. Finally, the
adversary can make any fail-corrupted processor crash at any time. Once
a processor crashed, it cannot be re-activated. The adversary can per-
form an arbitrary computation on the values in his view and extend his
view by the computed values.2 All decisions taken by the adversary may
depend on his actual view.

We do not give a more precise definition of the adversary’s view but
it is understood that it consists of random variables with a well-defined
range. For instance, if the adversary is modeled as a Turing machine, the
view consists of the content of all tapes. The complexity of an adversary
is not assumed to be polynomial.

For an adversary A, a protocol A-securely computes a specification if,
whatever A does in the protocol, the same effect could be achieved by an
adversary (with a modified strategy, but with similar costs) in the ideal
protocol of the specification. More precisely, we require that the joint
distribution of the variables that the adversary sees in the real protocol
and those that any uncorrupted processors sees in the ideal protocol are
equally distributed in the real protocol and the ideal protocol. This means
that the adversary sees in the real protocol at most as much as what he
would see in the ideal protocol, and the players see in the real protocol
at least as much as they would see in the ideal protocol. This must hold
right before every statement of the ideal protocol and the corresponding
statement in the real protocol.

Formally, for an adversary A of class (D, E, F), and a specification
(π0, τ) for the set P0 of processors, the protocol π A-securely computes
the specification (π0, τ) if there exists a statement index function fπ :
{1, . . . , |π0| + 1} → {1, . . . , |π| + 1} and an adversary A0 for the ideal

2The values in the adversary’s view need neither be elements of the finite field nor be
assigned to variables of the global variable space. However, such a restriction could be
made without loss of generality.

40 Formal Definition of MPC

protocol π0 with3 (D0, E0, F0) = (D, E, F) P0\{τ} such that for all inputs
and for every i = 1, . . . , |π0| + 1 the joint distribution of the variables
known to real adversary A and the uncorrupted processors in the specifi-
cation is the equal before the i-th statement of the ideal protocol π0 (with
the adversary A0 present) and before the f(i)-th statement of the real pro-
tocol π (with the adversary A present). Moreover, the complexity of A0

must be polynomial in the complexity of A. This corresponds to the def-
inition of on-line security of [Can00]. The adversary A0 can be seen as a
kind of simulator and is called the ideal adversary of A.

For the special case of secure function evaluation, the only effect that
an adversary A can achieve in a protocol that A-securely computes this
specification corresponds to a modification of the inputs and outputs of
the corrupted processors in the ideal protocol (which of course cannot be
prevented).

For an adversary structure Z and a specification (π0, τ), a protocol π
Z-securely computes the specification (π0, τ) if for every adversary A of
class C ∈ Z , the protocol π A-securely computes the specification (π0, τ).
Whenever the specification is clear from the context, we also say that a
protocol tolerates an adversary A (a structureZ) instead of saying that the
protocol A-securely (Z-securely) computes the specification.

A protocol generator G for the set P of processors is A-secure for a
given adversary A (i.e., G tolerates A), if for every specification, the proto-
col that results by applying the generator to this specification A-securely
computes the specification. For a structure Z ⊆ 2P × 2P × 2P , a proto-
col generator G for the set P of processors is Z-secure (or tolerates Z) if
for every adversary A of class C with C P ∈ Z , the protocol generator is
A-secure.

2.6 Restricted Models of Special Interest

In this section, we mention several restricted models that were of partic-
ular interest in the past, and show how they can be viewed as special case
of our definitions.

3It is necessary to explicitly exclude τ because it is possible that the name τ is used in
π, and even if A may corrupt the processor called τ (which thus is a simulating processor),
it cannot be tolerated that A0 corrupts τ (which is the trusted party of the specification).
At this point, this technicality appears to be pedantic, but in later recursive constructions it
will be necessary.

2.6 Restricted Models of Special Interest 41

2.6.1 Passive and Active Threshold Model

In the past, multi-party computation protocols were considered uniquely
for two models: The passive model, and the active model, both with a
threshold adversary. In the passive model, the adversary is allowed to
passively corrupt up to t out of the n processors. No processors may be
actively corrupted or fail-corrupted. In this model, it was proven that
perfectly t-secure protocols exist for t < n/2 [BGW88, CCD88]. For a
set P of processors with |P| = n, the adversary structure for the passive
model is as follows:

Z = {(∅, E, ∅) : E ⊆ P , |E| ≤ t} .

Accordingly, in the active model, the adversary may actively corrupt
any t processors. In this model, perfectly t-secure multi-party computa-
tion is possible for t < n/3 [BGW88], and, when additionally assuming
the existence of broadcast channels, unconditionally t-secure protocols
exist for t < n/2. The adversary structure for the active threshold model
is as follows:

Z = 〈{(D, ∅, ∅) : D ⊆ P , |D| ≤ t}〉 .

2.6.2 General Adversaries

Historically, the first step of generalizing adversaries for multi-party
computation was to introduce non-threshold security for the passive and
for the active model [HM97]. A general adversary for the passive model
is characterized by a passive (univariate) adversary structure Zp ⊆ 2P .
The corresponding general adversary structure is as follows:

Z = {(∅, E, ∅) : E ∈ Zp} .

The characterization of a general adversary for the active model is
analogous: For an active (univariate) adversary structure Za, the corre-
sponding general adversary structure is:

Z = 〈{(D, ∅, ∅) : D ∈ Za}〉 .

42 Formal Definition of MPC

2.6.3 Mixed Adversaries

Later, the notion of mixed adversaries was introduced [FHM98]. A mixed
adversary is characterized by three thresholds, ta, tp, and tf , specifying
the upper bound on the number of active corruptions, of passive cor-
ruptions, and of fail-corruptions, respectively. A (ta, tp, tf)-adversary is
characterized by the following adversary structure:

Z =
〈{

(D, E, F) ⊆ 2P × 2P × 2P : |D| ≤ ta, |E| ≤ tp, |F | ≤ tf
}〉

.

2.6.4 Mixed General Adversaries

Finally, mixed general adversaries were considered in [FHM99], where
fail-corruption was not captured. There, a mixed adversary structure Zm

is a set of pairs of subsets of the processor set, i.e., Zm ⊆ 2P × 2P . Such a
mixed adversary structure can be converted to a general adversary struc-
ture as follows:

Z = {(D, E, ∅) : (D, E) ∈ Zm} .

Chapter 3

MPC Protocols with
Threshold Security

In this section, we focus on multi-party computation protocols with
threshold security, i.e., the set of corruptible processors is characterized
by its cardinality. We first consider several models, characterized by cor-
ruption type(s), by whether or not broadcast channels are available, and
by whether the security must be perfect or unconditional. Finally, we will
focus on the efficiency of threshold multi-party protocols.

As a warm-up, we first consider the passive model. In this model,
the adversary is characterized by the upper bound tp of processors
that he may passively corrupt. A passive tp-adversary is an adver-
sary that may passively corrupt any up to tp of the processors, and
a protocol is tp-private if it is secure with respect to every passive tp-
adversary. The main result in this model is due to Ben-Or, Goldwasser,
and Wigderson [BGW88], and independently by Chaum, Crépeau, and
Damgård [CCD88]: In the passive model with n processors, tp-private
protocols can be found for any specification exactly if tp < n/2. We will
present the protocol of [BGW88], with an algebraic simplification due to
Gennaro, M. Rabin, and T. Rabin [GRR98], in Section 3.1.

Afterwards, in Section 3.2, we consider the active model. Here, the
adversary is characterized by the upper bound ta of processors that he
may actively corrupt. An active ta-adversary may actively corrupt any up

44 MPC Protocols with Threshold Security

to ta processors, and a protocol is ta-robust if it tolerates every active ta-
adversary. The main result in the active model with n processors states
that perfectly secure protocols exist exactly if ta < n/3 [BGW88].4

If broadcast channels are available and a negligible probability of fail-
ure is accepted, then this bound can even be improved to ta < n/2
[RB89, Bea91b, CDD+99]. Models with broadcast channels are out of the
scope of this thesis, and we only present the main ideas of the protocol
for this model (Section 3.3).

For completeness, we also consider the fail-stop model. Here, the ad-
versary is characterized by a threshold tf , and he may fail-corrupt any tf

processors. Indeed, in this model, the adversary can be allowed to fail-
corrupt any number tf < n of processors. Details are given in Section 3.4.

Then, we bear down this classical distinction between the passive and
the active model. In the so called mixed model, the adversary is character-
ized by three thresholds ta, tp, and tf , where ta denotes the upper bound
on the number of processors that the adversary may actively corrupt, tp
denotes the upper bound on the number of processors that the adversary
may passively corrupt, and tf denotes the upper bound on the number
of processors that can be fail-corrupted. Formally, a (ta, tp, tf)-adversary
may simultaneously actively corrupt any ta, passively corrupt any (other)
tp processors, and fail-corrupt another tf processors, and a protocol is
(ta, tp, tf)-secure if it tolerates every (ta, tp, tf)-adversary.

Note that the mixed model with ta = 0 and tf = 0 is more powerful
than the passive model. In a general setting, there are processors that par-
ticipate in the simulation of the virtual trusted party, and there are pro-
cessors that only provide input or receive output. In the passive model,
also processors that only provide input must be only passively corrupted,
whereas in the mixed model, these processors may be corrupted of any
type.

We distinguish four cases of the mixed model: perfect and uncondi-
tional security with and without assuming broadcast channels. Perfect
security can be achieved if and only if 3ta + 2tp + tf < n, independently
of whether or not broadcast channels are available. This is stated and
proven in Section 3.5.

With unconditional security, when a negligible probability of fail-
ure is tolerated, then assuming broadcast channels helps improving the

4The same result was also achieved by [CCD88], but their protocol has some (negligible)
probability of error.

45

conditions for multi-party computation. When broadcast channels are
given, then the necessary and sufficient condition for secure MPC is
2ta + 2tp + tf < n. A protocol achieving this bound will be sketched
in Section 3.6, and the necessity of the bound will be proven.

If broadcast channels are not available, then invocations of the broad-
cast primitive must be simulated, and the necessary condition for multi-
party computation must be strengthened. Additionally to the above con-
dition 2ta + 2tp + tf < n, we must require that 3ta + tf < n. This model
will be considered in Section 3.7.

All results are summarized in Table 3.1. It turns out that every clas-
sical model can be considered as a special case of the mixed model, and
that the conditions for secure multi-party computations generalize natu-
rally and continuously. Surprisingly, the upper bound tf on the number
of fail-corruptions appears with weight 1 in all conditions, which means
that fail-corruptions can be tolerated “for free”. Any strategy of the ad-
versary about which processors to fail-corrupt in which circumstances
is void; no strategy is more powerful than make fail the first tf proces-
sors in the very beginning of the protocol execution (and tell all honest
processors about). This allows to illustrate the conditions graphically in
only two dimensions for a constant tf . Figure 3.1 shows the necessary
and sufficient conditions for unconditionally secure multi-party compu-
tation in various models. The brightly shaded area is achievable with
perfect security, and the semi-dark area is achievable when accepting an
exponentially small failure probability. Finally, the dark shaded area is
achievable if additionally broadcast channels are available.

ε = 0 ε > 0

Model no BC BC no BC BC

passive 2tp < n

active 3ta < n 2ta < n

fail-stop tf < n

mixed 3ta+2tp+tf < n
2ta+2tp+tf < n

3ta+tf < n
2ta+2tp+tf < n

Table 3.1: Summary of the sufficient and necessary conditions
for unconditional MPC.

46 MPC Protocols with Threshold Security

6

- tp

ta

n′
2

n′
2

n′
3

Th. 1

Th. 2

Th. 3

Th. 4

Th. 5

Th. 6

Th. 7
n′ = n− tf

Broadcast
Unconditional
Perfect

Figure 3.1: Graphical representation of the results.

Finally, we consider the efficiency of MPC protocols. We first present a
framework for very efficient resilient protocols (Section 3.8). This frame-
work is not restricted to general multi-party computations, but can also
be applied to other distributed protocols. In this framework, resilience
is added on top of an (efficient) private protocol, and the overhead for
resilience can be reduced substantially compared to all previous ap-
proaches.

We then apply these techniques to the multi-party protocol for the
active model, and obtain a protocol with a significantly lower commu-
nication complexity than any previous multi-party computation protocol
(Section 3.9). Asymptotically, the communication complexity of the re-
sulting protocol is O(n3) field elements per multiplication, compared to
O(n6) field elements of previous protocols with unconditional security.
The new protocol improves even on the most efficient cryptographically
secure protocol [GRR98], which communicates O(n4) field elements per
multiplication (but tolerates up to t < n/2 corruptions). A later protocol
with cryptographic security [CDN01] achieves essentially the same com-
munication complexity as our protocol (but tolerates more corruptions).
Subsequently, a new protocol based on the framework of Section 3.8 was
presented, achieving unconditional security (with negligible error proba-
bility) with communicating O(n2) field elements per multiplication. The
round complexities of all considered protocols are essentially equal. All
stated complexities include the costs of simulating the broadcast channels
by a sub-protocol for Byzantine agreement.

Applying the framework to the mixed model with perfect security

3.1 Passive Model 47

is straight-forward and can easily be done. However, applying it to the
protocol for the active model with broadcast seems more difficult and is
an open problem. So far, the protocol of Section 3.3 [CDD+99] is the most
efficient known protocol for this model.

3.1 Passive Model

In this section, we give a brief description of the protocol of Ben-Or, Gold-
wasser, and Wigderson [BGW88], with an algebraic simplification in the
multiplication protocol due to Gennaro, M. Rabin, and T. Rabin [GRR98].
The achievement of this protocol is formally stated in the following the-
orem. The necessity of the condition t < n/2 is a corollary of Theorem 5
and will be proven in Section 3.5.

Theorem 1 In the passive model, a set P = {P1, . . . , Pn} of n processors can
compute every specification (perfectly) securely if and only if the adversary cor-
rupts at most t < n/2 of the processors. The computation is polynomial in n
and linear in the size of the circuit.

According to the definition of a specification, we have to give real-
izations (simulations) of transmit- and comp-statements. The following
table shows with which sub-protocol statements involving the virtual
trusted party τ will be simulated. Statements that do not involve τ (not
shown in the table) are not replaced.

Statement Simulation
transmit(P, τ, x) Secret-sharing, where P acts as dealer
transmit(τ, P, x) Secret-reconstruction towards P
comp(τ, +, x, x1, x2) Addition sub-protocol
comp(τ, ∗, x, x1, x2) Multiplication sub-protocol
comp(τ, ran, x) Randomness sub-protocol

In the sequel, we will describe realizations of these five sub-protocols.
But first we have to define what it means that a variable is shared among
the processors. We assign a unique non-zero element αi ∈ (F\{0}) to each
processor Pi. Then, a variable x is t-shared among the processors, if every
processor Pi holds a share xi, and there exists a polynomial f(x) of degree
at most t such that f(0) = x and f(αi) = xi for i = 1, . . . , n. Furthermore,
we require that f(x) is chosen at random and independently from any
other values.

48 MPC Protocols with Threshold Security

3.1.1 Secret Sharing

Secret sharing is based on Shamir’s secret sharing [Sha79]. The dealer P
who wants to share a secret s selects a random polynomial

f(x) = s + r1x + . . . + rtx
t, ri ∈R F,

of degree at most t, and sends to each processor Pi his respective share
si = f(αi).

3.1.2 Secret Reconstruction

Every processor Pi sends his share si of the value s to the processor P
who is to reconstruct the secret. According to Lagrange’s formula, the fol-
lowing expression gives the polynomial f(x) with lowest degree which
interpolates the given shares:

f(x) =
n∑

i=1

n∏
j=1,j 6=i

x− αj

αi − αj
si.

This immediately gives the formula to compute the secret s:

s = f(0) =
n∑

i=1

wisi, where wi =
n∏

j=1,j 6=i

αj

αj − αi
.

3.1.3 Addition and Linear Functions

Given two shared secrets a and b, which are shared with the polynomials
f(x) and g(x), respectively, i.e., f(0) = a and h(0) = b. Each processor
Pi holds a share ai of a and a share bi of b. We define the polynomial
h(x) = f(x) + g(x), and observe that h(0) = a + b. Hence the shares
ci = h(αi) = ai + bi of each processor Pi define a sharing of a + b.

Along this line, any linear function on shared values can be computed
by computing the function on each processor’s shares.

3.2 Active Model 49

3.1.4 Multiplication

First, we observe that secret reconstruction is a linear computation of the
shares. This immediately leads to the multiplication protocol of [GRR98]:
Assume that the values a and b are shared among the processors with
the polynomials f(x) and g(x), respectively, each of degree t. That is,
f(0) = a, g(0) = b, and processor Pi holds the shares ai = f(αi) and
bi = g(αi). Then, the product shares di = aibi define a polynomial h(x) =
f(x)g(x) of degree 2t, where h(0) = ab. Note that 2t < n implies that
the n product shares of h(x) are sufficient for interpolating h(0). Hence,
a t-sharing of c = ab can be achieved as follows: Every processor Pi

secret shares his product share di with a polynomial of degree t. Then, a
degree-t sharing of ab can be computed as a linear combination of these
sharings, according to Lagrange interpolation. More precisely, the shares
d1, . . . , dn are shared with the degree-t polynomials g1(x), . . . , gn(x),
respectively, where every processor Pj holds the share-shares d1j , . . . ,
dnj . Then the polynomial

g(x) =
n∑

i=1

wigi(x)

shares c (i.e., g(0) = c), and every processor Pj can compute his degree-t
share of c as

cj = g(αj) =
n∑

i=1

wigi(αj) =
n∑

i=1

widij .

3.1.5 Random Field Elements

In order to select an element x ∈ F at random, every processor Pi locally
selects one element xi ∈ F at random, shares it among the processors (by
using the above sub-protocol for secret-sharing), and x is computed as
the sum of those shared local elements (by using the above sub-protocol
for addition). A slight speed-up can be achieved by having only (the first)
t + 1 processors select and share a random element.

3.2 Active Model

In the active model, where corrupted processors may deviate from the
given instructions, the adversary may be allowed to corrupt at most

50 MPC Protocols with Threshold Security

t < n/3 of the processors [BGW88]. This is formally stated by the fol-
lowing theorem, and will be proven in the remaining of this section. The
construction is based on the protocol of [FHM98]. Again, the necessity of
the condition t < n/3 is a corollary of Theorem 5 and will be proven in
Section 3.5.

Theorem 2 In the active model, a set P = {P1, . . . , Pn} of n processors can
compute every specification (perfectly) securely if the adversary corrupts at most
t < n/3 of the processors. The computation is polynomial in n and linear in the
size of the circuit.

The protocol for the active model is essentially the same as the one for
the passive model, with some additional ingredients that allow to verify
that the processors honestly perform the required computations. This is
achieved as follows: Every processor is committed to every value of the
passive protocol. When a processor is to send a value to another proces-
sor, then he opens the commitment towards the recipient. When a proces-
sor is to perform some computation on these values, then the processor
must prove (in zero-knowledge) that indeed the commitment of the out-
come is compatible with the commitments of the inputs, according to the
computed function. This technique allows to detect whenever a proces-
sor deviates from the protocol, and hence the only relevant cheating is to
refuse cooperation. However, such a cheating is easy to tolerate.

Along the lines of the passive model, we have to give realizations
of sub-protocols for secret-sharing, secret-reconstruction, addition, mul-
tiplication, and selecting random field elements. The sub-protocols pre-
sented below make use of a broadcast primitive. Such a primitive is not
assumed to exists. But in a model where at most t < n/3 of the proces-
sors are actively corrupted, broadcast can be simulated with a broadcast
sub-protocol [BGP89, CW89].

The sharing is based on Shamir’s secret-sharing scheme [Sha79], ex-
tended to a two-dimensional sharing [GHY87, BGW88, CCD88, RB89,
FHM98, CDM00]. To each processor Pi, a unique non-zero element
αi ∈ (F \ {0}) is assigned. In contrast to [BGW88, GRR98], no addi-
tional mathematical structure on the values of αi is required. Each value
is shared among the processors with a polynomial of degree t, and each
share is again shared among the processors with a polynomial of degree
t. The second level of the sharing is to be understood as a commitment of
the respective processor to his share. The processor can open the com-
mitment (and thereby verifiably reveal his share) by broadcasting the

3.2 Active Model 51

corresponding polynomial. If more than t processors complain that this
polynomial doesn’t match their share-share, then obviously the opening
processor is corrupted and the opening fails. If at most t processors com-
plain, then at least t + 1 honest processors did not complain, and their
share-shares uniquely define the polynomial, hence it must be the correct
one.

Formally, a value s is t-shared among the processors if there exist
degree-t polynomials f(x) and f1(x), . . . , fn(x) with s = f(0) and fi(0) =
f(αi). The information held by processor Pi is the share si = f(αi), the
polynomial fi(x), and the share-shares sji = fj(αi) (for j = 1, . . . , n).
The polynomials in the sharing must be randomly chosen such that any
set of t processors do not obtain any information about the secret.

3.2.1 Verifiable Secret Sharing

The following VSS protocol is a slight variation of the protocol proposed
in [BGW88]. The protocols allows the dealer P to share a secret s veri-
fiably among the set P of processors. More formally, in the beginning,
the dealer holds a secret s, and after the protocol execution, s is t-shared
among the processors in P . The consistency of the resulting sharing is
guaranteed as long as at most the dealer and any up to t processors in P
are actively corrupted.

1. DISTRIBUTION. The dealer P selects at random a polynomial
p(x, y) =

∑t
i,j=0 rijx

iyj of degree t in both variables, where
p(0, 0) = s, and sends the polynomials (respectively their coeffi-
cients) fi(x) = p(x, αi) and f̃i(y) = p(αi, y) to processor Pi (for i =
1, . . . , n).5 This implicitly defines the polynomial f(x) = p(0, x).

2. CONSISTENCY CHECKS. Each pair of processors Pi, Pj (for 1 ≤
i, j ≤ n) checks whether fi(αj)

?= f̃j(αi). For this, Pi sends fi(αj)
to Pj , and Pj checks whether the received value is equal to f̃j(αi).

3. COMPLAINT STAGE. Every processor Pi broadcasts a message (con-
taining one bit) indicating whether all consistency checks were suc-
cessful or at least one test failed. In case of a complaint, the proces-
sor afterwards broadcasts a bit-vector, where the j-th bit indicates

5An efficiency gain of a factor 2 can be achieved by setting rij = rji, and hence fi(x) =
efi(x). One can prove that privacy is not violated by this technique. See [CDM00] for more
details.

52 MPC Protocols with Threshold Security

whether or not the processor has observed an inconsistency with
processor Pj . The dealer answers each complaint (i, j) by broad-
casting the correct value p(αi, αj).

4. FIRST ACCUSATION STAGE. Every processor Pj who observes more
than t inconsistencies, or discovers that the dealer’s answers to
complaints contradict his own values as received from the dealer
earlier, broadcasts an accusation against the dealer. In such a case
the dealer broadcasts both polynomials fj(x) and f̃j(y).

5. SECOND ACCUSATION STAGE. Every processor who discovers that
a polynomial broadcast by the dealer in the previous stage is incon-
sistent with his own values broadcasts an accusation. These accu-
sations need not be replied by the dealer.

If in total more than t processors have accused (in both accusation
stages), or if the dealer did not answer all the complaints and accusations,
clearly the dealer is corrupted, and a default sharing (e.g., the constant
sharing of 0) is taken.

In the protocol of [BGW88], the share of processor Pi is si = f(αi) =
fi(0), and the second dimension (i.e., the f̃i polynomials) of the sharing is
not used. In our scheme, the share of processor Pi is the polynomial fi(x)
(and in particular si = fi(0)), as well as the share-shares sji = f̃i(αj) =
p(αi, αj) (for j = 1, . . . , n).

In order to analyze the security of this secret-sharing protocol we dis-
tinguish two cases: (a) If the dealer is honest, all shares and share-shares
of honest processors will be consistent, and only values held by corrupted
processors can be published. No honest processor will accuse the dealer,
hence there will be at most t accusations. Clearly, in this case the out-
come will be a proper t-sharing. (b) If the dealer is corrupted, all shares
and share-shares of honest processors that did not accuse the dealer will
be consistent and lie on a polynomial p′(x, y) of degree t. If there were k
accusation in the first accusation stage, then still there are at least n− t−k
honest non-accusing processors. If the polynomials broadcast by the
dealer as reply to an accusation lie in p′, then no honest processor will
accuse the dealer in the second accusation stage, and we are done. If they
do not lie in p′ (but have degree t), then each polynomial has at most t
points in common with p′, hence at least n− t points are different, and at
least n− 2t− k honest processors (that did not yet accuse the dealer) will
detect this inconsistency and accuse the dealer in the second accusation
stage. This sums up to a total of at least n−2t−k+k > t accusations, and

3.2 Active Model 53

the dealer is disqualified. In this case it is legitimate to take some default
value as the dealer’s secret.

3.2.2 Secret Reconstruction

Let P be the designated processor supposed to receive a value s that
is t-shared among the processors in P with the polynomials f(x) and
f1(x), . . . , fn(x). The idea of secret reconstruction is that every processor
Pi opens his committed share si towards P: First, every processor Pi ∈ P
sends the polynomial fi(x) and the share-shares s1i, . . . sni to P. Then, P
interpolates the secret s from those shares si = fi(0) where fi(x) is consis-
tent with all but (at most) t share-shares sij (i.e., the ones that match with
the commitment). Note that this protocol needs neither error correction
nor broadcast.

There are two privacy issues to be considered: First, no processor but
P should learn anything new in this protocol, and second, P should not
learn anything about any other shared value than s. The first issue is
satisfied trivially, because only P receives any data. The second issue is
satisfied because only shares and share-shares of s are involved in the
protocol, and the sharing of s is independent of any other sharing.

The correctness can be proven as follows: At most t (corrupted) pro-
cessors hand a bad polynomial f ′i(x) 6= fi(x) to P. However, these bad
polynomials either have degree greater than t, or they match at most at
t positions with fi(x), and hence at least n − t processors have an in-
compatible share-share, and at least n − 2t > t have handed the correct
(incompatible with f ′i(x)) share-share to P. Hence, P can uniquely distin-
guish between good polynomials fi(x) and bad polynomials f ′i(x). There
are at most t bad polynomials, hence at least n− t > t good ones, and the
shares fi(0) of these good polynomials are sufficient to interpolate the
secret s.

3.2.3 Addition and Linear Functions

Multiplication by scalars and addition of shared values, and hence the
computation of any linear function, can be performed (without commu-
nication) by each processor doing the corresponding computation on his
shares and share-shares and keeping the result as a share of the new
value.

54 MPC Protocols with Threshold Security

3.2.4 Multiplication

The idea of the protocol for computing the t-shared product c of two t-
shared values a and b is the same as in the passive model: Every pro-
cessor secret-shares the product of his respective shares of a and b, and
then a valid sharing of c is obtained as a linear combination (according to
Lagrange interpolation) of these sharings. However, in the active model,
these computations must be verifiable.

Therefore, first every processor Pi upgrades his commitment to his
share ai to a full-fledged (two-dimensional) t-sharing of ai, and does the
same for bi. Then, Pi t-shares the product di = aibi (using the VSS pro-
tocol of Section 3.2.1), and proves that he shared the right value di. Fi-
nally, a t-sharing of c can be computed as a linear combination of the t-
sharings of d1, . . . , dn, and hence, every processor can compute his share
and his share-shares of c as a linear combination of his shares and his
share-shares of d1, . . . , dn. Some (up to t) of the processors may be dis-
qualified when upgrading the commitments ai an bi, or in the equality
proof. Then, only the product shares di of the other (at least n − t > 2t)
processors are used for interpolation.

In the sequel, we present the necessary sub-protocols. For simpler
presentation, we omit one level of indices, and denote the values the pro-
cessor P is committed to by a and b, and the product to be shared by
d.

3.2.4.1 Upgrading a commitment to a sharing

In order to upgrade the commitment of a (with polynomial fa(x)) to a
t-sharing of a, the VSS protocol of Section 3.2.1 is applied, where the
dealer’s random polynomial p(x, y) satisfies p(0, x) = fa(x). During the
VSS protocol, up to t processor accuse the dealer and subsequently have
to adjust their share. However, the at least t + 1 honest processors who
do not have to adjust their share uniquely define the commitment poly-
nomial f , and hence, if the dealer is not disqualified, then the secret of
the sharing is equal to the secret of the commitment.

3.2.4.2 Proving that d = ab

Proving that indeed the sharing of d contains the product of a and b
is done as follows: Let fa(x), fb(x), and fd(x) denote the polynomials,

3.3 Active Model with Broadcast 55

which a, b, and d, respectively, are shared with, where additionally, every
processor is committed to all his shares. The idea of the proof is to verify
that the polynomial fa(x)fb(x)−fd(x) is a polynomial (of degree 2t) with
a zero free-coefficient. Therefore, the dealer P is to share t random values
with random polynomials f1(x), . . . , ft(x) such that

fd(x) + xf1(x) + . . . + xtft(x) = fa(x)fb(x).

These polynomials are chosen at random, except that the above equation
must hold. Then, every processor Pi verifies whether the equation holds
at αi, and broadcasts either a confirmation or an accusation. If a processor
accuses the dealer, he then must open his commitments for his share of
a, his share of b, his share of d, and for all his shares of the t random
sharings. Then, every other processor can verify whether the accusation
is legitimate and the dealer P is to be disqualified.

When the dealer P is honest in this sub-protocol, then no accusation
against him will be accepted, and he passes the protocol. On the other
hand, whenever the (honest or malicious) dealer passes the protocol, then
the above equation holds at least at n−t points, which for polynomials of
degree 2t < n−t means that they are equal, and hence fc(0) = fa(0)fb(0).

3.2.5 Random Field Elements

A sharing of a random field elements can be achieved in the same way
as in the passive model, except that the corresponding resilient sub-
protocols are used.

3.3 Active Model with Broadcast

The protocol for the active model with broadcast, tolerating a minority
of the processors to be actively corrupted, is out of the scope of this text.
Just for completeness, we give a very sketchy overview of the protocol
of [CDD+99]. Other protocols that are secure under the same assump-
tions (but are less efficient) were proposed in [RB89] and [Bea91b]. The
achievements of this protocol is formally stated in the following theorem:

Theorem 3 In the active model with broadcast, a set P = {P1, . . . , Pn} of n
processors can compute every specification unconditionally securely if the adver-
sary corrupts at most t < n/2 of the processors. The computation is polynomial
in n and linear in the size of the circuit.

56 MPC Protocols with Threshold Security

The construction of this protocol is along the lines of the protocol for
the active model, as described in Section 3.2, but there is one level more
of sharings: The secret is (Shamir-) shared with a polynomial of degree t,
each of the shares is again shared with a polynomial of degree t, and ev-
ery processor is committed to each of his share-shares. Commitments are
realized with a technique called information checking: In the VSS protocol,
the dealer P selects at random a bivariate polynomial p(x, y) and hands
to every Pi the share-shares p(αi, α1), . . . , p(αi, αn) and p(α1, αi), . . . ,
p(αn, αi). Additionally, he commits Pi with respect to every other pro-
cessor Pj to the sent share-shares. In order to do so, for every processor
Pj , the dealer hands some proving information to Pi and some checking
information to Pj . Later, Pi can hand any of his share-shares to Pj , plus
the proving information for this share-share, and Pj is able to verify (by
using his checking information) whether indeed the received value orig-
inates from the dealer. This proving and checking information is linear
for each triple of processors: When P has committed Pi with respect to
Pj to several values, then Pi can send and prove any linear combination
of these values to Pj .

Secret reconstruction is then trivial: Every processor Pi broadcasts
his polynomial fi(x), where fi(0) is his share. Then, all other processors
verify whether their respective share-share lies on this polynomial, and
if not, they reveal and prove (by using information checking) their share-
share towards all other processors. Against at least n− t of the broadcast
polynomials fi(x), no valid complaint will be cast, and the n − t > t + 1
shares fi(0) are sufficient to interpolate the secret.

Additions and linear functions on shared values can be computed
non-interactively. Both the secret-sharing and the information-checking
scheme are linear, and in order to compute a linear function of shared
values, every processor computes his share, his share-shares, his prov-
ing and his checking information for the function value by applying the
linear function on the corresponding values of the functions inputs.

In the multiplication protocol, first every processor shares (using VSS)
the shares of the factors, and proves that the shared value is indeed his
factor share. Then, each processor shares the product of his factor shares,
and proves that the shared value is indeed the product. Finally, a valid
sharing of the product is obtained as a linear combination (according to
Lagrange’s formula) of these product sharings.

In the multiplication sub-protocol, a processor can refuse cooperation
and can fail the proofs. This can be detected, and the processor in charge

3.4 Fail-Stop Model 57

can be disqualified. However, the multiplication protocol cannot be pro-
ceeded. In [CDD+99] it is suggested that when processors are disqual-
ified, then the whole protocol is restarted from the beginning, without
involving the disqualified processors. This is inefficient, and further-
more, it does not capture the case of general trusted party simulation.
The much more natural solution is to reconstruct the shares (of both fac-
tors) of the disqualified processor (similar to [RB89]), and to repeat the
multiplication protocol with the reconstructed shares as public constants.
This method was suggested by Fehr [Feh00].

3.4 Fail-Stop Model

In the fail-stop model, the adversary may only make processors crash.
Privacy is no issue. The adversary can be allowed to fail-corrupt any
number of processors, as stated by the following theorem:

Theorem 4 In the fail-stop model, a set P = {P1, . . . , Pn} of n processors
can compute every specification perfectly securely if the adversary corrupts any
t < n of the processors. The computation is polynomial in n and linear in the
size of the circuit.

The protocol for this model is based on replication. A specification
(π0, τ) is turned into a protocol π as follows: Whenever a processor Pi

sends a value to τ , then instead he broadcasts the value to all processors
in P (e.g., by using the broadcast protocol of [LF82]). The broadcast pro-
tocol ensures that either every or no (uncorrupted) processors in P learns
the value, even when Pi fails during the sub-protocol. All computations
of τ are evaluated by all processors in P individually. Both the security
and the efficiency of this protocol are obvious.

3.5 Mixed Model with Perfect Security

The following theorem states the bounds for the mixed model with per-
fect security [FHM98].6

6Note that the theorem in the original paper [FHM98] for the model with perfect security
turned out to be false [Dam99], and we include a corrected version of the theorem and of
the proof.

58 MPC Protocols with Threshold Security

Theorem 5 In the mixed model with or without broadcast channels, a set
P = {P1, . . . , Pn} of n processors can compute every specification perfectly
(ta, tp, tf)-securely if and only if 3ta + 2tp + tf < n. The computation is poly-
nomial in n and linear in the size of the circuit.

For the protocol construction, we do not assume the existence of
broadcast channels (they will be simulated with a broadcast proto-
col [GP92]); however, we show that the stated condition is even necessary
when assuming the existence of broadcast channels.

The construction of perfectly secure protocols for the mixed model is
based on the protocol for the active model of Section 3.2. To each proces-
sor Pi, a unique non-zero element αi ∈ (F\{0}) is assigned. The degree of
all sharings (also of the second-level sharings) is t = ta + tp. This degree
ensures the privacy even when the actively corrupted processors reveal
all their secrets.

3.5.1 Verifiable Secret Sharing

The VSS protocol of Section 3.2.1 is slightly modified to ensure security
in the mixed model:

1. DISTRIBUTION. The dealer P selects at random a polynomial p(x, y)
of degree t = ta + tp in both variables, where p(0, 0) = s, and sends
the polynomials fi(x) = p(x, αi) and f̃i(y) = p(αi, y) to processor
Pi (for i = 1, . . . , n).

2. CONSISTENCY CHECKS. Each pair of processors Pi, Pj (for 1 ≤
i, j ≤ n) checks whether fi(αj)

?= f̃j(αi). For this, Pi sends fi(αj) to
Pj , and Pj checks whether the received value is equal to f̃j(αi). If
a processor Pj does not receive any value of a processor Pi, then Pj

does not complain about this cross-over point (it is sufficient to verify
the cross-over points of all honest processors).

3. COMPLAINT STAGE. Every processor broadcasts a message (con-
taining one bit) indicating whether all consistency checks were suc-
cessful (or no value was received at all) or at least one test failed.
In case of a complaint, the processor afterwards broadcasts a bit-
vector, where the j-th bit indicates whether or not the processor has
observed an inconsistency with processor Pj . The dealer answers
the complaints by broadcasting the corresponding correct values.

3.5 Mixed Model with Perfect Security 59

4. FIRST ACCUSATION STAGE. Every processor Pj who observes more
than ta inconsistencies or discovers that the dealer’s answers to
complaints contradict his own values broadcasts an accusation. In
such a case the dealer broadcasts both polynomials fj(x) and f̃j(y).

5. SECOND ACCUSATION STAGE. Every processor who discovers that
a polynomial broadcast by the dealer as reply to an accusation in
the first accusation stage contradicts his own shares, broadcasts an
accusation. This accusation need not be replied by the dealer.

If in total more than ta processors have accused (in both accusation
stages), or if the dealer did not answer all the complaints and accusations,
clearly the dealer is corrupted, and a default sharing (e.g., the constant
sharing of 0) is taken.

In order to analyze the security of this secret-sharing protocol we
distinguish two cases: (a) If the dealer is honest, all shares and share-
shares of honest processors will be consistent, and only values held by
actively corrupted processors can be published. Only actively corrupted
processors will accuse the dealer, hence there will be at most ta accusa-
tions. Clearly, in this case the outcome will be a proper t-sharing. (b) If
the dealer is corrupted, all shares and share-shares of honest processors
that did not accuse the dealer will be consistent and lie on a polynomial
p′(x, y) of degree t. If there were k accusations in the first accusation
stage, then still there are at least n− ta− tf −k ≥ 2ta +2tp +1−k (honest
or passively corrupted) processors with consistent shares. The polyno-
mials broadcast by the dealer as reply to an accusation either lie in p′, in
which case no honest and no passively corrupted processor will accuse
the dealer in the second accusation stage, or does not lie in p′, in which
case at least 2ta +2tp +1− k− t ≥ ta +1− k processors will accuse in the
second stage, and in total there were at least ta + 1 accusations, and the
dealer is disqualified.

3.5.2 Secret Reconstruction

In order to reconstruct a shared secret, all processors open their commit-
ted share towards the processor P who is to learn the secret. The commit-
ments are opened as follows: Every processor Pi sends the polynomial
fi(x) and the share-shares sji (for j = 1, . . . , n) to P. Then P verifies each
polynomial fi(x): If he received more than ta share-shares sij not satis-

fying fi(αj)
?= sij , then obviously fi(x) is bad, and else, fi(x) is good.

60 MPC Protocols with Threshold Security

Then, P interpolates the secret s from the given shares fi(0) of the good
polynomials fi(x) by using Lagrange’s formula.

3.5.3 Multiplication

The multiplication protocol is along the lines of the multiplication proto-
col of Section 3.2.4, where all invocations of the VSS protocol are replaced
by invocations to the VSS for the mixed model, given above.

3.5.4 Tightness

In order to prove the necessity of the condition 3ta + 2tp + tf < n even
when broadcast channels are available, assume for the sake of contradic-
tion that for some ta, tp, and tf with 3ta +2tp + tf ≥ n every function can
be computed perfectly (ta, tp, tf)-securely. Trivially, each such protocol
is also a (ta, tp)-secure protocol among n′ = n − tf processors, simply
by considering the case that the adversary fail-corrupts the last tf pro-
cessors at the very beginning of the protocol. Then one can construct a
protocol for three processors P1, P2, and P3, where P1 plays for ta + tp
processors, P2 plays for ta + tp other processors, and P3 plays for the re-
maining at most ta processors. This new protocol is secure with respect
to an adversary that either passively corrupts P1, or passively corrupts
P2, or actively corrupts P3.

Assume that the specification requires to compute the logical ANDof
two bits x1 and x2 held by P1 and P2, respectively, and assume for the
sake of contradiction that a protocol for this specification is given. Due to
the requirement of perfect privacy, P1 must not send any (joint) informa-
tion about his bit x1 to P2, neither over the direct channel from P1 to P2,
nor over the broadcast channel (if available), before he knows x2 (once
P1 knows that x2 = 1 he can reveal x1). Similarly, P2 will not send any
information about x2 to P1 before he knows x1. Hence the only escape
from this deadlock would be to use P3. However, as the transcripts of the
channel from P2 to P1 and the transcript of the broadcast channel do not
contain any joint information about x2, there exist some behavior for P3

which makes P1 receive the wrong output. Hence, an actively corrupted
P3 can just behave randomly (ignore all received messages and send ran-
dom bits whenever a message must be sent), and with some (possibly
negligible) probability, P1 will receive the wrong output, contradicting
the perfect correctness of the protocol.

3.6 Mixed Model with Unconditional Security and Broadcast 61

3.6 Mixed Model with Unconditional Security
and Broadcast

In this section, we consider the mixed model with unconditional security
and broadcast. The main result in this model is stated by the following
theorem [FHM98]:

Theorem 6 In the mixed model with broadcast channels, a set P =
{P1, . . . , Pn} of n processors can compute every specification unconditionally
(ta, tp, tf)-securely if and only if 2ta + 2tp + tf < n. The computation is poly-
nomial in n and linear in the size of the circuit.

As models with broadcast are not in the main focus of this thesis, we
only sketch the protocol for that model. Based on the protocol for the
active model with broadcast (sketched in Section 3.3), we outline how to
construct an unconditionally secure protocol for the mixed model with
broadcast.

3.6.1 Protocol

First, consider the case that tf = 0. In this scenario, the protocol of
Section 3.3 can be employed. This protocols tolerates up to t < n/2 ac-
tively corrupted processors in the stated model. Trivially, every (ta, tp)-
adversary can be seen as an active t-adversary with t = ta + tp (which is
not making use of all his power), and hence this protocol is also (ta, tp)-
secure for any ta, tp with 2ta + 2tp < n.

In order to tolerate adversaries with tf > 0, we need an extended
protocol. We start with the protocol of Section 3.3. We set the degree of
all sharings to t = ta + tp. In contrast to the active model, in the mixed
model a disqualified processor can either be actively corrupted or fail-
corrupted, and his shares of the factors must not be reconstructed if the
processor is fail-corrupted. Therefore, we need a more involved solution
for treating disqualified processors.

If during the multiplication protocol a processor is disqualified, then
he is excluded from all further computation. Generally, the shares of a
disqualified processor must not be revealed. Indeed, the shares of up to
tf disqualified processors can simply be omitted (the interpolation of the
degree-2t polynomial is possible with n − tf > 2(ta + tp) processors).

62 MPC Protocols with Threshold Security

Thus, the first tf times that some processor is disqualified the proces-
sor is excluded from the computation, but no further steps are taken. If
more than tf processors are disqualified, then there are at most tf fail-
corrupted processors among them, and the other disqualified processors
(say k) must be actively corrupted. Hence, among the remaining (non-
disqualified) processors there are at most ta−k actively corrupted proces-
sors. At this point, every intermediate value is reshared using a scheme
for n′ = n − k processors, tolerating only t′a = ta − k actively corrupted
processors (and tp passive corruptions). In order to do so, for every inter-
mediate value, every processor verifiably secret shares his share of that
value among the n′ remaining processors by using polynomials of de-
gree (ta− k)+ tp, and proves that the shared share is equal to his original
share. This can easily be verified by computing the difference of these
two shares (in a distributive manner, i.e., every processor subtracts one
share-share from the other) and by verifying that the difference is zero.
Finally, the secret is interpolated in a distributive manner (interpolation
is linear). This results in every processor having a reduced-degree share
of the secret which is committed by a reduced-degree polynomial. If dur-
ing this degree-reduction protocol some processors refuse to cooperate,
these processors are also disqualified and the reduction protocol restarts
(with an increased k). The number of restarts is limited by ta because at
most ta + tf processors can ever be disqualified.

3.6.2 Tightness

In order to prove the necessity of the condition 2ta + 2tp + tf < n
assume for the sake of contradiction that for some ta, tp, and tf with
2ta + 2tp + tf ≥ n every function can be computed perfectly (ta, tp, tf)-
securely. Trivially, each such protocol is also a (ta, tp)-secure protocol
among n′ = n − tf processors, simply by considering the case that the
adversary fail-corrupts the last tf processors at the very beginning of the
protocol. Hence, we have constructed a protocol which is secure against
a passively-corrupted majority, contradicting Theorem 2 of [BGW88].

3.7 Mixed Model with Unconditional Security
without Broadcast

The following theorem states the necessary and sufficient conditions for
secure MPC to exist in a model with unconditional security and without

3.8 Framework for Efficient Resilient Protocols 63

broadcast.

Theorem 7 In the mixed model without broadcast channels, a set P =
{P1, . . . , Pn} of n processors can compute every specification unconditionally
(ta, tp, tf)-securely if and only if 2ta + 2tp + tf < n and 3ta + tf < n. The
computation is polynomial in n and linear in the size of the circuit.

This security is achieved by the protocol of the previous section, when
simply all invocations to the broadcast primitive are replaced by invoca-
tions to a sub-protocol for Byzantine agreement. For 3ta + tf < n, such
sub-protocols are exist [MP91, GP92]. The necessity of these bounds fol-
lows immediately from the necessity of the bound in the unconditional
model with broadcast and the necessity of 3ta < n for broadcast (and the
fact that broadcast is a particular function for MPC).

3.8 Framework for Efficient Resilient Protocols

3.8.1 Introduction

Distributed protocols resilient against misbehavior of some of the pro-
cessors require in general much more communication than their private
(but non-resilient) counterparts, even when no cheating occurs. The rea-
sons for this contrast are two-fold: First, in a model where processors
might deviate from the protocol, expensive consistency checks must be
performed frequently, and agreement must be reached on whether or not
faults occurred. Second, if indeed at least one processor misbehaves, then
inconsistencies will occur, and costly fault-recovery procedures must be
applied. Note that the consistency checks are necessary even when no
cheating occurs, whereas fault recovery is necessary only when at least
one processor misbehaves.

In this section, we describe a new framework for efficient resilient pro-
tocols that overcomes these disadvantages. The key idea is to eliminate
at least one malicious processor (and potentially some honest processors)
each time a fault is detected. Hence the number of fault-recovery invoca-
tions is bounded by the maximal number of corrupted processors and is
independent of the length of the protocol. Furthermore, the resulting rare
occurrence of faults allows to reduce the frequency of consistency checks
and thereby to significantly reduce the communication-overhead caused
by them.

64 MPC Protocols with Threshold Security

The techniques presented in this section apply to many applications
in several models, including those relying on intractability assumptions.
The adversary can be static or adaptive, but not mobile: A mobile adver-
sary may release some of the corrupted processors during the protocol
execution and thereby regain the capability of corrupting new proces-
sors, which contradicts the idea of elimination of corrupted processors.

3.8.2 Incorporating Resilience into a Private Protocol

We consider a private protocol that proceeds in rounds (e.g., in each
round one gate is evaluated), and wish to perform this protocol in a re-
silient manner. In contrast to the classical approach to resilient proto-
cols, where after each round some consistency checks are performed and
agreement on whether or not a fault occurred is reached, we divide the
protocol into segments, each consisting of a sequence of rounds, and only
at the end of each segment the consistency of the data held by the pro-
cessors is checked and the processors agree on whether or not a fault oc-
curred (fault detection). If a fault is detected, then a set containing at least a
certain number of cheaters is identified (fault localization), the processors
in the set are eliminated from the further protocol execution (processor
elimination), and the failed segment is repeated (fault correction). Depend-
ing on the protocol, it might be necessary to take special measures to
ensure privacy after a failed round. In this case, after each round some
checks must be performed, but no agreement must be reached on the fact
whether or not a fault occurred (weak fault detection).

During a protocol consisting of m rounds, the classical approach in-
vokes m times fault detection and, if at least one processor misbehaves
permanently, m times fault-recovery. In our approach, where the proto-
col is divided into segments of ms rounds, only the weak fault detection
is invoked m times. Fault detection is performed m/ms times, and fault
localization, processor elimination, and fault correction are invoked at
most t times. By selecting ms appropriately, the overhead for the (in total
up to t) repetitions of a segment will not dominate the total complexity
of the protocol, and the costs for fault detection and fault localization are
independent of m (and polynomial in n). In many applications, this will
significantly reduce the overall complexity of the protocol.

We now describe the steps in more detail:

1. Private computation with weak fault detection. All rounds of the
segment are computed according to the private computation. The

3.8 Framework for Efficient Resilient Protocols 65

computation of this step has to be verifiable, i.e., it must be possible
to check later (see below) whether or not any faults occurred, but
robustness is not required, i.e., if faults occur, then the computation
may fail (in such a case it must be possible to perform an appropri-
ate fault localization, see below). If privacy is required, then after
each round, consistency checks are performed, and every proces-
sor sends to every other processor one bit indicating whether or
not he observed an inconsistency. A processor who observed or
was informed about an inconsistency will use random (or default)
dummy values unrelated to the actual values in all further rounds
of the segment.

2. Fault detection. The goal of fault detection is to reach agreement on
whether or not a fault occurred during the current segment. Typi-
cally, fault detection is achieved by having every processor broad-
cast (with a protocol for Byzantine agreement) a binary message
according to whether or not he observed or was informed about an
inconsistency in any round of the current segment. The following
Steps 3. to 5. are performed if and only if a fault is detected.

3. Fault localization. The purpose of fault localization is to find out
which processors are corrupted or, because agreement about this
can usually not be reached, at least to narrow down the set of pro-
cessors containing the cheaters. The output of an (r, p)-localization
is a set D with |D| = p processors, guaranteed to contain at least r
cheaters.

4. Processor elimination. The set D agreed upon during fault local-
ization is eliminated from the further computation. In general, after
eliminating the processors in D, the protocol cannot be continued
immediately, but it must be transformed to capture the new setting
with n − p processors and at most t − r cheaters. Of course, p and
r must be such that this transformation is possible and such that
the transformed protocol can be safely continued. Often, the trans-
formation of the protocol is not performed immediately, rather in
each round only those parts of the protocol are transformed that
are needed.

5. Fault correction. Since some processors are eliminated whenever
a fault is detected, faults can be corrected by repeating the current
segment of the protocol.

66 MPC Protocols with Threshold Security

3.9 Efficient MPC Protocol with Perfect Security

In this section we present a construction for efficient multi-party compu-
tation in the secure-channels model (without broadcast channels), based
on the framework with processor-elimination from the previous section
and the protocol for the active model from Section 3.2. We restrict to the
active model, but the protocol can easily and naturally be extended to
withstand mixed adversaries. Furthermore, we only consider threshold
adversaries, although the framework is not restricted to threshold secu-
rity. Finally, we focus on secure function evaluation (SFE) where the func-
tion is specified as an arithmetic circuit over the field, but the necessary
modifications to capture TPS will be mentioned.

The main result of this section is stated in the following theorem:

Theorem 8 A set of n processors with at most t < n/3 of them being actively
corrupted, can securely compute a function over a finite field F, usingO(d+n2)
communication rounds and with total communication complexity O(nIn

4 +
mn3 + nOn2) field elements, where nI and nO denote the number of inputs
and outputs, respectively, m denotes the number of multiplications and d the
multiplicative depth of the circuit computing the function.

3.9.1 Main Protocol

The protocol follows the classical approach for secure multi-party com-
putation: First, each processor secret-shares his input(s) among the pro-
cessors. Second, the circuit is evaluated with the shared values. Third,
the output value(s) are reconstructed towards the authorized processors.

According to the framework of Section 3.8, the circuit will be divided
into segments. If the evaluation of a segment fails, then some processors
are eliminated and the segment is repeated. We will uniquely use (1, 2)-
localizations, i.e., a set with two processors is identified and eliminated,
where one of the two processors is guaranteed to be corrupted. Clearly,
all processors must be able to provide input and receive output, includ-
ing processors that are eliminated in the protocol evaluation (also honest
processors can be eliminated). Therefore, the sharing of the input val-
ues is performed before that first segment in a resilient manner (without
using the processor elimination technique). Secret-reconstruction can be
performed towards an eliminated processor (this processor only receives
values and cannot cause inconsistencies).

3.9 Efficient MPC Protocol with Perfect Security 67

3.9.1.1 Sharing

The sharing is the one that was introduced in the active model (see Sec-
tion 3.2): To each processor Pi a unique public value αi ∈ F \ {0} is as-
signed. A value s is t-shared among the processors if there exist degree-t
polynomials f(x) and f1(x), . . . , fn(x) with s = f(0) and fi(0) = f(αi),
and the information held by processor Pi is the share si = f(αi), the
polynomial fi(x), and the share-shares sji = fj(αi) (for j = 1, . . . , n).

Note that during the protocol execution, all sharings will be of degree
t. Even once processors are eliminated (and the number of corrupted
players is strictly smaller than t), still all sharings are of degree t.

3.9.1.2 Segmentation

Due to the linearity of the secret-sharing scheme, linear functions of
shared values can be computed non-interactively, and hence only mul-
tiplication gates are relevant for the communication complexity.

The goal is to divide the circuit with m multiplication gates and mul-
tiplicative depth d into segments, such that

• the number of multiplication gates in each segment is at most ms =
dm/ne, and
• the multiplicative depth of each segment is at most ds = dd/ne,

where of course the number of segments should be small. We present a
very simple algorithm which results in less than 2n segments.

First, we assign a level to each multiplication gate, according to the
graphical representation of the circuit: The level of a gate is the number
of multiplication gates on the longest path from an input of the circuit to
the gate. Furthermore, we define a full order on the gates, which satisfies
the partial order given by the levels (but otherwise is chosen arbitrary).
Finally, we iteratively define the segments. The first segment contains
the first k1 gates (according to the above order), where k1 is the maximal
number such that both above conditions are still satisfied for this seg-
ment. The second segment contains the next k2 gates, where k2 is the
maximal number still satisfying the above two conditions, and so on.

One can easily verify that the number of segments is smaller than
2n: Every segment (but the last) either contains ms gates, or it contains
all (remaining) gates of ds levels of the circuit. Obviously, n segments

68 MPC Protocols with Threshold Security

of either type contain all gates of the circuit, hence there can be at most
n + (n− 1) segments, as claimed.

Due to player elimination, up to t segment evaluations will fail and
must be repeated. Hence, in total less than 3n segments are evaluated,
with less than 3m multiplication gates and with depth less then 3d.

3.9.1.3 Protocol overview

Let P denote the set of processors, where n = |P|, and t < n/3 the upper
bound on the number of cheaters. During the computation, processors
can be eliminated, and then P ′ will denote the set of remaining proces-
sors, n′ = |P ′|, and t′ the upper bound on the number of cheaters in this
set.

0. Set P ′ := P , n′ := n, t′ := t.
1. Input stage: Every processor P providing input secret-shares his

input-value (Sect. 3.9.2).
2. Computation stage (Sect. 3.9.3): For each segment of the circuit:

2.1 For each Pi ∈ P ′: set fault -detected i := false .
2.2 For each gate in the segment (all gates at the same level can be

evaluated in parallel):
• If the gate is linear: Call the sub-protocol for the evaluation of

linear functions (Sect. 3.9.3.1).
• If the gate is a multiplication gate: Call the multiplication sub-

protocol (Sect. 3.9.3.2). Processors with fault -detected i = true
use default shares. If Pi observed a fault in the multiplica-
tion sub-protocol, or was informed about a fault in weak fault
detection, then set fault -detected i := true.

2.3 For each Pi ∈ P ′, broadcast fault -detected i. If at least one pro-
cessor broadcasts fault -detected i = true, then the segment fault-
localization procedure is invoked to find a (1, 2)-localization D,
and P ′ is set to P ′ \D, n′ is set to n′− 2, t′ is set to t′− 1, and step
2. is restarted for the same segment.

3. Output stage: For every processor P that is to receive output: Call the
sub-protocol for receiving output (Sect. 3.9.4).

3.9 Efficient MPC Protocol with Perfect Security 69

3.9.1.4 Trusted Party Simulation TPS

In the context of TPS, the segmentation must be chosen more carefully.
For the sake of simplicity, we assume that the specification only contains
transmit statements from or to the trusted party τ , but no transmissions
between “normal” processors.7 This captures the most relevant specifi-
cations of on-going cooperations among processors.

As for secure function evaluation, the segmentation is chosen such
that each segment has limited length and depth. Furthermore, we must
ensure that repetition of a segment does not compromise security of the
computation. Therefore, we require that each segment either cannot fail
(there is no multiplication gate in the segment), or the trusted party τ
behaves like a black whole in this segment (processors send values to τ ,
who does arbitrary probabilistic computations, but no processor receives
anything from τ), or τ behaves like a deterministic emitter (arbitrary de-
terministic computations, send values to processors). These requirements
are formalized in the sequel:

• The number of multiplication statements for τ (i.e., statements of
the form comp(τ, ∗, ·, ·, ·)) in each segment is at most ms = dm/ne,
• the multiplicative depth of these statements (i.e., the length of the

longest path in the dependency graph) of each segment is at most
ds = dd/ne, and
• (at least) one of the three following conditions is satisfied, namely

either
• the segment contains no multiplication statement for τ

(comp(τ, ∗, ·, ·, ·)), or
• the segment contains no transmit statement from τ

(transmit(τ, ·, ·, ·)), or
• the segment contains neither a transmit statement to τ

(transmit(·, τ, ·, ·)), nor a statement instructing τ to choose a
random field element (comp(τ, ran, ·)).

The first two conditions are just equivalent to the conditions in the sce-
nario of SFE, and they ensure that the repetitions of any up to t segments
will not dominate the overall complexity of the protocol. The third con-
dition ensures that every segment either cannot fail, or that it can be re-
peated smoothly. The reason for this to hold is as follows: A segment
without multiplication statements for τ cannot fail, hence there is nothing

7Conditions for the case with transmissions between processors can be derived, but they
are complicated. Furthermore, any specification can be manipulated to satisfy this require-
ment by using τ as a “hub”.

70 MPC Protocols with Threshold Security

to take care of. A segment that contains no transmit statements from τ can
be repeated, as the adversary gains no information during the failed ex-
ecution (there was no transmit-statement to a potentially corrupted pro-
cessor in this segment). During the execution of a segment containing
transmit statements from τ to processors, the adversary can gain addi-
tional information about the trusted party’s view, but when repeating the
segment, the trusted party will perform exactly the same operations on
the same data, and the joint view of all uncorrupted processors (includ-
ing τ) is equally distributed after the first run and after the repetition.

Note that these additional requirements influence the number of seg-
ments to be evaluated. However, in most applications of on-going com-
putations, the specification contains blocks where processors hand inputs
to τ , blocks where τ securely performs some computation on these val-
ues, and blocks where τ hands some outputs to some or all of the pro-
cessors, and these additional requirement do not increase the number of
segments significantly. However, we will not analyze the exact complex-
ity of such on-going computations.

3.9.2 Input Stage

In the input stage, every processor secret-shares his input(s). We use the
verifiable secret-sharing scheme from the active protocol, as described in
Section 3.2.1.

In the context of TPS, providing input can happen to be performed
after k > 0 times processors have been eliminated. In this case, the VSS
protocol must be slightly modified: The processor set is P′ (with n′ =
|P ′| = n−2k), and the degree of all involved polynomials is t. The sharing
is accepted if there are at most t′ = t − k accusations, else it is rejected.
Let ` denote the number of accusations in the first complaint stage. Then
there are still at least n′−t′−` honest non-accusing processors, and a false
polynomial broadcast by the dealer would cause at least (n′ − t′ − `) − t
further accusations, which adds up to a total of n′ − t′ − t = n − 2t − k
accusations, which is greater than t′ = t− k for t < n/3.

3.9.3 Computation Stage

The computation of the circuit proceeds segment by segment. We denote
the current set of processors with P ′, where n′ = |P ′|, and the current
upper bound on the number of cheaters in P ′ with t′. Without loss of

3.9 Efficient MPC Protocol with Perfect Security 71

generality, we assume that P ′ = {P1, . . . , Pn′}. Note that t′ denotes the
upper bound on the number of cheaters, but still the degree of all shar-
ings will be t.

A segment is computed as follows: First, the gates of the segment are
computed. Linear functions can be computed robustly (as no communi-
cation is needed). In contrast, the computation of multiplication gates is
private and verifiable, but not robust. At the end of each multiplication
sub-protocol, the (honest) processors inform each other whether or not
they observed an inconsistency in a weak fault detection procedure. If a
processor observed such an inconsistency, or was informed about one in
weak fault detection, then he continues the computation of the segment
with default values independent of the actual shares. At the end of each
segment, fault detection is performed, and if necessary, fault localization,
processor elimination and fault correction.

3.9.3.1 Linear functions

Linear functions are evaluated exactly like in the active protocol of
Section 3.2.3. Let L be a linear function, and assume that the
values a, b, . . . are t-shared with polynomials f(x), f1(x), . . . , fn′(x),
g(x), g1(x), . . . , gn′(x), . . . , respectively. Due to the linearity of L, the
polynomials h(x) = L(

f(x), g(x), . . .
)

and hi(x) = L(
fi(x), gi(x), . . .

)
define a t-sharing of c = L(a, b, . . .). Hence, processor Pi can compute
his share of c as hi(x) = L(fi(x), gi(x), . . .) and cji = L(aji, bji, . . .) (for
j = 1, . . . , n′). The privacy of this protocol is trivial (there is no commu-
nication), and the correctness is due to the linearity of the sharing.

3.9.3.2 Multiplication

The crucial sub-protocol for multiplication is a re-sharing protocol. A re-
sharing protocol is a protocol that takes a γ-sharing of a value s and gen-
erates an independent δ-sharing of s. This re-sharing is possible in a ver-
ifiable (but non-robust) manner if t′ < n′ − γ. Privacy can be guaranteed
if t′ ≤ γ and t′ ≤ δ.

The protocol for computing the t-shared product c of two t-shared
values a and b proceeds in three steps: First, both inputs a and b are
re-shared with degree t′. Second, every processor locally multiplies his
respective shares and share-shares of a and b, resulting in a 2t′-sharing of
c. And third, this 2t′-sharing of c is re-shared to a t-sharing.

72 MPC Protocols with Threshold Security

We have to show that the necessary (and sufficient) conditions for all
re-sharings are satisfied: After a sequence of k (1, 2)-localizations and
eliminations, we have n′ = n − 2k and t′ = t − k. The requirements for
the re-sharing are t′ < n′ − t, respectively t′ < n′ − 2t′, and both are
satisfied for 3t < n.

Re-sharing protocol The goal of re-sharing is to transform a γ-sharing
of a value s into a proper and independent δ-sharing of s, where t′ < n′−
γ, t′ ≤ γ and t′ ≤ δ. The re-sharing sub-protocol can fail in the presence
of malicious processors. However, if it fails, all (honest) processors will
learn so, and at the end of the segment, agreement on whether or not
such a fault occurred will be reached and the segment will be repeated if
necessary.

Roughly speaking, our re-sharing protocol works along the lines of
degree reduction of [BGW88, GRR98], but it is significantly more effi-
cient, due to various techniques in the spirit of the processor-elimination
framework (cf. Section 3.8).

Assume that s is γ-shared with the polynomials f(x) and
f1(x), . . . , fn′(x), and processor Pi holds the polynomial fi(x) (hence his
share si = fi(0)), and his share-shares sji = fj(αi) (for j = 1, . . . , n′).
The value s can be expressed as a linear combination (Lagrange inter-
polation) of the values s1, . . . , sn′ [BGW88, GRR98]. Therefore, once the
values s1, . . . , sn′ are δ-shared, the required δ-sharing of s can be com-
puted by a distributed evaluation of the appropriate linear function (as
described above). Thus, the re-sharing can be performed as follows: Ev-
ery processor δ-shares his share si, proves that the shared value is indeed
si, and computes his degree-δ share of s as a linear combination of the
received shares of s1, . . . , sn′ .

We describe the steps in more detail:

1. NON-ROBUST VSS. Every processor Pi shares his share si with the
degree-δ polynomials h(i)(x), h

(i)
1 (x), . . . , h

(i)
n′ (x) in a non-robust

but verifiable manner. The protocol works like the first two steps of
the VSS in the Input Stage (cf. Section 3.9.2):

a) Pi selects at random a polynomial p(i)(x, y) of degree δ in both
variables, where p(i)(0, 0) = si, and sends the polynomials
h

(i)
j (x) = p(i)(x, αj) and h̃

(i)
j (y) = p(i)(αj , y) to processor Pj

(for j = 1, . . . , n′). This implicitly defines the polynomial
h(i)(x) = p(i)(0, x).

3.9 Efficient MPC Protocol with Perfect Security 73

b) Each pair of processors Pj , Pk (for 1 ≤ j, k ≤ n′) verifies the
equality of their common shares. For this, Pj sends h

(i)
j (αk)

to Pk, who then checks whether the received value is equal to
h̃

(i)
k (αj).

2. PROVING CORRECTNESS. Every processor Pi proves that h(i)(0) =
fi(0) by showing that the free coefficient of the polynomial h(i)(x)−
fi(x) is equal zero. This is done in two steps:

a) Let µ = max(γ, δ). Pi computes the polynomial g(i)(x) :=
(h(i)(x) − fi(x))/x (whose degree is at most µ − 1), and dis-
tributes the shares on g(i) among the processors. For this pur-
pose the non-robust VSS protocol from Step 1 is used, where
the corresponding bivariate polynomial, say q(i)(x, y), is cho-
sen randomly so that qi(0, x) = g(i)(x).

b) Every processor Pk checks whether αkg(i)(αk) = h(i)(αk) −
fi(αk).

3. WEAK FAULT DETECTION. Every processor sends to every other
processor one bit indicating whether or not any of his consistency
checks in Steps 1, 2a and 2b, have failed.

4. LAGRANGE INTERPOLATION. Every processor Pi, who has nei-
ther detected nor was informed about any inconsistencies, com-
putes his degree-δ share of s as a linear combination of his shares of
s1, . . . , sn′ .

It is easy to see (using basic algebra), that if no processor has re-
ported inconsistencies during the weak fault detection, then the result
of re-sharing is a proper δ-sharing of s. Otherwise, if at least one (honest)
processor has sent or received a bit indicating inconsistencies, it will be
possible to identify a (1, 2)-localization (see below).

3.9.3.3 Fault Detection

At the end of the segment, every processor Pi broadcasts one bit indicating
whether or not an inconsistency was observed by or reported to Pi in one
of the re-sharing protocols in the segment. If all processors broadcast
a confirmation, then the computation of the segment is completed and
the next segment can be started. If at least one processor broadcasts a
complaint, then fault localization is invoked.

74 MPC Protocols with Threshold Security

3.9.3.4 Fault Localization

The goal of fault-localization is to identify a (1, 2)-localizationD, i.e., a set
D ⊂ P containing two processors, at least one of them being corrupted.
These processors will then be eliminated from the protocol, and hence
fault localization is invoked at most t times.

The two processors to be eliminated are selected from the processors
involved in the first fault that occurred in the current segment.8 In or-
der to determine the first fault, every processor who complained during
fault detection broadcasts the index (relative to the segment) of the re-
sharing protocol, in which for the first time an inconsistency occurred,
together with a number denoting the step of the re-sharing protocol in
which the fault was detected (Step 1, 2a or 2b), or reported (Step 3). From
the broadcast indices (gate-number and step-number), the smallest one
is selected. Let Pk denote the processor who complained about the se-
lected re-sharing protocol (if there are several such processors, we select
the one with the smallest index k). The method of determining the (1, 2)-
localizationD depends on the step of the re-sharing protocol in which the
first fault appeared:

(i) The first fault is in Step 1, i.e., for some i and j, the value h
(i)
j (αk)

sent by Pj differs from h̃
(i)
k (αj):

Pk broadcasts i, j, and h̃
(i)
k (αj). On this request, Pj broadcasts

h̃
(i)
j (αk), and Pi broadcasts p(i)(αk, αj). Given these three values,

the set D is determined as follows:

• If h̃
(i)
k (αj) = h

(i)
j (αk), then D := {Pj , Pk}, else

• if p(i)(αk, αj) 6= h̃
(i)
k (αj), then D := {Pi, Pk}, else

• if p(i)(αk, αj) 6= h
(i)
j (αk), then D := {Pi, Pj}.

(ii) The first fault is in Step 2a: analogously to the case (i).

(iii) The first fault is in Step 2b, i.e., for some i the check αkg(i)(αk) ?=
h(i)(αk)− fi(αk) failed:
According to Pk, processor Pi is cheating, so Pk broadcasts the in-
dex i, and D is set to {Pi, Pk}.

8Only the first occurred fault must be caused by a corrupted processor. Later faults can
be aftereffects of the first fault.

3.9 Efficient MPC Protocol with Perfect Security 75

(iv) The first fault is in Step 3, i.e., Pk claims that in Step 3 some proces-
sor reported a fault to him:
Since no processor admits the discovery of an inconsistency (as fol-
lows from the rule for choosing Pk), obviously either Pk is lying
or the processor who reported the fault to him was malicious. Pk

broadcasts the index i of the processor Pi who in Step 3 reported
the fault to him, and D is set to {Pi, Pk}.

It is obvious that all processors find the same set D, and that in
each case at least one processor in D is corrupted, hence D is a (1, 2)-
localization.

3.9.3.5 Processor Elimination

Processor elimination is trivial. All processors set P′ to P ′\D, and reduce
n′ to n′ − 2 and t′ to t′ − 1.

3.9.3.6 Fault Correction

Fault correction is achieved by repeating the failed segment. Since at each
failure at least one malicious processor is eliminated, there will be at most
t segment-repetitions in a complete protocol run.

3.9.4 Output Stage

Let P be the designated processor supposed to receive a value s that
is t-shared among the processors in P ′ with the polynomials f(x) and
f1(x), . . . , fn′(x). First, every processor Pi ∈ P ′ sends the polynomial
fi(x) and the share-shares s1i, . . . sn′i to P. Then, P interpolates the secret
s from the shares si = fi(0) for all i where fi(x) is consistent with all but
(at most) t′ share-shares sij . Note that this protocol needs neither error
correction nor broadcast.

The privacy of this protocol is obvious. The correctness can be proven
as follows: At most t′ processors hand a bad polynomial f ′i(x) 6= fi(x),
and they will be inconsistent with at least n′ − t − t′ > t′ share-shares.
Hence, P will ignore bad polynomials and interpolate the correct secret
s.

76 MPC Protocols with Threshold Security

3.9.5 Complexity Analysis

In this section we analyze the communication complexity of the proposed
multi-party computation protocol (for secure function evaluation) and
compare it with the most efficient protocols known before. We focus on
the case when an adversary is present and neglect the efficiency gain that
some protocols achieve when no fault at all occurs. The computational
complexity is not analyzed because it is only on the order of the commu-
nication complexity, which is clearly the bottleneck of such a multi-party
computation.9

The communication complexity of a protocol is characterized by two
quantities: the bit complexity (BC, the total number of bits transmitted
by all processors during the protocol), and the round complexity (RC, the
number of communication rounds of the protocol).

3.9.5.1 Broadcast Simulation

The considered multi-party computation (MPC) protocols make exten-
sive use of a broadcast primitive and hence their efficiency depends
heavily on the communication complexity of the applied broadcast sub-
protocol. Therefore, in a first step we will count broadcast messages sepa-
rately, namely in terms of the broadcast complexity (BCC, the total number
of bits broadcast by all processors during the protocol) and the broadcast
round complexity (BCRC, the total number of broadcast rounds). In a sec-
ond step, we determine the communication complexity of the protocol
where the broadcast primitive is realized with an efficient broadcast pro-
tocol.

The broadcast protocols with optimal bit complexity, namely O(n2)
bits, require O(n) rounds of communication [BGP89, CW89, DR85,
HH91]. Broadcast protocols requiring only a constant number of com-
munication rounds are known [FM88, BPW91], but they communicate
at least O(n4) bits and have a non-zero probability of error. A protocol
with both constant rounds and O(n2) bit complexity is not known, and
it is not clear whether such a protocol exists. However, the algorithm

9This is true unless the number of addition (or linear) gates (which require no commu-
nication) in the circuit is by orders of magnitude greater than the number of multiplication
gates. It is an interesting research problem to minimize the number of multiplication gates
in an arithmetic circuit for a given function, without restriction on the number of addition
(or linear) gates [BPP98].

3.9 Efficient MPC Protocol with Perfect Security 77

of Turpin and Coan can reduce the complexity of broadcasting long mes-
sages: For a message of k bits, this algorithm (applied to [FM88]) commu-
nicates O(kn2 + n5) bits in O(1) rounds. For some circuits (particularly
for circuits with small depth), this algorithm improves the communica-
tion complexity of the protocol. However, for many circuits (with great
depth), the algorithm even increases the complexity. In the cryptographic
setting there exist a broadcast protocol with optimal bit complexity, i.e.,
O(n2) bits, with a constant number of rounds, e.g. [CKS00]. However,
this protocol requires a trusted dealer in the set-up phase. It is unclear
whether such a protocol exists without additional assumptions on the
model. There exist also various techniques which improve the efficiency
of (stand-alone) protocols for Byzantine agreement, e.g. “early stopping”
[DRS82]. However, they lead to “staggered termination” and hence are
not directly applicable when such a Byzantine agreement is used as a
sub-protocol of a synchronous multi-party protocol.

3.9.5.2 Complexity of the new protocol

We present a detailed analysis of the proposed protocol. Note that in the
expressions describing the respective complexities only the leading terms
are given while the terms of lower orders are neglected. Furthermore we
assume that n = 3t + 1. If there are more processors (i.e., n > 3t + 1),
one can eliminate all but 3t + 1 of the processors before the computation
starts and thereby reduce the total communication complexity of the pro-
tocol. Of course, the eliminated processors still provide input and receive
output.

PROVIDING INPUT (cf. Section 3.9.2). For the distribution of polynomials
2nt field elements are sent. During the consistency checks every proces-
sor sends to every other processor one value from F, yielding in total n2

field elements. Afterwards n bits indicating the results of the checks are
broadcast. If there was no cheating the protocol is finished, yielding in
total BC = 5/3n2 field elements, RC = 2, BCC = n bits and BCRC = 1.
Otherwise, if cheating occurs, the complaints and the dealer’s replies re-
quire broadcasting of at most n2 bits and nt field elements. Furthermore,
during the two possible rounds of accusations (where the accusations of
the second round require no reply) 2n bits and at most 2t2 field elements
are broadcast. Hence, in the case with cheating BC and RC are the same
as without cheating, but BCC = n2 + (5/9n2) log |F| bits and BCRC = 6.

RECEIVING OUTPUT (cf. Section 3.9.4). Every processor sends to the des-
ignated processor P a polynomial of degree t and n share-shares, i.e.,

78 MPC Protocols with Threshold Security

(t + n) field elements, yielding in total BC = 4/3n2 field elements and
RC = 1. Broadcast is not used.

MULTIPLICATION (cf. Section 3.9.3.2). One multiplication involves three
re-sharings. In each re-sharing, for every processor the following com-
plexities arise: Re-sharing one’s share plus the consistency checks: BC =
2nt + n2 field elements; re-sharing the high-degree (at most 2t) polyno-
mial with zero-free coefficient: BC = 4nt + n2 field elements. Addition-
ally, one weak fault detection is performed: BC = n2 bits. Altogether,
the costs for one re-sharing are: BC = n(6nt + 2n2) log |F| + n2 bits
in RC = 3 rounds. One multiplication involves three re-sharings, one
for both inputs (in parallel) and one for the output. This sums up to:
BC = 12n3 log |F|+ 3n2 and RC = 6.

SEGMENT WITH ms MULTIPLICATIONS WITH DEPTH ds (cf. Section 3.9.1).
The computation of the ms multiplications requires BC = (12n3 log |F|+
3n2)ms bits in RC = 6ds rounds. At the end of the segment, during fault
detection, n bits are broadcast, which yields BCC = n bits in BCRC = 1
round.

OVERHEAD FOR FAILED SEGMENTS (cf. Section 3.9.3.4). In fault local-
ization, every processor broadcasts the index of the multiplication gate
with the first recognized inconsistency. This requires BCC = n log ms

bits. Then, at most three field elements are broadcast, and at most
two processor indices. This gives the following overall complexities:
BCC = n log ms + 3 log |F|+ 2 logn bits in BCRC = 3 rounds.

FUNCTION WITH nI INPUTS, nO OUTPUTS, m MULTIPLICATIONS, AND
DEPTH d. The protocol for providing input is performed nI times in
parallel. Let k denote the number of segments, each consisting of at
most ms multiplications with depth at most ds. At most t segments
may fail and require repetition. The protocol for computing output
is performed nO times in parallel. Since t < n/3 and n < |F|, this
yields in total BC = O(nIn

2 + (m + nms)n3 + nOn2) field elements,
RC = O(d + nds), BCC = O(nIn

2 log |F| + (k + n)n + n2 log ms) bits,
and BCRC = O(k + n). For ms = dm/ne, ds = dd/ne, and hence k = 2n,
this gives BC = O(nIn

2 + mn3 + nOn2) field elements, RC = O(d + n),
BCC = O(nIn

2 log |F| + n2 log m
n)) bits, and BCRC = O(n). Finally,

we substitute the broadcast primitive by invocations of a broadcast pro-
tocol with optimal bit complexity [BGP89, CW89], and obtain a multi-
party protocol with BC = O(nIn

4 + mn3 + nOn2) field elements10 and
10plus O(n4 log m

n
) bits, but this vanishes in mn3 if m ≥ n, and in nIn4 if m < n and

nI ≥ 1.

3.9 Efficient MPC Protocol with Perfect Security 79

RC = O(d + n2), as claimed in Theorem 8.

3.9.5.3 Comparison with other protocols

The complexity of the new protocol should be compared with the most
efficient multi-party computation protocol for the unconditional model
known before, namely the protocol of Beaver [Bea91a] (with [BGW88] as
basic protocol), provided that the used broadcast primitive is replaced
by a Byzantine agreement protocol with optimal bit complexity [BGP89,
CW89]. The total bit complexity of this protocol is O(nIn

4 + mn6 + nOn)
field elements, and the total round complexity is O(d + n).11

For completeness, we also analyze the complexities of other well-
known multi-party protocols. Most multi-party protocols invoke the
broadcast primitive at least once in each (multiplication) gate, and hence
the total round complexity of the multi-party protocol is at least d times
the round complexity of the used broadcast protocol. For the sake of sim-
plicity we assume in the sequel that the number of inputs is nI = O(n),
the number of outputs is nO = O(n), and the number of multiplications
in the circuit to be computed is at least m = Ω(n). The bit complexities
(BC) are specified in field elements, not bits. A more detailed analysis of
the complexities is given in Section 3.9.6.

Table 3.2 summarizes the complexities of unconditionally secure
multi-party protocols. Note that the protocol of Franklin and Yung [FY92]
improves the efficiency of [BGW88] only when no adversary is present.
Gennaro, M. Rabin, and T. Rabin [GRR98] propose two improvements on
[BGW88], an algebraic simplification and a new sub-protocol for proving
that a shared value is the product of two shared factors. The latter sub-
protocol is insecure (cf. [HMP00]) and hence ignored in our analysis, and
the former alone does not improve the order of the complexity of the pro-
tocol. Moreover, the stated complexity of [CCD88] hides a large constant
(depending polynomially on the security parameter) due to recursive ap-
plication of cut-and-choose techniques.

Finally, we compare the complexity of the new protocol with the best
protocol for the cryptographic model, in which up to t < n/2 of the
processors can be corrupted, but the security of the protocol relies on
unproven assumptions. The most efficient protocol in this setting is the

11The same bit complexity is achieved by [BGW88] with [BGP89, CW89] as broadcast
protocol, but then the round complexity is O(dn).

80 MPC Protocols with Threshold Security

MPC protocol Broadcast protocol BC RC

this protocol [BGP89, CW89] O(mn3) O(d + n2)

[BGW88] [FM88]
[BGP89, CW89]

O(mn8)
O(mn6)

O(d)
O(dn)

[CCD88] [FM88]
[BGP89, CW89]

O(mn9)
O(mn7)

O(dn)
O(dn2)

[Bea91a] [BGP89, CW89] O(mn6) O(d)

[FY92] [FM88]
[BGP89, CW89]

O(mn8)
O(mn6)

O(d)
O(dn)

[BGW88, GRR98] [FM88]
[BGP89, CW89]

O(mn8)
O(mn6)

O(d)
O(dn)

Table 3.2: Communication complexities of unconditional MPC
protocols.

protocol of [GRR98]. Also this protocol makes extensive use of a broad-
cast primitive (with O(n2) invocations in each multiplication gate), and
hence depends strongly on the efficiency of the used broadcast protocol.
Using a protocol for Byzantine agreement with optimal bit complexity
yields the overall complexities presented in Table 3.3. Note that the rec-
ommended broadcast protocol [CKS00] provides cryptographic security,
but it assumes a trusted dealer in the set-up phase. If this is not accept-
able, then another bit-optimal broadcast protocol can be used, but the
round complexity of the resulting protocol will be super-linear.

MPC protocol Broadcast protocol BC RC

[GRR98]
[CKS00]
[BGP89, CW89]
[FM88]

O(mn4)
O(mn4)
O(mn6)

O(d)
O(dn)
O(d)

Table 3.3: Communication complexities of cryptographic MPC
protocols.

3.9 Efficient MPC Protocol with Perfect Security 81

3.9.6 Complexity Analysis of Known Protocols

3.9.6.1 Analysis of [BGW88]

Providing one input requires one VSS of [BGW88], hence the correspond-
ing complexities here are the same as in our protocol. Receiving output
requires in BC = n field elements and RC = 1. For multiplication every
processor shares t+3 values (shares of the factors, product of these shares,
and t auxiliary values during the ABC-protocol). Hence for one multi-
plication n(t + 3) VSS operations are performed, yielding the following
complexities: BC = O(n4) field elements, RC = O(1), BCC = O(n4) field
elements and BCRC = O(1). When using [BGP89, CW89] as broadcast
sub-protocol, this results in total complexities for m multiplication gates
with depth d of BC = O(mn6) field elements and RC = O(dn). When in-
stead the broadcast protocol of [FM88] is used, then in total BC = O(mn8)
field elements and RC = O(d).

3.9.6.2 Analysis of [CCD88]

The protocol of [CCD88] makes extensive use of cut-and-choose tech-
niques. For simplicity, we neglect the factors (depending on the security
parameter) resulting from these techniques, and also omit the BC and
RC complexities of the sub-protocols, while concentrating on the use of
broadcast. A basic tool of the protocol is a double-blob, whose complex-
ities are BCC = O(n3) field elements and BCRC = O(n). For providing
one input a robust double-blob is used, which requiresO(n) double-blobs
(performed possibly in parallel), hence BCC = O(n4) field elements and
BCRC = O(n). Receiving output requires BCC = O(n2) field elements
and BCRC = O(1). One multiplication gate uses O(n) robust double-
blobs (which also may be performed in parallel), resulting BCC = O(n5)
field elements and BCRC = O(n). When using [BGP89, CW89] as broad-
cast sub-protocol, this results in total complexities for m multiplication
gates of BC = O(mn7) field elements and RC = O(dn2). When instead
the broadcast protocol of [FM88] is used, then in total BC = O(mn9) field
elements and RC = O(dn).

3.9.6.3 Analysis of [Bea91a]

The protocol of [Bea91a] is essentially the same as [BGW88] except for
the multiplication sub-protocols being performed in the pre-computation

82 MPC Protocols with Threshold Security

stage (all in parallel). In addition to [BGW88], 2m random values must
be generated (for the circuit randomization), which costs additional 2mn
VSS operations. This results in the following complexities for m multipli-
cation gates: BC = O(mn4) field elements, RC = O(d), BCC = O(mn4)
field elements and BCRC = O(1). When using [BGP89, CW89] as broad-
cast sub-protocol, this results in total complexities for m multiplication
gates of BC = O(mn6) field elements and RC = O(d + n). There is no
advantage in using [FM88] as broadcast protocol.

3.9.6.4 Analysis of [FY92]

In the protocol of [FY92] first an efficient, fault-detecting but non-resilient
protocol is performed. If an adversary is present (even if only a single
processor is corrupted) and a fault is detected, the entire computation is
restarted using the resilient protocol of [BGW88]. Hence the protocol of
[FY92] has essentially the same complexity as the protocol of [BGW88].

3.9.6.5 Analysis of [BGW88, GRR98]

In [GRR98], two simplifications to the protocol of [BGW88] are proposed.
An algebraic simplification of the multiplication sub-protocol (using La-
grange interpolation), and a new sub-protocol for proving that a shared
value is the product of two shared factors. The latter was shown to be in-
secure (cf. [HMP00]), and the efficiency improvement of the former alone
does not affect the complexity order of the resulting protocol. Hence the
complexity of this protocol is equal to the complexity of [BGW88].

3.9.6.6 Analysis of [GRR98], cryptographic security

In the protocol of [GRR98], providing one input requires one VSS of
[GRR98], which is clearly dominated by broadcast: BCC = O(n) field
elements and BCRC = O(1). The sub-protocol for receiving output
has BC = O(n) field elements and RC = O(1). For multiplication,
O(n) VSS operations are performed, yielding the following complexities:
BCC = O(n2) field elements and BCRC = O(1). When using [CKS00] as
a broadcast sub-protocol, this results in total complexities for m multipli-
cation gates of BC = O(mn4) field elements and RC = O(d).

3.9 Efficient MPC Protocol with Perfect Security 83

3.9.6.7 Analysis of [Bea91a] with [GRR98] multiplication, crypto-
graphic security

Per multiplication, O(n) VSS operations are performed, and for the
preparation of the random values, 2mn VSS operations are necessary.
Hence in total there are O(mn) VSS operations, which results in a total
complexity of BCC = O(mn2) field elements and BCRC = O(1). When
using [BGP89, CW89] as broadcast sub-protocol, this results in total com-
plexities for m multiplication gates of BC = O(mn4) field elements and
RC = O(d). There is no advantage in using [FM88] as broadcast protocol.

Chapter 4

General Adversaries in
MPC

For many applications, threshold-security as provided by classical multi-
party protocols is not sufficient. More generally, security is defined with
respect to an adversary structure, a set of adversary classes, where each
class specifies which processors may be corrupted in which mode. We
consider the passive model, where an adversary class is specified by a
subset of the processor set, indicating which processors may be passively
corrupted, the active model, where still a class is a subset of the proces-
sors set, but this set may be actively corrupted, and the mixed model,
where a class is a pair of subsets of the processor set, the first subset
indicating which processors may be actively corrupted, and the second
indicating which processors may be passively corrupted. Fail-corruption
is not considered in this chapter.

The main technique to construct multi-party protocols secure against
a general adversary is processor simulation: We start with a multi-party
protocol among three or four virtual processors, with security against an
adversary corrupting one of these processors. Then, each of these vir-
tual processors is simulated by a multi-party protocol among a set of
new (virtual) processors, and so on. We formally define what it means
to simulate a processor by a multi-party protocol among a set of (new)
processors, and we derive the tolerated adversary structure of the new
protocol as a function of the adversary structures of the original protocol
and the protocols used for the simulation. This technique of simulating

86 General Adversaries in MPC

processors will be of central importance when constructing protocols for
general adversary structures. It turns out that it is sufficient to consider
univariate (i.e., passive or active, but not mixed) adversary structures.
The main result about processor simulation, which will be rigorously
proven in Section 4.1, is the following: Consider a multi-party compu-
tation protocol, in which some of the (virtual) processors are simulated
using other multi-party computations. Then, the resulting protocol tol-
erates a specific adversary if every corrupted non-simulated processor is
tolerated in the original protocol and, in addition, for every simulated
processor, either the adversary is tolerated in the corresponding simula-
tion sub-protocol, or this processor is tolerated to be (additionally) cor-
rupted in the original protocol. The intuition behind this is that if the
adversary is tolerated in the simulation sub-protocol, then the simulated
virtual processor behaves honestly, and follows the protocol. If, how-
ever, the adversary is not tolerated in the simulation sub-protocol, then
the simulated processor might misbehave, and this must be tolerated in
the main protocol.

For constructing protocols secure against general adversaries, we will
not use the full power of processor simulation. The simulation trees will
be simple and “clean”. But we think that processor simulation is a generic
tool that might be useful for other purposes as well, and therefore intro-
duce the general simulation techniques and prove security for arbitrary
processor simulation hierarchies.

With these foundations, we can combine given protocol generators
and recursively construct new multi-party computation protocols. By
clever combining processor-simulation trees, protocols for any admissi-
ble adversary structure can be constructed.

We first focus on the passive model, and then on the active model,
once without assuming broadcast channels, and once with assuming
broadcast channels. We then generalize these results by considering the
mixed model with simultaneous active and passive corruptions, once
with perfect security (with or without broadcast channels), once with un-
conditional security with assuming broadcast channels, and finally, with
unconditional security without assuming broadcast.

In order to state the main results on the feasibility of multi-party com-
putation in the considered models, we need to define some predicates on
adversary structures. We first define two predicates on univariate struc-

87

tures:

Q(2)(P ,Z) ⇐⇒ ∀Z1, Z2 ∈ Z : Z1 ∪ Z2 6= P ,

Q(3)(P ,Z) ⇐⇒ ∀Z1, Z2, Z3 ∈ Z : Z1 ∪ Z2 ∪ Z3 6= P .

Furthermore, we define three predicates on “bivariate” structures for the
mixed model:

Q(2,2)(P ,Z) ⇐⇒ ∀(D1, E1), (D2, E2) ∈ Z : D1 ∪ E1 ∪D2 ∪ E2 6= P ,

Q(3,2)(P ,Z) ⇐⇒ ∀(D1, E1), (D2, E2), (D3, E3) ∈ Z :
D1 ∪ E1 ∪D2 ∪ E2 ∪D3 6= P ,

Q(3,0)(P ,Z) ⇐⇒ ∀(D1, E2), (D2, E2), (D3, E3) ∈ Z : D1 ∪D2 ∪D3 6= P .

In the passive model, a passive adversary structure can be tolerated if
and only if no two sets in the structure cover the full processor set (i.e., if
Q(2)(P ,Z) is satisfied). This condition corresponds to (and strictly gener-
alizes) the necessary condition for the passive threshold model, namely
that tp < n/2. Formally stating and proving this result is the goal of
Section 4.2.

Analogously, in the active model, an active adversary structure can be
tolerated if no three sets cover the full processor set (i.e., if Q(3)(P ,Z) is
satisfied). This condition immediately corresponds to (and strictly gener-
alizes) the condition in the active threshold model, namely that ta < n/3.
We will state and prove this result in Section 4.3.

In the active model with broadcast, the necessary and sufficient con-
dition for unconditionally secure multi-party computation is that no
two sets in the adversary structure cover the full processor set (i.e., if
Q(2)(P ,Z) is satisfied). This condition corresponds to (and strictly gener-
alizes) the condition in the active threshold model, namely that ta < n/2.
This model is considered in Section 4.4.

In the mixed model, where passive and active corruption occur si-
multaneously, we consider bivariate adversary structures. The necessary
and sufficient condition for perfectly secure multi-party computation to
exist for every specification is that the union of two adversary classes and
the active set of another class in the adversary structure do not cover the
full processor set, i.e., Q(3,2)(P ,Z) is satisfied. Also this condition strictly
generalizes the condition for the threshold mixed model with active and

88 General Adversaries in MPC

passive corruptions, namely that 3ta + 2tp < n. We will prove this result
in Section 4.5.

When given broadcast channels, and accepting a negligible error
probability, then the above condition can be weakened: It is sufficient
(and necessary) that no two adversary classes cover the full processor set,
i.e., Q(2,2)(P ,Z) must be satisfied. Also this condition strictly generalizes
the corresponding condition for the threshold mixed model, namely that
2ta + 2tp < n. We consider this model and prove the necessity and suffi-
ciency of the condition in Section 4.6

Finally, if no broadcast channels are available, but still some error
probability is tolerated, then the additional requirement that the active
sets of any three classes in the adversary structure do not cover the pro-
cessor set (i.e., Q(3,0)(P ,Z)), is required for simulating the broadcast
channels. This corresponds to the additional condition that 3ta < n in
the mixed model without broadcast. This model will be discussed in Sec-
tion 4.7.

The efficiency of the proposed protocols is polynomial in the size of
the basis of the adversary structure to be tolerated. It is an open problem
to find other general descriptions of structures for which polynomial (in
the number of players) protocols can be found (for a possible approach
and some new results see [CDM00]). A further open problem is to give
general conditions on adversary structures such that polynomial proto-
cols exist. However, the number of maximal bases of structures satisfy-
ing the Q(2) or the Q(3) condition are doubly-exponential in the number
of processors, and therefore a construction of polynomial protocols can
be found at most for some particular classes of structures (cf. Section 4.8).

4.1 Processor Simulation

The goal of secure multi-party computation is to transform a given proto-
col involving a trusted party into a protocol without need for the trusted
party, by simulating the party among the processors. Indeed, by the same
means, one can simulate an arbitrary processor in any given protocol.12

We formally define what it means to simulate a processor by a multi-
party protocol among a set of (new) processors, and we derive the re-
silience of the new protocol as a function of the resiliences of the origi-

12The idea of simulating a single processor by a subprotocol was used in [Cha89] for a
different purpose.

4.1 Processor Simulation 89

nal protocol and the protocol used for the simulation. This technique of
simulating processors will be of central importance when constructing
protocols for general adversary structures.

In this section, we only consider a model with a single corruption
type, either passive or active. Hence, an adversary structure Z is a set of
subsets of the processor set, i.e., Z ⊆ 2P .

As an example of processor simulation, consider the set P =
{P1, . . . , P6} of processors, and the 4-party protocol of [BGW88] (for the
active case) in which P1 and P3 play for one processor each and the other
two processors are simulated by 4-party protocols of the same type, one
among the processors P1, P2, P3, and P4, and the other among the pro-
cessors P1, P2, P5, and P6 (see Figure 4.1).

P1 P3

P1 P2

P3P4

P1 P2

P5P6

P1 P3

P1 P2 P3 P4 P1 P2 P5 P6

Figure 4.1: Example of a processor simulation.

This protocol tolerates the following adversary structure:

Z =
〈{{P1}, {P2, P4}, {P3, P5}, {P3, P6}, {P2, P5, P6}, {P4, P5, P6}

}〉
.

For each set in Z , one can easily verify that the set is tolerated: for ex-
ample, the set {P2, P5, P6} is tolerated because only one processor is cor-
rupted in the simulating protocol among P1, P2, P3, and P4 (thus this
protocol simulates an honest processor for the main protocol), and hence
three of the four processors in the main protocol play honestly. The fact
that there are too many corrupted processors in the subprotocol among
P1, P2, P5, and P6 does not matter.

The tolerated sets can easily be derived by representing the simula-
tion hierarchy as a tree (see right hand side of Figure 4.1). For a specific
adversary, to every leaf the value 1 is assigned if the corresponding pro-
cessor is non-corrupted, and 0 is assigned if the corresponding processor

90 General Adversaries in MPC

is corrupted. To every inner node, 1 is assigned if and only if more than
2/3 of its children have 1 associated (more than 1/2 in the passive model).
The considered adversary is tolerated exactly if this procedure assigns 1
to the root node. More formally, the tree corresponds to a circuit with
threshold gates, and an adversary is tolerated exactly if the correspond-
ing input vector evaluates to 1.

In this example, we have considered a particular simulation tree, and
derived the tolerated adversary structure. Deriving and rigorously prov-
ing the tolerated adversary structure of a simulation is the major goal of
this section. In a first step (Section 4.1.2), virtual processors are simply
renamed using a processor mapping, i.e., one (virtual) processor plays for
one or several virtual processors. In a second step (Section 4.1.3), virtual
processors are simulated by a set of (virtual) processors, i.e., the simulat-
ing processors perform all operations of the simulated virtual processor
by a multi-party computation.

4.1.1 Definitions

Let P and P ′ be sets of processors. A processor mapping σ,

σ : P → P ′ ,

is a surjective function from P onto P′.13 The definition of a processor
mapping σ is extended to the following domains: For a protocol π, the
mapped protocol σ(π) (or, equivalently, σπ) is the same protocol, where
in each statement all involved processors are replaced by the correspond-
ing mapped processors (if processors that are not in P are involved in a
statement, then these processors are not replaced). For a specification
(π0, τ) with τ /∈ P , the mapped specification is the specification with the
mapped protocol, i.e., σ(π0, τ) = (σπ0, τ). Note that σ(π0, τ) stands for
σ
(
(π0, τ)

)
.

The inverse processor mapping σ−1 of a processor mapping σ is defined
by

σ−1 : P ′ → 2P , P ′ 7→ {P ∈ P : σ(P) = P ′} .

13In the application of processor mappings, parentheses may be omitted whenever the
precedence rules allow it. As usual, function application (in particular a processor map-
ping) is right-associative and has higher precedence than any two-adic operator. For any
two processor mappings σ1 and σ2, for an arbitrary two-adic operator �, and for any x1

and x2 we have σ1σ2x1 � x2 = σ1(σ2(x1)) � x2.

4.1 Processor Simulation 91

If the processor mapping σ is bijective, then the function value of the in-
verse processor mapping σ−1 is sometimes interpreted as a single proces-
sor (instead of a set that contains a single processor).14 Also, we define
the mapping of a set of processors to be the set of the mapped proces-
sors, and the inverse mapping of a set B of processors to be the union
of the sets of the inverse mappings applied to the processors in B (i.e.,
σ(B) =

⋃
P∈B

{
σ(P)

}
and σ−1(B) =

⋃
P∈B σ−1(P)).

In the following, we give definitions for applying processor mappings
to adversary structures and to protocol generators. These definitions are
appropriate in the sense that if a protocol (generator) tolerates an ad-
versary structure, then the mapped protocol (generator) will tolerate the
mapped adversary structure. This will be proven in the next section.

For a structure Z for the set P of processors and a processor mapping
σ : P → P ′, the mapped structure is

σ(Z) =
{
Z ⊆ P ′ : σ−1(Z) ∈ Z}

,

i.e., a set Z is in σ(Z) if the set of all processors mapped to a processor in
Z is in Z .

For a protocol generator G for the set P of processors and a processor
mapping σ : P → P ′, the mapped protocol generator σ(G) is a proto-
col generator that, applied to a specification (π0, τ), simulates the trusted
party τ by the processors in P ′ (instead of P). In order to prevent syn-
tactical collisions with the names of the processors in P and of those ap-
pearing in π0, we first rename the processors appearing in π0 to some
new processor names15, then apply the original protocol generator G,
then apply the processor mapping σ, and finally rename the previously
renamed processors back to their original names. More formally, when
given (π0, τ) where π0 involves the setP0 of processors, σ(G) first applies
an arbitrary bijective processor mapping 16 ρ :

(P0\τ
) → P , where P is

a set of new processor names, to the specification, then applies the pro-
tocol generator G to this modified protocol specification, further applies

14Generally, the inverse of a processor mapping is not a processor mapping. However,
the inverse of a bijective processor mapping can be considered (and will be considered) as a
processor mapping.

15That is, processor names that did not yet appear anywhere, neither in the protocol nor
in the protocol generator nor in the mapping.

16This corresponds to alpha renaming in the context of lambda calculus and is a purely
technical step. Note that the name of the trusted party must not be mapped.

92 General Adversaries in MPC

the original processor mapping σ and finally applies the inverse proces-
sor mapping ρ−1 to the resulting protocol. Formally,

σG = σ(G) =
((

π0, τ
) 7→ ρ−1

(
σ(G(ρπ0, τ))

))
for an appropriate bijective processor mapping ρ. Note that σG does not
depend on the choice of ρ.

Consider a multi-party protocol π among the set P of processors and
a protocol generator G for the set PG of processors. To simulate a virtual
processor P ∈ P in π applying the protocol generator G means to con-
sider this processor P as a trusted party and to have this party simulated
by a subprotocol among the processors in PG, according to G. More pre-
cisely, the specification (π, P) is used as input for the protocol generator
G. To simultaneously simulate the processors Pr1 , . . . , Prk

∈ P in π us-
ing the protocol generators G1, . . . , Gk for the processor sets P1, . . . ,Pk,
respectively, is defined as follows: First consider k arbitrary bijective pro-
cessor mappings σi : Pi → Pi (for i = 1, . . . , k), where P1, . . . ,Pk are
pairwise disjoint sets of new processor names. Then, the resulting proto-
col is

σ−1
k · · ·σ−1

1

((
σkGk

)(· · · (σ2G2

)(
(σ1G1)(π, Pr1), Pr2

) · · · , Prk

))
,

and does not depend on the choices for σ1, . . . , σk, nor on the order of
the protocol generators G1, . . . , Gk.

4.1.2 Renaming Processors

It is trivial that by renaming processors in a protocol, the tolerated adver-
sary structure is the same with the identically renamed processors. More
precisely, security of a protocol is defined with respect to a specification,
and the security of the renamed protocol is with respect with the renamed
specification. Furthermore, when several processors are renamed to the
same processor P (i.e., P “plays” the role of several processors), then a
subset Z of the processors that contains P is tolerated in the renamed
protocol if and only if the set of all the renamed processors and all the
processors in Z\{P} is tolerated in the original protocol. A subset Z with
P /∈ Z is tolerated if Z is tolerated in the original protocol. This naturally
extends the “partition lemma” of [CK89].

4.1 Processor Simulation 93

Lemma 1 Given a protocol π for the set P of processors that Z-securely com-
putes the specification (π0, τ), and some processor mapping σ, then σ(π) is a
protocol for the set σ(P) of processors that σ(Z)-securely computes the specifi-
cation σ(π0, τ).

Proof: We have to show that for every adversary A′ for the mapped pro-
tocol σ(π), with ZA′ ∈ σ(Z), the protocol σ(π) A′-securely computes the
mapped specification σ(π0, τ). Figure 4.2 illustrates the procedure for
constructing an ideal adversary A′

0 for the mapped specification σ(π0, τ)
from a given adversary A′ for σπ. We begin with the adversary A′ for the
mapped protocol σπ, construct an adversary A for the original protocol
π, and show that A is tolerated in the protocol π. Thus, by the definition
of security of a protocol, there exists an ideal adversary A0 for the proto-
col π0 of the specification. Then we use A0 to construct an adversary A′

0

for the mapped specification σ(π0, τ), and we prove that this adversary
is an ideal adversary of the original adversary A′.

A′ for σπ

A for πA0 for π0

A′
0 for σπ0

?
�

6
σ−1σ

ideal real

mapped

unmapped

Figure 4.2: Construction of the ideal adversary A′
0 for a given

adversary A′.

Consider an arbitrary adversary A′ for σπ with ZA′ ∈ σ(Z). We de-
fine A to be the adversary for π with ZA = σ−1(ZA′) and with the same
strategy as A′, except that whenever A′ reads from, or writes to, the tape
of a corrupted processor P ′ ∈ ZA′ , then A accesses the tape of the cor-
responding17 processor P ∈ σ−1(P ′) in the same manner as A′. By the
definition of processor mappings for structures, ZA′ ∈ σ(Z) implies that
ZA ∈ Z . Hence, by what it means for a protocol to be A-secure, there
exists a statement index function fπ : {1, . . . , |π0|+ 1} → {1, . . . , |π|+ 1}
and an adversary A0 for π0 with ZA0 = ZA P0\{τ} (where P0 is the set of
processors of the ideal protocol π0) such that for every i = 1, . . . , |π0|+ 1
the joint distribution of the view of the adversary A0 and the views νi(P)

17If the mapping is not bijective, then for constructing the adversary A one must consult
the unmapped protocol π to determine which processor’s tape needs to be accessed.

94 General Adversaries in MPC

of all non-corrupted processors P ∈ (P0\{τ}\ZA0

)
before the i-th state-

ment of the ideal protocol π0 (with the adversary A0 present) is equal to
the joint distribution of the view of the adversary A and the views νi(P)
of all non-corrupted processors P ∈ (P0 \{τ}\ZA0

)
before the fπ(i)-th

statement of the real protocol π (with the adversary A present). Let the
statement index function fσπ for the mapped protocol be equal to that of
the unmapped protocol, i.e., fσπ = fπ, and let A′

0 be the adversary for
the mapped ideal protocol σπ0 with ZA′

0
= σ(ZA0) = σ

(
ZA P0\{τ}

)
=

σ
(
σ−1(ZA′) P0\{τ}

)
= ZA′

σ(P0)\{τ}. The strategy of A′
0 is the same as

the strategy of the adversary A0, except that whenever A0 reads from, or
writes to, the tape of a corrupted processor P ∈ ZA0 , then A′

0 accesses the
tape of the processor σ(P).

Clearly, for each i = 1, . . . , |σπ0|+ 1, the joint distribution of the view
of the adversary A′

0 and the views νi(P) of all non-corrupted processors
P ∈ (

σ(P0)\{τ}\ZA′
0

)
before the i-th statement of the mapped ideal proto-

col σπ0 (with the adversary A′
0 present) is equal to the joint distribution of

the view of the adversary A′ and the views νfσπ(i)(P) of all non-corrupted
processors P ∈ (

σ(P0)\{τ}\ZA′
0

)
before the fσπ(i)-th statement of the

mapped real protocol σπ (with the adversary A′ present).

If the structure Z is maximal for the protocol π (i.e., for every Z ⊆ P
with Z /∈ Z there exists an adversary A with ZA ⊆ Z , such that π does
not A-securely compute (π0, τ)), then σ(Z) is also maximal for σ(π).

The corollary below follows immediately from Lemma 1 and from the
definition of processor mappings for protocol generators.

Corollary 1 Given a Z-secure protocol generator G for the set PG of proces-
sors, and given some processor mapping σ, then σ(G) is a σ(Z)-secure protocol
generator for the set σ(PG) of processors.

4.1.3 Simulating a Single Processor

Consider a protocol π for the set P of processors, a processor P ∈ P ,
and a protocol generator G′ for the set P ′ of processors, and assume that
π is Z-secure for an adversary structure Z and G′ is Z ′-secure for an
appropriate adversary structure Z ′. Let P be simulated in π by G′, and
let π∗ denote the resulting protocol. A set Z of processors is tolerated in

4.1 Processor Simulation 95

π∗ if the set Z is tolerated in π (i.e., Z P ∈ Z) and Z is tolerated by G′

(i.e Z P′ ∈ Z ′). Even if Z is not tolerated by G′, but instead π tolerates
that P is corrupted in addition to the processors in Z (i.e.,

(
Z P ∪ {P}

) ∈
Z), then Z is nevertheless tolerated in the resulting protocol π∗. This is
formally stated and proved below.

Lemma 2 Consider a specification (π0, τ) for the set P0 of processors, a pro-
tocol π for the set P of processors that Z-securely computes (π0, τ) for some
adversary structure Z ⊆ 2P , and a natural protocol generator G′ for the set P ′
of processors (where P ′ ∩P = ∅) that is Z ′-secure for some adversary structure
Z ′ ⊆ 2P

′
. Simulating a processor P ∈ (P \{τ}\P0

)
in π by applying the

protocol generator G′ results in a protocol π∗ for the set P∗ of processors that
Z∗-securely computes the specification (π0, τ) where

P∗ =
(P\{P}) ∪ P ′

Z∗ =
{

Z ⊆ P∗ :
((

Z P ∪ {P}
) ∈ Z)

∨
(
Z P ∈ Z ∧ Z P′ ∈ Z ′

)}
.

Proof: Consider an arbitrary adversary A∗ for the protocol π∗ with ZA∗ ∈
Z∗, and a statement index function f ′ : {1, . . . , |π|+1} → {1, . . . , |π∗|+1}
for G′. We construct a statement index function f∗ : {1, . . . , |π0| + 1} →
{1, . . . , |π∗| + 1} and an ideal adversary A0 of the adversary A∗ where
ZA0 = ZA∗ P0\{τ}. We distinguish between two cases: In the first case, we

assume that
(
ZA∗ P ∪ {P}

) ∈ Z , and in the second case, we assume that
ZA∗ P ∈ Z ∧ ZA∗ P′ ∈ Z ′.

First, assume that
(
ZA∗ P ∪ {P}

) ∈ Z , i.e., the adversary may cor-
rupt the simulated processor in the main protocol. We define A to be the
adversary for the protocol π with ZA = ZA∗ P ∪ {P} with the following
strategy: Without loss of generality, let P ′ = {P1, . . . , Pm}. First, A lo-
cally initializes |P ′| + 1 virtual processors P̃0, P̃1, . . . , P̃m. These virtual
processors will be used to simulate the statements that involve proces-
sors in P ′. More precisely, P̃0 will be used to simulate the behavior of the
uncorrupted sender/receiver in a transmit-statement to/from P (the real
sender/receiver just transmits a value to/from P , according to the state-
ment in π, so A has to simulate the corresponding statement sequence in
π∗ with P̃0 as sender/receiver), and the other virtual processors will be
used to simulate the (in π not existing) processors in P ′. Note that here
we must assume that the protocol generator is natural, i.e., a transmit-
statement only involves the value to be transmitted (plus maybe some

96 General Adversaries in MPC

auxiliary values). For example, when in π a value is sent from an uncor-
rupted processor to P , then P (resp. A) receives this value, and simulates
the corresponding statement sequence in π∗, where as sender, P̃0 is used,
and the receiver is simulated among P̃1, . . . , P̃m. Hence, it is necessary
that the statement sequence in π∗ only involves the value that the un-
corrupted processor sends to P , such that A can perform the necessary
simulation of π∗.

For every i = 1, . . . , |π| + 1, A performs the following steps for the
i-th statement di of π:

• If the statement di does not involve P , A performs the same steps
that A∗ would perform.

• If di is a comp-statement for P , then A executes the sequence
f ′(i), . . . ,

(
f ′(i + 1)− 1

)
of statements of π∗, where each processor

Pk ∈ P ′ is relabeled to the virtual processor P̃k.18 After each state-
ment of this sequence, A performs the same steps that A∗ would
perform (modified such that it accesses the tapes of P̃k instead of
Pk).

• If di is a transmit(P, Pj , x)-statement, then A executes the sequence
f ′(i), . . . , f ′(i + 1) − 1 of statements of π∗, where each processor
Pk ∈ P ′ is relabeled to the virtual processor P̃k, and the receiv-
ing processor Pj is relabeled to P̃0. After each statement of this se-
quence, A performs the same steps that A∗ would perform (where
A accesses the tapes of P̃k instead of Pk, and of P̃0 instead of Pj).
At the end of the sequence, A reads the value of the variable x in
the view of P̃0 and sends this value to Pj . If the adversary A∗ is
passive (and hence also A is passive), then this value corresponds
to the value that P would send to Pj .

• If di is a transmit(Pj , P, x)-statement, then A first reads the value
of x and puts this value into the view of P̃0, then executes the se-
quence f ′(i), . . . , f ′(i + 1)− 1 of statements of π∗, where each pro-
cessor Pk ∈ P ′ is first relabeled to the virtual processor P̃k, and
the sending processor Pj is renamed to P̃0. After each statement of
this sequence, A performs the same steps that A∗ would perform
(modified as above).

18More precisely, a processor mapping σ that maps Pk 7→ ePk

`
1 ≤ k ≤ m

´
is applied to

the sequence of statements.

4.1 Processor Simulation 97

The described adversary A is tolerated in π because ZA ∈ Z . Thus there
exists an ideal adversary A0 of A with ZA0 = ZA P0\{τ}. Clearly, this is
also an ideal adversary for A′.

Second, assume that ZA∗ P ∈ Z ∧ ZA∗ P′ ∈ Z ′. A∗ is tolerated by
the protocol generator G′ (because ZA∗ P′ ∈ Z ′); thus by considering
(π, P) as the specification of π∗, there exists an ideal adversary A of A∗

for the protocol π with ZA = ZA∗ P . Because ZA ∈ Z there exists an
ideal adversary A0 of A for the ideal protocol π0 with ZA0 = ZA P0\{τ},
and this A0 is also an ideal adversary of A∗.

4.1.4 General Simulation of Processors

In this section, we consider the simultaneous simulation of several pro-
cessors with completely general (possibly overlapping) sets of simulating
processors. The goal of this section is to prove the following theorem:

Theorem 9 Let π be a protocol among the set P of processors that Z-securely
compute a specification (π0, τ), and let G1, . . . , Gk be Z1-, . . . ,Zk-secure nat-
ural protocol generators for the processor sets P1, . . . ,Pk, respectively. Assume
that in π the k virtual processors Pr1 , . . . , Prk

∈ P are simultaneously simu-
lated by subprotocols applying the protocol generators G1, . . . , Gk, respectively.
Then the resulting multi-party protocol π∗ is for the set P∗ of processors and
Z∗-securely computes the specification (π0, τ), where

P∗ =
(P\R) ∪ k⋃

i=1

Pi , and

Z∗ =
{

Z ⊆ P∗ :
(
Z P\R ∪

{
Pri ∈ R : Z Pi

/∈ Zi

})
∈ Z

}
,

and R = {Pr1 , . . . , Prk
} is the set of replaced processors.

Proof: According to the definition of simultaneous simulation,

π∗ = σ−1
k · · ·σ−1

1

((
σkGk

)(· · · (σ2G2)((σ1G1)(π, Pr1), Pr2) · · · , Prk

))
for some bijective processor mappings σ1 : P1 → P1, . . . , σk : Pk →
Pk, where P1, . . . ,Pk are pairwise disjoint sets of new processor names.
According to Corollary 1, σ1G1, . . . ,σkGk are natural protocol generators

98 General Adversaries in MPC

for the sets σ1P1, . . . , σkPk of processors that are σ1Z1, . . . , σkZk secure,
respectively.

These protocol generators are applied subsequently, where after ap-
plying the i-th generator the set of processors is denoted by P(i) and the
tolerated adversary structure is denoted by Z (i). In the following, some
technical transformations of Z(i) may at first glance appear to be unmo-
tivated.

Applying Lemma 2, (σ1G1)(π, Pr1) is a protocol for the set P(1) of
processors tolerating Z(1), where

P(1) =
(P\{Pr1}

) ∪ σ1P1

Z(1) =

Z ⊆ P(1) :

((
Z P ∪ {Pr1}

) ∈ Z) ∨(
Z P ∈ Z ∧ Z

σ1P1
∈ σ1Z1

) 
=

{
Z ⊆ P(1) :

(
Z P ∪

{
Pri ∈ {Pr1} : Z

σiPi
6∈ σiZi

})
∈ Z

}
.

(1)

Furthermore,
(
σ2G2

)(
(σ1G1)(π, Pr1), Pr2

)
is a protocol for the set P(2) of

processors tolerating Z(2), where

P(2) =
(P(1)\{Pr2}

) ∪ σ2P2 =
(P\{Pr1 ∪ Pr2}

) ∪ σ1P1 ∪ σ2P2

Z(2) =

Z ⊆ P(2) :

((
Z P(1) ∪ {Pr2}

) ∈ Z(1)
) ∨(

Z P(1) ∈ Z(1) ∧ Z
σ2P2

∈ σ2Z2

) 
=

{
Z ⊆ P(2) :

(
Z P(1) ∪

{
Pri ∈ {Pr2} : Z

σiPi
6∈ σiZi

})
︸ ︷︷ ︸

T

∈ Z(1)
}

.

We now replace Z(1) in the above equation by using (1). Let T be the
under-braced term.

Z(2) =
{

Z ⊆ P(2) :
(
T P ∪

{
Pri ∈ {Pr1} : T

σiPi
6∈ σiZi

})
∈ Z

}
.

4.1 Processor Simulation 99

We have

T P =
(
Z P(1) ∪

{
Pri ∈ {Pr2} : Z

σiPi
6∈ σiZi

})
P

=
(
Z P(1)

)
P ∪

{
Pri ∈ {Pr2} : Z

σiPi
6∈ σiZi

}
P

= Z P ∪
{
Pri ∈ {Pr2} : Z

σiPi
6∈ σiZi

}

and

T
σiPi

=
(
Z P(1) ∪

{
Pri ∈ {Pr2} : Z

σiPi
6∈ σiZi

})
σiPi

=
(
Z P(1)

)
σiPi

∪
{
Pri ∈ {Pr2} : Z

σiPi
6∈ σiZi

}
σiPi

= Z
σiPi

∪ ∅ = Z
σiPi

.

This gives

Z(2) =

Z ⊆ P(2) :

 (
Z P ∪

{
Pri ∈ {Pr2} : Z

σiPi
6∈ σiZi

})
∪{

Pri ∈ {Pr1} : Z
σiPi
6∈ σiZi

}  ∈ Z


=
{

Z ⊆ P(2) :
(
Z P ∪

{
Pri ∈ {Pr1 , Pr2} : Z

σiPi
6∈ σiZi

})
∈ Z

}
.

Repeating this step k times yields the set P(k) of pro-
cessors and the tolerated structure Z (k) of the protocol
(σkGk)(· · · (σ2G2)((σ1G1)(π, Pr1), Pr2) · · · , Prk

):

P(k) =
(P\R) ∪ σ1P1 ∪ . . . ∪ σkPk

Z(k) =
{

Z ⊆ P(k) :
(
Z P ∪

{
Pri ∈ R : Z

σiPi
6∈ σiZi

})
∈ Z

}
.

100 General Adversaries in MPC

Finally, we apply the inverse processor mappings σ−1
1 , . . . , σ−1

k . Let ϑ =
σ−1

k · · ·σ−1
1 . Because σ−1

1 , . . . , σ−1
k are bijective and have pairwise disjoint

domains, all function values of ϑ are sets with a single processor and
are considered as those processors (rather than as sets). Also, ϑ must be
extended to be the identity function for the processors inP\R, since it will
be applied to the previously constructed protocol among the set P(k) of
processors. The resulting protocol π∗ for the setP∗ of processors tolerates
the structure Z∗, where

P∗ = ϑP(k)

= ϑ
((P\R) ∪ σ1P1 ∪ . . . ∪ σkPk

)
=

(P\R) ∪ σ−1
1 σ1P1 ∪ . . . ∪ σ−1

k σkPk

=
(P\R) ∪ P1 ∪ . . . ∪ Pk

=
(P\R) ∪ k⋃

i=1

Pi

Z∗ = ϑZ(k)

=
{

Z ⊆ ϑP(k) : ϑ−1
(
Z

) ∈ Z(k)
}

=
{

Z ⊆ P∗ :
(
ϑ−1(Z) P ∪

{
Pri ∈ R : ϑ−1(Z)

σiPi
6∈ σiZi

})
∈ Z

}
.

Due to the definition of ϑ, we have ϑ−1(Z) P = Z P\R. Since the sets P i

are pairwise disjoint we have ϑ−1(Z)
σiPi

= σi(Z)
σiPi

and, because σi

is bijective, also σi(Z)
σiPi

= σi

(
Z Pi

)
. Again using that σi is bijective

implies that σi

(
Z Pi

) ∈ σiPi if and only if Z Pi
∈ Pi. This results in the

claimed adversary structure

Z∗ =
{

Z ⊆ P∗ :
(
Z P\R ∪

{
Pri ∈ R : Z Pi

6∈ Zi

})
∈ Z

}
.

4.2 Passive Model 101

4.2 Passive Model

In this section, we prove the following theorem:

Theorem 10 In the passive model, a set P of processors can compute every
specification (perfectly) Z-securely if no two sets in the adversary structure Z
cover P (i.e., if Q(2)(P ,Z) is satisfied). This bound is tight: if two sets cover P ,
then there exist functions that cannot be computedZ-securely. The computation
is polynomial in the size of the basis |Z| of the adversary structure and linear in
the length of the specification.

The construction of the protocols is based on a basic multi-party pro-
tocol for the passive model with threshold security. As basic protocol,
we take the protocol of Section 3.1 [BGW88]. Gp3 denotes the three-party
protocol generator for the set P

Gp3 = {P1, P2, P3} of processors for the
passive model, tolerating all passive adversaries that may corrupt one
single processor. We assume that Gp3 is Z-secure under the definitions
of Section 2 for Z =

{{}, {P1}, {P2}, {P3}
}

.

We first show that a set P of processors can compute every specifi-
cation Z-securely if Q(2)(P ,Z) is satisfied. We then show that this pro-
tocol is indeed polynomial in the size of the basis |Z| of the adversary
structure. And finally, we will prove the necessity of this condition for
passively secure multi-party protocols to exist for every specification.

4.2.1 Construction

Consider a set P of processors and a structure Z for this set P such that
Q(2)(P ,Z) is satisfied. We construct a Z-secure protocol generator G for
the set P of processors, i.e., G takes as input an arbitrary specification
(π0, τ) for the set P0 of processors and outputs a protocol π for the set(P0 \{τ}

) ∪ P of processors that A-securely computes the specification
(π0, τ) for every adversary A with ZA P ∈ Z .

If some processor P ∈ P does not occur in any set of Z (i.e., Z {P} =
{∅}) then G simply replaces the trusted party τ in the specification by
this processor. More precisely, let ρτ be the processor mapping that maps
τ to P (and is the identity function for all other processors), then G =
((π0, τ) 7→ ρτ (π0)).

Consider the case where every processor in P occurs in at least one set
in Z . The following construction is based on ideas of [AR63, pp. 22–24]

102 General Adversaries in MPC

and [Fit96]. We select some three-partition of Z where the size of each set
of the partition is at most d|Z|/3e. Let Z1, Z2, Z3 be the union of the first
two, the first and the third, and the last two sets of the partition, respec-
tively, each completed such that it is monotone. Assume that protocol
generators G1, G2, and G3, each among the set P of processors, tolerat-
ing Z1, Z2, and Z3, respectively, have been constructed (by recursion).
The protocol generator G that tolerates Z can be constructed as follows:
Remember that Gp3 is the natural protocol generator of [BGW88] for the
passive model for the setP

Gp3 = {P1, P2, P3} of processors, tolerating the
adversary structure Z

Gp3 = {{P1}, {P2}, {P3}}. Let σ be a bijective pro-
cessor mapping σ : P

Gp3 → P, where P is a set of new processor names.
First, the protocol generator G applies σ(Gp3) to the specification (π0, τ).
σ(Gp3) is a protocol generator that tolerates σ(Z

Gp3) (Corollary 1), thus
the resulting protocol tolerates all adversaries A with |ZA P | ≤ 1. Then G

simultaneously simulates all three processors in P by subprotocols, ap-
plying the protocol generators G1, G2, and G3. This results in a protocol
π∗ for the set P∗ of processors that Z∗-securely computes the specifica-
tion (π0, τ), where according19 to Theorem 9 the set of processors is

P∗ =
(((P0\{τ}

)∪P)\P)
∪P =

(
P0\{τ}

)
∪P

and the tolerated adversary structure is

Z∗ =

{
Z ⊆ P∗ :

(
Z (

(P0\{τ})∪P
)
\P
∪ {

Pri ∈ P : Z P /∈ Zi

})
∈ σZ

Gp3

}

=
{

Z ⊆ P∗ :
∣∣∣∣(Z P0\{τ} ∪

{
Pri ∈ P : Z P /∈ Zi

})
P

∣∣∣∣ ≤ 1
}

=
{

Z ⊆ P∗ :
∣∣∣{Pri ∈ P : Z P /∈ Zi

}∣∣∣ ≤ 1
}

.

Every set Z ∈ Z is in two of the structures Z1, Z2, Z3, thus every ad-
versary A with ZA P ∈ Z is tolerated in π∗. As claimed, the constructed
protocol generator G is for the set P of processors and is Z-secure.

The suitability of this construction can be proved by induction. First,
consider an adversary structure Z satisfying Q(2)(P ,Z) with |Z| ≤ 2.

19Note that in Theorem 9 the protocol generators for the simulation are assumed to be nat-
ural protocol generators. The protocol generators G1, . . . ,G3 of this proof are recursively
constructed protocol generators, which means that in fact only natural protocol generators
(alternated with processor mappings) are applied.

4.2 Passive Model 103

Since the (at most) two sets in Z do not cover P , and all other sets in Z
are subsets of one of the sets in the basis, there is a processor P ∈ P that
does not occur in any set in Z (induction basis). Now assume that we
can construct a protocol generator for every adversary structure which
contains 2m of the sets in Z (induction hypothesis). Then the above con-
struction yields a protocol generator for an arbitrary adversary structure
with up to 3m of the sets in Z (induction step).

Let ti be defined as the basis size guaranteed to be achievable with
recursion of depth i. We have t0 = 2, t1 = 3, and ti+1 = ti + bti/2c. One
can easily verify that (3/2)i ≤ ti ≤ (3/2)i+2. Thus, in order to construct
a protocol that tolerates the adversary structure Z , the recursion depth is
at most dlog 3

2
|Z|e.

4.2.2 Efficiency

The protocol generator Gp3 applied to a specification (π, P) translates ev-
ery statement in π that involves P into a statement sequence of length at
most b, where b is a constant parameter of Gp3. Considering all simul-
taneous simulations at a given level i of the recursion, every statement
is affected by the application of at most two natural protocol genera-
tors (because every statement involves at most two processors). Hence
the total blow-up due to a given level of the recursion is at most b2.
The total length of the constructed protocol tolerating Z is thus at most

|π0| ·
(
b2

)dlog 3
2
|Z|e

= |π0| · |Z|O(1), which is polynomial in |Z|.

4.2.3 Tightness

In order to prove the necessity of the condition Q(2)(P ,Z) for the exis-
tence of Z-secure protocols, suppose there is a protocol that tolerates an
adversary structure not satisfying Q(2), i.e., there are two potential sets
Z1 and Z2 with Z1 ∪ Z2 = P . Without loss of generality we assume
Z1 ∩ Z2 = ∅. Then we can construct a protocol with two processors P1

and P2, where P1 simulates all processors in Z1 and P2 simulates all pro-
cessors in Z2 (i.e., we apply a mapping to the given protocol), and we
obtain a protocol for two processors that tolerates both sets with a single
adverse processor. Such a protocol for secure function evaluation does
not exist for most functions (for example for the binary OR-function), as

104 General Adversaries in MPC

stated in [BGW88], thus resulting in a contradiction. A more careful anal-
ysis of the class of functions that are not securely computable if Q(2) is
not satisfied is given in [CK89, Kus89, Bea89].

4.2.4 Example

We illustrate the construction with an example. The goal is to construct a
protocol generator G for the passive model among the set

P = {P1, P2, P3, P4, P5, P6}

of processors, tolerating the adversary structure Z with the basis

Z =
{
{P1, P4, P6}, {P2, P3, P6}, {P1, P2, P6}, {P1, P2, P5},
{P2, P4, P5}, {P1, P3, P5}, {P1, P2, P3, P4}

}
.

It is easy to verify that Q(2)(P ,Z) is satisfied.

As a short notation, we write [Pi, Pj , Pk] for the (mapped) pro-
tocol generator Gp3 with the three processors Pi, Pj , and Pk, and
[Pi, Pj , [Pk, Pl, Pm]] for the protocol generator among the processors Pi,
Pj and a virtual processor simulated by a protocol generated by the pro-
tocol generator Gp3 among the processors Pk, Pl, and Pm (i.e., a mapped
protocol generator). As a special case, [P] refers to the protocol genera-
tor that simply replaces the name of the trusted party in the multi-party
computation specification by P . Whenever a structure is partitioned, this
partition is not made explicit, but can easily be derived from the three
resulting structures (we write “;” instead of “,” at partition boundaries).

Figure 4.3 illustrates this protocol generator. We denote virtual pro-
cessors by Pi with i < 0.

Step 1: Divide Z into three partitions and set
Z1 ={{P1, P4, P6}, {P2, P3, P6}, {P1, P2, P6}; {P1, P2, P5}, {P2, P4, P5}

}
,

Z2 ={{P1, P4, P6}, {P2, P3, P6}, {P1, P2, P6}; {P1, P3, P5}, {P1, P2, P3, P4}
}

,
Z3 =

{{P1, P2, P5}, {P2, P4, P5}; {P1, P3, P5}, {P1, P2, P3, P4}
}

.
Step 2: Construct G1 tolerating Z1.

4.2 Passive Model 105

Step 2.1: Divide Z1 into three partitions and set
Z11 =

{{P1, P4, P6}; {P2, P3, P6}, {P1, P2, P6}
}

,
Z12 =

{{P1, P4, P6}; {P1, P2, P5}, {P2, P4, P5}
}

,
Z13 =

{{P2, P3, P6}, {P1, P2, P6}; {P1, P2, P5}, {P2, P4, P5}
}

.
Step 2.2: Construct G11 tolerating Z11. This is achieved by [P5].
Step 2.3: Construct G12 tolerating Z12. This is achieved by [P3].
Step 2.4: Construct G13 tolerating Z13.

Step 2.4.1: Divide Z 13 into three partitions and set
Z131 =

{{P2, P3, P6}; {P1, P2, P6}, {P1, P2, P5}
}

,
Z132 =

{{P2, P3, P6}; {P2, P4, P5}
}

,
Z133 =

{{P1, P2, P6}, {P1, P2, P5}, {P2, P4, P5}
}

.
Step 2.4.2: Construct G131 tolerating Z131. This is achieved by [P4].
Step 2.4.3: Construct G132 tolerating Z132. This is achieved by [P1].
Step 2.4.4: Construct G133 tolerating Z133. This is achieved by [P3].
Step 2.4.5: G13 = [P4, P1, P3] is Z13-secure.

Step 2.5: G1 =
[
P5, P3, [P4, P1, P3]

]
is Z1-secure.

Step 3: Construct G2 tolerating Z2.

Step 3.1: Divide Z2 into three partitions and set
Z21 =

{{P1, P4, P6}; {P2, P3, P6}, {P1, P2, P6}
}

,
Z22 =

{{P1, P4, P6}; {P1, P3, P5}, {P1, P2, P3, P4}
}

,
Z23 =

{{P2, P3, P6}, {P1, P2, P6}; {P1, P3, P5}, {P1, P2, P3, P4}
}

.
Step 3.2: Construct G21 tolerating Z21. This is achieved by [P5].
Step 3.3: Construct G22 tolerating Z22.

Step 3.3.1: Divide Z 22 into three partitions and set
Z221 =

{{P1, P4, P6}; {P1, P3, P5}
}

,
Z222 =

{{P1, P4, P6}; {P1, P2, P3, P4}
}

,
Z223 =

{{P1, P3, P5}; {P1, P2, P3, P4}
}

.
Step 3.3.2: Construct G221 tolerating Z221. This is achieved by [P2].
Step 3.3.3: Construct G222 tolerating Z222. This is achieved by [P5].
Step 3.3.4: Construct G223 tolerating Z223. This is achieved by [P6].
Step 3.3.5: G22 = [P2, P5, P6] is Z22-secure.

Step 3.4 Construct G23 tolerating Z23.

Step 3.4.1: Divide Z 23 into three partitions and set
Z231 =

{{P2, P3, P6}, {P1, P2, P6}; {P1, P3, P5}
}

,
Z232 =

{{P2, P3, P6}, {P1, P2, P6}; {P1, P2, P3, P4}
}

,
Z233 =

{{P1, P3, P5}; {P1, P2, P3, P4}
}

.

106 General Adversaries in MPC

Step 3.4.2: Construct G231 tolerating Z231. This is achieved by [P4].
Step 3.4.3: Construct G232 tolerating Z232. This is achieved by [P5].
Step 3.4.4: Construct G233 tolerating Z233. This is achieved by [P6].
Step 3.4.5: G23 = [P4, P5, P6] is Z23-secure.

Step 3.5: G2 =
[
P5, [P2, P5, P6], [P4, P5, P6]

]
is Z2-secure.

Step 4: Construct G3 tolerating Z3. This is achieved by [P6].
Step 5: The protocol generator

G =
[[

P5, P3, [P4, P1, P3]
]
,
[
P5, [P2, P5, P6], [P4, P5, P6]

]
, P6

]
is Z-secure.

P−2

P6

P−1

⇓

P6

P5 P−3

P−4P3 P5

P−5

⇓

P6

P5

P2

P5

P6

P4

P5

P6

P3
P5

P1 P3

P4

Figure 4.3: An example of recursive processor simulation.

4.3 Active Model 107

4.3 Active Model

We prove the following theorem:

Theorem 11 In the active model, a set P of processors can compute every speci-
fication (perfectly)Z-securely if no three sets in the adversary structure Z cover
P (i.e., if Q(3)(P ,Z) is satisfied). This bound is tight: if three sets cover the full
set of processors, there are functions that cannot be computed Z-securely. The
computation is polynomial in the size of the basis |Z| of the adversary structure
and linear in the length of the specification.

The construction of the protocols is based on a basic multi-party pro-
tocol for the active model with threshold security. As basic protocol,
we take the protocol of Section 3.2 [BGW88]. Ga4 denotes the four-
party protocol generator for the set P

Ga4 = {P1, P2, P3, P4} of proces-
sors for the active model, tolerating all active adversaries that may cor-
rupt one single processor. We assume that Ga4 is Z-secure for Z ={{}, {P1}, {P2}, {P3}, {P4}

}
.

We first show that a set P of processors can compute every specifica-
tion Z-securely if Q(3)(P ,Z) is satisfied. We then show that this protocol
is indeed polynomial in the size of the basis |Z| of the adversary struc-
ture. And finally, we will prove the necessity of this condition for actively
secure multi-party protocols to exist for every specification.

4.3.1 Construction

A four-partition of the adversary structure Z is selected where the size
of each set of the partition is at most d|Z|/4e. By recursion, a protocol
is constructed for each of the four unions of three set of the partition.
First, the protocol generator applies Ga4 in order to substitute the trusted
party τ in the specification by a protocol among four virtual processors,
then simultaneously replaces the four virtual processors by applying the
recursively constructed protocol generators. Applying Theorem 9 shows
that the resulting protocol tolerates the adversary structure Z .

The induction basis (there is a processor P ∈ P that does not occur in
Z) holds for any structure Z with |Z| ≤ 3, and the induction step con-
structs a protocol generator that tolerates 4m of the sets inZ by assuming
protocol generators that tolerate 3m of the sets.

108 General Adversaries in MPC

4.3.2 Efficiency

Let b be the constant “blow-up factor” of Ga4, and let ui be defined as
the minimal size of the basis of the adversary structures guaranteed to
be achievable with recursion of depth i. The sequence ui is hence given
by u0 = 3, u1 = 4, and ui+1 = ui + bui/3c. One can easily verify that
(4/3)i ≤ ui ≤ (4/3)i+3. Thus, in order to construct a protocol that toler-
ates the adversary structure Z , the recursion depth is at most dlog 4

3
|Z|e,

and the total length of the constructed protocol tolerating Z is at most

|π0| ·
(
b2

)dlog 4
3
|Z|e

= |π0| · |Z|O(1), which is polynomial in |Z|.

4.3.3 Tightness

In order to prove the necessity of condition Q(3)(P ,Z), suppose that there
exists a protocol generator for an adversary structure not satisfying Q(3),
i.e., there are three potential adversaries that cover the full set of proces-
sors. Then we can construct a protocol among three processors, where
each of them simulates the processors of one adversary, and we obtain
a protocol among three processors, perfectly tolerating active cheating of
one of them. Such a protocol for secure function evaluation does not exist
for most functions (for example for the broadcast function, as proved in
[PSL80, LSP82]), thus resulting in a contradiction.

4.4 Active Model with Broadcast

When broadcast channels are available, the condition for secure MPC
protocols to exist can be weakened:

Theorem 12 In the active model with broadcast, a set P of processors can com-
pute every specification (unconditionally)Z-securely if no two sets in the adver-
sary structure Z cover P (i.e., if Q(2)(P ,Z) is satisfied). This bound is tight: if
two sets cover the full set of processors, there are functions that cannot be com-
puted Z-securely. The computation is polynomial in the size of the basis |Z| of
the adversary structure and linear in the length of the specification.

Protocols with unconditional security are constructed along the lines
of the construction of perfectly secure protocols for the active model, ex-
cept that on the lowest level of the recursion, threshold protocols tolerat-
ing a faulty minority are employed (Section 3.3). We denote this protocol

4.4 Active Model with Broadcast 109

generator for the set P
Ga3b = {P1, P2, P3} with Ga3b, and assume that it

is (actively) Z-secure for Z =
{{}, {P1}, {P2}, {P3}

}
.

4.4.1 Construction

Consider a set P of processors and a structure Z for the set P such that
Q(2)(P ,Z) is satisfied, and an arbitrary specification (π0, τ). We have to
construct a Z-secure protocol π for the set P of processors.

The case
∣∣Z∣∣ ≤ 3 is simple. Since we have Q(2)(P ,Z), we have three

processors P1, P2, and P3, where Pi may occur in the i-th set of Z , but
does not occur in the other sets, hence we can apply Ga3b to obtain an
unconditionally Z-secure protocol for P .

The case of a basis with at least four classes is treated along the lines
of the construction in Section 4.3.1: First we select some four-partition of
Z and, by recursion, a protocol is constructed for each of the four unions
of three subsets of the partition. Then, these four protocols are composed
to a four-party protocol with using Ga4.

4.4.2 Efficiency

The efficiency of this protocol can be analyzed along the lines of the anal-
ysis given in Section 4.3.2. However, as the protocol of Section 3.3 which
is used in the lowest level of the substitution tree provides some (negligi-
ble) error probability, special care is required in the analysis (cf. [HM97]).
It follows immediately from the analysis in Section 4.3.2 that the proto-
col which results after applying all substitutions except for those on the
lowest level, has polynomial complexity. But every statement of this pro-
tocol is expanded at most twice by all the remaining substitutions (once
per involved processor), and each blow-up is polynomial, and hence the
final protocol is also polynomial in the number |Z| of maximal sets in the
adversary structure.

Note that the construction for the active model with broadcast given
in [HM97] have super-polynomial complexity.

4.4.3 Tightness

The necessity of the condition Q(2)(P ,Z) follows immediately from the
necessity of this same condition in the passive model (Section 4.2.3).

110 General Adversaries in MPC

4.5 Mixed Model with Perfect Security

When perfect security without any probability of failure is required, then
broadcast channels do not help. The following theorem states the neces-
sary (even with broadcast channels) and sufficient (even without broad-
cast channels) conditions on the adversary structure for secure MPC pro-
tocols to exist:

Theorem 13 A set P of processors can compute every specification (perfectly)
Z-securely if Q(3,2)(P ,Z) is satisfied. This bound is tight: if Q(3,2)(P ,Z) is
not satisfied, then there exist functions that cannot be computed perfectly Z-
securely, even if a broadcast channel is available.20 The communication and
computation complexities are polynomial in the size |Z| of the basis of the adver-
sary structure and linear in the length of the specification.

The construction of protocols for the mixed model is very similar to
the construction in the univariate models. Indeed, only in the lowest level
of the recursion, we take advantage of the fact that some of the corrupted
processors are only passively corrupted. On the higher levels, where sub-
protocols are combined with each other, only active corruption is consid-
ered. Surprisingly, this simple approach yields secure multi-party proto-
cols for all adversary structures for which such protocols exist.

As usual, we first show that a set P of processors can compute every
specificationZ-securely if Q(3,2)(P ,Z) is satisfied. We then show that this
protocol is indeed polynomial in the size of the basis |Z| of the adversary
structure. And finally, we will prove the necessity of this condition for
perfectly secure multi-party protocols to exist for every specification in
the mixed model, even when broadcast channels are available.

4.5.1 Construction

The construction of perfectly secure protocols for the mixed model is
along the lines of the constructions in the active model, but using another
basic protocol. We first show how for every admissible mixed adversary
structure with only three classes in the basis such a basic protocol can be
constructed. Then, we will use such basic protocols as ingredients of the
recursive construction.

20Indeed, almost every non-trivial function cannot be computed perfectly Z-securely.

4.5 Mixed Model with Perfect Security 111

Lemma 3 A set P of processors can compute every specification perfectly Z-
securely if Q(3,2)(P ,Z) and |Z| ≤ 3. The computation and communication
complexities are linear in the size of the specification.

Proof: Consider an arbitrary adversary structure Z with |Z| ≤ 3 that
satisfies Q(3,2)(P ,Z), and a specification (π0, τ). We show that there ex-
ists a subset of the processors that can compute the specification in a
secure way. If |Z| < 3, then the condition Q(3,2)(P ,Z) immediately
implies that there is a processor P ∈ P that is not contained in any
class of Z (i.e., Z {P} = {(∅, ∅)}). Hence this processor cannot be cor-
rupted by any admissible adversary, and one can simply replace the
occurrence of the trusted party τ in the protocol π0 of the specifica-
tion by the name of this processor. Thus assume that |Z| = 3 and
Z = {(D1, E1), (D2, E2), (D3, E3)}. Condition Q(3,2)(P ,Z) implies that
there exists a processor P3 ∈ P with P3 /∈ D1 ∪ E1 ∪D2 ∪ E2 ∪D3 (but
potentially P3 ∈ E3). Hence this processor remains uncorrupted by an
adversary of the first or the second class, and is (at most) passively cor-
rupted by an adversary of the third class. By symmetry reasons, there
exist processors P1 and P2 which can be corrupted at most passively and
only by an adversary of the first or the second class, respectively. This
means that every admissible adversary may corrupt none of the proces-
sors P1, P2, or P3 actively and only at most one of them passively. Hence,
these three processors can simulate the trusted party of the specification
by using the protocol generator for the passive model, Gp3, for three pro-
cessors (cf. Section 4.2). The other processors (if any) are not involved in
the simulation of the trusted party.

Consider a set P of processors and a structure Z for this set P such
that Q(3,2)(P ,Z) is satisfied, and an arbitrary specification (π0, τ). We
recursively construct a Z-secure protocol π:

The case
∣∣Z∣∣ ≤ 3 was treated in Lemma 3 (induction basis). Thus as-

sume that |Z| ≥ 4, and that for all adversary structures with basis size
strictly less than k there exists a secure protocol (induction hypothesis).
We select some four-partition of Z where the size of each set of the par-
tition is at least b|Z|/4c. Let Z1, Z2, Z3, and Z4 be the four unions of
three distinct sets of the partition, each of them completed such that it
is monotone. Since |Z| ≥ 4, the size |Zi| of the basis of each such struc-
ture is strictly smaller than the size |Z| of the current structure basis, i.e.,
|Zi| < |Z| (1 ≤ i ≤ 4), and one can recursively construct protocols π1,

112 General Adversaries in MPC

π2, π3, and π4, each among the set P of processors, tolerating Z1, Z2, Z3,
and Z4, respectively (hypothesis). The protocol π that tolerates Z can be
constructed as follows:

First, one uses Ga4 constructs a protocol among four “virtual” proces-
sors that computes the specification (π0, τ), tolerating an adversary that
actively corrupts a single processor (Section 4.3). Then one simulates the
four virtual processors by the recursively constructed protocols π1, . . . ,
π4, respectively. Since every adversary class is tolerated by at least three
of the protocols π1, π2, π3, and π4 (thus only one of the virtual proces-
sors in the main protocol is misbehaving), the resulting protocol tolerates
all adversary classes in the adversary structure and, as claimed, the con-
structed protocol π is Z-secure.

4.5.2 Efficiency

In order to analyze the efficiency of the protocols, we need the help of the
following observation: The protocol generators Gp3 and Ga4 (Sections 4.2
and 4.3) have a constant “blow-up factor” bp and ba, respectively, i.e., for
any specification of length l, the length of the protocol computing this
specification is bounded by bp · l in the passive model and by ba · l in the
active model.

In the construction given above, on each recursion level all involved
processors are simulated by using protocols for the active model (Sec-
tion 4.3), except for the lowest level, where passively secure protocols
(Section 4.2) are used. The simulations on each level can be performed
independently, and every statement in the current protocol is affected by
at most two such simulations (as at most two processors occur in one
statement). Hence, the total blow-up of all simulations on a given level
is bounded by b2

a (b2
p on the lowest level), and as the recursion depth of

the construction is logarithmic in the number |Z| of maximal sets in the
adversary structure, the total blow-up is polynomial in |Z|.

4.5.3 Tightness

In order to prove the tightness of the theorem, assume an adversary struc-
ture Z for which every function can be computed perfectly Z-securely
and suppose Q(3,2)(P ,Z) is not satisfied. Then there exist three classes
(D1, E1), (D2, E2), (D3, E3) ∈ Z with D1 ∪ E1 ∪D2 ∪ E2 ∪D3 = P , and

4.6 Mixed Model with Unconditional Security with Broadcast 113

(due to the monotonicity of Z) with the sets D1, E1, D2, E2 and D3 being
pairwise disjoint.

One can construct a protocol for three processors P̂1, P̂2, and P̂3,
where P̂1 plays for all the processors in D1 ∪ E1, P̂2 plays for those in
D2 ∪ E2, and P̂3 plays for those in D3. This new protocol is secure with
respect to an adversary that passively corrupts either P̂1 or P̂2, or actively
corrupts P̂3. It was proven in Section 3.5.4 that such a protocol does not
exist for many specifications.

4.6 Mixed Model with Unconditional Security
with Broadcast

In the mixed model with unconditional security and with assuming
broadcast channels, it turns out that the necessary conditions for secure
MPC implies the sufficient condition for the active model with broad-
cast. In other words, though some of the processors are corrupted only
passively, the adversary cannot be allowed to corrupt any more of them.
Hence, constructing protocols for the mixed model with broadcast is
based on the protocols for the active model with broadcast. Still, the
tightness of the condition for the mixed model with broadcast must be
proven.

Theorem 14 If a broadcast channel is available, a set P of processors can com-
pute every specification unconditionally Z-securely if Q(2,2)(P ,Z) is satisfied.
This bound is tight: if Q(2,2)(P ,Z) is not satisfied, then there exist functions
that cannot be computed unconditionally Z-securely. The communication and
computation complexities of the protocol are polynomial in the size |Z| of the
basis of the adversary structure and linear in the length of the specification.

4.6.1 Construction

Consider a set P of processors and a structure Z for this set P such that
Q(2,2)(P ,Z) is satisfied. We define the adversary structure Z ′ for the
active model such that it contains all set of processors that can be cor-
rupted (actively or passively) at once, i.e., Z ′ = {D ∪ E : (D, E) ∈ Z}.
Every mixed adversary tolerated by Z is also tolerated by Z ′, and as
Q(2,2)(P ,Z) implies Q(3)(P ,Z ′), we can use the protocol of Section 4.4
to tolerate Z .

114 General Adversaries in MPC

4.6.2 Tightness

We prove that for every adversary structure Z for a processor set P not
satisfying Q(2,2)(P ,Z), there exist specifications that cannot be computed
unconditionally Z-securely, even when broadcast channels are available.
For the sake of contradiction, assume that for an adversary structure Z
for which Q(2,2)(P ,Z) is not satisfied, there exists an unconditional Z-
secure protocol for every function. Clearly, this protocol is passively Z ′-
secure for Z ′ = {D ∪ E : (D, E) ∈ Z}, though Q(2)(P ,Z ′) is not satisfied,
contradicting Theorem 10.

4.7 Mixed Model with Unconditional Security
without Broadcast

When no broadcast channels are available, then the broadcast primitive is
simulated by a sub-protocol for Byzantine agreement. This yields an ad-
ditional condition, namely Q(3,0)(P ,Z), for the existence of secure MPC
protocols.

Theorem 15 A set P of processors can compute every specification uncondi-
tionally Z-securely if Q(2,2)(P ,Z) and Q(3,0)(P ,Z) are satisfied. This bound
is tight: if Q(2,2)(P ,Z) or Q(3,0)(P ,Z) is not satisfied, then there exist func-
tions that cannot be computed unconditionally Z-securely. The communication
and computation complexities of the protocol are polynomial in the size |Z| of
the basis of the adversary structure and linear in the length of the specification.

4.7.1 Construction

Consider a set P of processors and a structure Z for this set P such that
Q(2,2)(P ,Z) and Q(3,0)(P ,Z) are satisfied. The condition Q(3,0) implies
the existence of an efficient secure protocol for broadcast [FM98], and
hence the construction of Section 4.6.1 (with replacing the invocations
to the broadcast primitive by broadcast sub-protocols) yields a Z-secure
protocol.

4.8 Counting Adversary Structures 115

4.7.2 Efficiency

The efficiency of this construction follows immediately from the effi-
ciency of the protocol for the mixed model with broadcast channels and
the efficiency of the broadcast simulation protocol.

4.7.3 Tightness

The necessity of Q(2,2)(P ,Z) is already proven (Section 4.6.2). Thus as-
sume that Q(2,2)(P ,Z) is satisfied but not Q(3,0)(P ,Z), i.e., there exist
three classes (D1, E1), (D2, E2), (D3, E3) ∈ Z with D1∪D2∪D3 = P (and
D1, D2, and D3 pairwise disjoint). For the sake of contradiction, assume
that for every function a Z-secure multi-party protocol exists, hence in
particular for the broadcast function. One can hence construct a broad-
cast protocol for the three processors P̂1, P̂2, and P̂3 (where each proces-
sor P̂1, P̂2, and P̂3 “plays” for the processors in one of the sets D1, D2,
and D3, respectively), where the adversary is allowed to actively corrupt
one of them, contradicting the result that broadcast for three processors is
not possible if the adversary may actively corrupt one of the processors,
even if a negligible error probability is tolerated [LSP82, KY].

4.8 Counting Adversary Structures

The goal of this section is, informally, to prove that there exists a family
of adversary structures and specifications, such that the length of every
resilient protocol computing this specification grows exponentially in the
number of processors. This means that every resilient protocol has expo-
nential communication and/or computation complexity.

For a specification (π0, τ), a set P of processors, and an adversary
structure Z , let ϕ

(
(π0, τ),P ,Z)

denote the length of the shortest protocol
π for P that Z-securely computes (π0, τ). Furthermore, let (π∗, τ) denote
the specification for the processors P1 and P2 that reads one input of both
processors, computes the product and hands it to P1. Finally, let Pn de-
note the set {P1, . . . , Pn} of processors.

Theorem 16 For any of the considered models there exists a family Z2,Z3, . . .
of adversary structures for the sets P2,P3, . . . of processors, respectively, such
that the length ϕ

(
(π∗, τ),Pn,Zn

)
of the shortest Zn-secure protocol for (π∗, τ)

grows exponentially in n.

116 General Adversaries in MPC

Note that if this theorem hold for the passive and for the active model,
then trivially it also holds for all mixed models; hence it is sufficient
to prove it for the passive and for the active model. In order to prove
the theorem we need an additional definition: An admissible adversary
structure Z for the set P of processors is maximal if Q(2)(P ,Z) (in the
passive model) or Q(3)(P ,Z) (in the active model) is satisfied, but any
adversary structure Z ′ with Z ⊂ Z ′ (and Z 6= Z ′) violates Q(2)(P ,Z ′), or
Q(3)(P ,Z ′), respectively.

Proof: The proof proceeds in three steps: First we prove that in both
models, the number of maximal admissible adversary structures grows
doubly-exponentially in the number n of processors. In the second step,
we show that for the given specification (π∗, τ), for every maximal ad-
missible adversary structure a different protocol is required. Finally, we
conclude that for some adversary structures the length of every secure
protocol is exponential in the number of processors.

1. First consider the passive model. Without loss of generality, as-
sume that n = |P| is odd, and let m = (n + 1)/2. Fix a processor
P ∈ P , and consider the set B that contains all subsets of P \{P}
with exactly m processors, i.e., B = {Z ⊆ (P\{P}) : |Z| = m}. For
each subset B′ ⊆ B, we define ZB′ to be the adversary structure
that contains all sets in B′, plus all sets Z ⊆ P with |Z| < n/2 and
(P\Z) /∈ B′. One can easily verify that ZB′ is admissible and max-
imal, and that for two different subsets B′,B′′ ⊆ B, the structures
ZB′ and ZB′′ are different. The size of B is |B| =

(
n−1
m

)
= 2Ω(n),

hence there are 22Ω(n)
different subsets B′ of B, and thus doubly-

exponentially many different maximal admissible adversary struc-
tures for the passive model.

For the active model, fix an arbitrary processor P ′, and consider the
set of all maximal admissible adversary structures forP\{P ′} for the
passive model. Each such structureZ satisfies Q(2)(P\{P ′},Z), and
hence the extended adversary structure Z ′ = Z ∪ {{P ′}} satisfies
Q(3)(P ,Z ′). There exists at least one maximal adversary structure
Ẑ ⊇ Z ′ for P , and for two different adversary structures Z ′

1 and
Z ′2, also Ẑ1 and Ẑ2 are different (given Ẑ , one can easily compute
Z ′ by deleting all sets containing P ′ in Ẑ). Hence, the number of
maximal admissible adversary structures for the active model with

4.8 Counting Adversary Structures 117

n processors is at least as large as for the passive model with n − 1
processors, thus doubly-exponential in n.

2. Let Z be a maximal admissible adversary structure, and let π be
a protocol that Z-securely computes (π∗, τ). For the sake of con-
tradiction, assume that for some other maximal admissible adver-
sary structure Z ′ (where Z ′ 6= Z), the same protocol π Z ′-securely
computes (π∗, τ). Then π would (Z ∪Z ′)-securely compute (π∗, τ).
However, since both Z and Z ′ are maximal admissible, (Z ∪ Z ′) is
not admissible, and hence no such protocol exists (see Theorem 10
and 11). Hence, for each maximal admissible adversary structure Z
a different protocol π is required for securely computing (π∗, τ).

3. There are doubly-exponentially many maximal admissible adver-
sary structures, and for each of them, a different protocol is re-
quired, hence there are doubly-exponentially many different pro-
tocols. This implies that some of these protocols have exponential
length.

Chapter 5

Receipt-Free Secret-Ballot
Voting

5.1 Introduction

In this section, we consider the problem of receipt-freeness in secret-
ballot voting. Classical voting schemes guarantee the correctness of the
output while preserving the secrecy of each vote. In a model with vote-
buyers and coercers, it is not sufficient that an attacker cannot determine
the vote of any voter, but additionally one must require that even the
voter himself cannot convince the attacker about the cast vote. Schemes
which disable the voter from proving his own vote are called receipt-free.

We propose two novel receipt-free voting protocols based on homo-
morphic encryption. Both protocols involve a set of N authorities. The
security of the protocols is specified with respect to a fixed parameter t:
The correctness of the computed tally is guaranteed as long as at least t
authorities remain honest during the whole protocol execution, and the
secrecy of each vote is guaranteed as long as no t authorities maliciously
collaborate with each other.21 Vote-buying and blackmailing is disabled
under the assumption that untappable channels are available. This is
the weakest assumption under which receipt-free voting protocols are
known to exist.

21In contrast to the context of multi-party protocols, where t usually denotes the upper
bound on the number of dishonest parties, here t denotes the number of honest authorities
required for tallying (as well as for opening any single ballot).

120 Receipt-Free Secret-Ballot Voting

The proposed protocols capture K-out-of-L votes, where every voter
may vote for any K candidates out of a list of L candidates. Clearly,
Yes/No-votes and single-choice candidate elections are special cases of
K-out-of-L votings (with K = 1).

The first proposed protocol is a variation of the receipt-free voting
protocol of Hirt and Sako [HS00]. Compared to the original protocol, the
variation prevents the heavy computation load for decrypting the tally
when the number of candidates L is large, and it makes the protocol re-
sistant against the randomization attack [Sch99].

The second protocol borrows an idea from the protocol by Lee and
Kim [LK00]: Each voter privately sends an encryption of his vote to a
randomizer, who changes the randomness in the encryption and casts this
new ballot as the voter’s ballot. Furthermore (and in contrast to [LK00]),
the voter and the randomizer jointly generate a proof of validity for the
new ballot. Hence, the trustworthiness of the randomizer is required for
receipt-freeness, but not for privacy or correctness.

Finally, we analyze the security of the protocols of [BT94] and [LK00]
and show that they are not receipt-free, in contrast to what is claimed in
the papers.

5.1.1 Receipt-Freeness

In a model with vote-buyers and coercers, a voting protocol must not
only ensure that each voter can keep his vote private, but rather that each
voter must keep it private. Still, a voter can be coerced or payed for cast-
ing a particular vote, but as the voter is not able to verifiably reveal the
cast vote, the coercer or vote-buyer cannot verify whether the voter fol-
lowed his instructions. The inability of constructing a verifiable receipt
of the cast vote is equivalent to the ability of constructing fake “receipts”.
Whatever receipt the voter could construct when casting the requested
vote, he can create an indistinguishable receipt even when casting any
other vote.

There is a subtle difference in the requirements for preventing black-
mailing on the one hand and for preventing vote-buying on the other
hand: In the context of blackmailing, any (non-negligible) probability of
the voter being caught when presenting a fake receipt to the coercer is
unacceptable. However, in the context of vote-buying, it might be suffi-
cient that a vote-buyer cannot distinguish fake receipts from real receipts
with reasonable probability.

5.1 Introduction 121

Receipt-freeness cannot be achieved without some (physical) assump-
tions on the communication channels. If the coercer can read and write
all communication channels from and to the voter, then obviously the
voter can give him all his secrets, and then the coercer can perfectly im-
personate the voter and cast the requested vote. The weakest assump-
tion for which receipt-free voting schemes are known to exist are one-
way untappable channels from the authorities to the voters. The secrecy
in these channels is unconditional: Even the voter cannot convince any
other party what particular string he has received through these chan-
nels. In the scheme of this chapter, these channels need not be authentic.

Another requirement for achieving receipt-freeness is that in general,
authorities cannot be allowed to collude with a coercer or a vote-buyer.
The joint information of all communication channels, together with all
secrets of the voter, uniquely determine the voter’s vote. Hence, a voter
who wants to present a fake receipt must lie for the communication tran-
script with at least one authority. If this authority colludes with the co-
ercer, then the voter is caught lying. In the context of vote-buying, it
may be acceptable that the voter selects one authority at random and lies
about this transcript, and will be successful with probability linear in the
number of colluding authorities. In the context of black-mailing, a linear
probability of being caught is usually not acceptable.

5.1.2 Entities and Network

We consider a model with N authorities A1, . . . , AN and M voters. For
authentication purposes, to each voter a secret key and a public key is as-
sociated, where the public key must be publicly known and the secret key
must be kept private. We stress that in order to achieve receipt-freeness it
must be guaranteed that each voter knows the secret key corresponding
to his known public key (but the voter is allowed to reveal the secret-key
to the coercer). For the case that this is not guaranteed by the underlying
public-key infrastructure, we provide a protocol for ensuring that a voter
knows his own secret key. Furthermore, we assume that there exists a
proof protocol for proving knowledge of one’s secret key. This protocol
must be three-move honest-verifier zero-knowledge (see below).

Communication takes place by means of a bulletin board which is
publicly readable, and which every participant can write to (into his own
section), but nobody can delete from. The bulletin board can be consid-
ered as an authenticated public channel with memory. Furthermore, we

122 Receipt-Free Secret-Ballot Voting

assume the existence of untappable channels. The privacy of an untap-
pable channel must be physical, in such a way that even the recipient
cannot prove what was received from the channel (of course, the recipi-
ent can record all received data, but he must not be able to prove to a third
party that he received a particular string). The untappable channels need
not to be authenticated on the sender’s side.

5.2 Preliminaries

5.2.1 Homomorphic Encryption Scheme

We consider a probabilistic public-key encryption function

EZ : V× R→ E, (v, α) 7→ e,

where Z denotes the public key, V denotes a set of votes, R denotes the set
of random strings, and E denotes the set of encryptions. We write E in-
stead of EZ for shorthand. For simplicity, we assume that E is surjective.
The decryption function is

Dz : E→ V, e 7→ v,

where z denotes the secret key. Again, we write D instead of Dz .

An encryption function is semantically secure if for any given encryp-
tion e and any two candidate votes v1 and v2, where one of them is a
decryption of e, it is infeasible to determine which vote is contained in
e with probability significantly higher than 0.5, unless the secret key z is
known [GM84].

A group homomorphism f is a function that maps elements from a
group (A,⊕) onto a group (B,⊗), such that the group structure is pre-
served, i.e., f(x) ⊗ f(y) = f(x ⊕ y) for any x, y ∈ A. An encryption
scheme for which the encryption function E : V × R → E is a group
homomorphism (where A = V × R and B = E) is called a homomorphic
encryption scheme. The group operation in V is denoted by +,22 the one
in R by �, and the one in E by ⊕. All groups are Abelian, and the group
operations are efficient, as is computing inverses. The groups are written

22Usually, one will require that the group (V, +) is equal to Z|V| (respectively isomor-
phic with an efficiently computable and invertible isomorphism), such that the tally indeed
represents the sum of the cast votes. However, this is not a formal requirement.

5.2 Preliminaries 123

as additive groups, e.g., ke for k ∈ Z and e ∈ E denotes the sum e⊕ . . .⊕e
(k times). The encryption function is homomorphic means that for any
two elements v1, v2 ∈ V and α1, α2 ∈ R,

E(v1, α1)⊕ E(v2, α2) = E(v1 + v2, α1 � α2).

We say that an encryption function E is q-invertible for a given q ∈ Z

exactly if for every encryption e, the decryption v and the randomness α
of qe can be efficiently computed, i.e., the function Dq : e 7→ (v, α) such
that qe = E(v, α) is efficient (given Z). In contrast to normal decryption
where only v must be computed such that there exists an α with e =
E(v, α), for q-invertibility we require that both v and α can be computed
such that qe = E(v, α). This notion of q-invertibility is inspired by the
notion of q-one-way group-homomorphism of Cramer [Cra96, CD98].

Finally, a threshold encryption scheme is an encryption scheme with
distributed protocols for key generation and for decryption. In the key
generation protocol, the secret key is (verifiably) shared among a set of
parties, and the corresponding public key is published. In the decryption
protocol, any arbitrary encryption can be verifiably decrypted, as long as
enough of the parties cooperate. The decryption protocol must not reveal
any information that could compromise the secrecy of other encryptions.
Note that every encryption scheme can be turned into a threshold variant
by applying techniques of general multi-party computations, but such an
approach would be rather inefficient.

5.2.2 Σ-Proofs

A Σ-proof is a special kind of protocol between a prover and a verifier, al-
lowing the prover to prove knowledge of a witness satisfying some pub-
lic predicate, without giving away the witness. The notion of Σ-proofs
originates from the notion of a Σ-protocol, as introduced by Cramer
[Cra96].

More specifically, a Σ-proof for a public predicate Q is a three-move
protocol (where the prover sends the first message), with the property
that whenever the verifier accepts the outcome of the protocol, then in-
deed the prover “knows” a witness ξ satisfying Q, and whenever the
verifier selects the challenge c independently from the first message of
the prover, then he does not learn anything from the protocol execution
that he could not have simulated on his own.

124 Receipt-Free Secret-Ballot Voting

Prover Verifier

knows Q and ξ s.t. Q(ξ) knows Q

prepare t
(might involve ξ) -t

� c
select c at random

compute s
(might involve ξ) -s

accept or reject (t, c, s)

At the end of the protocol, the verifier accepts or rejects the proof. In-
tuitively, the verifier should accept the proof if and only if the prover
knows a witness satisfying the public predicate Q, but the protocol
should not give any information about the witness to the verifier. For
soundness we assume that the verifier selects the challenge c uniformly
at random out of some specified space, and the property that the verifier
does not learn anything about the witness is only required to be satisfied
for verifiers that select c independently of t. For simplicity, we assume
that c is chosen from Zu for some integer u.

More formally, the following properties must be satisfied:

Completeness. When both the prover and the verifier are honest, and
the prover knows a witness ξ satisfying Q, then the verifier will
always accept the conversation.

(Special) soundness. Whenever an honest verifier accepts a conversa-
tion, then with overwhelming probability, the (honest or malicious)
prover “knows” a witness ξ′ satisfying Q. Special soundness means
that if a prover can reply on two different challenges for any first
message t, then he can compute ξ. More formally, we require the
existence of an efficient algorithm X (called knowledge extractor) that
computes a witness ξ′ satisfying Q for any given two accepting con-
versations (t1, c1, s1) and (t2, c2, s2) with t1 = t2 and c1 6= c2.

Special honest-verifier zero knowledge. Zero-knowledge means that
the verifier learns nothing from the protocol execution what he
could not generate on his own. Honest-verifier zero-knowledge
means zero-knowledge with an honest verifier (who selects the

5.2 Preliminaries 125

challenge c independently from the first message t), but potentially
leaking information to a malicious verifier. Formally, a protocol is
special honest-verifier zero-knowledge if there exists a simulator S
which on input any challenge c outputs an accepting conversation
(t, c, s), where the conversations are simulated with the same prob-
ability distribution as the conversations of the honest verifier with
the honest prover.

Completeness implies that a conversation between an honest prover
and an honest verifier is always accepted. Special soundness implies that
when the challenge space Zu is large enough (i.e., 1/u is negligible), then
a malicious prover (not knowing a witness satisfying Q) cannot convince
an honest verifier with non-negligible probability.

Formally, a Σ-proof is represented as a tuple (πt, u, πs, φ), where πt

is an efficient algorithm that computes the first message t of the proto-
col for any witness ξ and random string r, u specifies the space Zu from
which the verifier (uniformly) selects the challenge c, πs is an algorithm
that computes the third message s of the protocol for any given witness
ξ, challenge c, and randomness r, and φ is the predicate that decides
whether a conversation (t, c, s) is to be accepted (i.e., φ(t, c, s) is satisfied)
or to be rejected. A (correct) protocol execution hence looks as follows:

Prover Verifier

knows Q and ξ s.t. Q(ξ) knows Q

select r at random,
t← πt(ξ, r) -t

� c
c ∈R Zu

s← πs(ξ, c, r) -s
φ(t, c, s) ?

A tuple (πt, u, πs, φ) is a Σ-proof for predicate Q if there exists an (effi-
cient) knowledge extractor X and an (efficient) simulator S such that the
following holds:

• (Completeness) For every witness ξ with Q(ξ), for every random
string r, and for every challenge c ∈ Zu: φ(πt(ξ, r), c, πs(ξ, c, r)).

126 Receipt-Free Secret-Ballot Voting

• (Special soundness) For any two conversations (t1, c1, s1) and
(t2, c2, s2) with φ(t1, c1, s1), φ(t2, c2, s2), t1 = t2, and c1 6= c2, the
predicate Q

(
X((t1, c1, s1), (t2, c2, s2))

)
is satisfied.

• (Special honest-verifier zero-knowledge) For every witness ξ with
Q(ξ) and for every challenge c ∈ Zu, the probability distribution of
the real conversations (πt(ξ, r), c, πs(ξ, c, r)) for uniformly chosen r
is the same as the probability distribution of S(c, r′) for uniformly
chosen r′.

5.2.3 Σ-Transforms

We are mainly interested in two transformations on Σ-proofs, namely
AND- and OR-combinations. The AND-combination of two Σ-proofs
is a Σ-proof of knowledge of two (usually different) witnesses, satisfy-
ing the predicate of the first, respectively of the second, Σ-proof. The
OR-combination of two Σ-proofs is a Σ-proof of knowledge of one wit-
ness, satisfying the predicate of the first or the predicate of the second Σ-
proof. General techniques for combining zero-knowledge protocols can
be found in [CDS94].

More formally, assume that we are given a Σ-proof of a witness ξ
satisfying Q, and a Σ-proof of a witness ξ′ satisfying Q′. The AND-
combination is a Σ-proof of a witness (ξ, ξ′) satisfying Q(ξ) ∧Q′(ξ′), and
the OR-combination is a Σ-proof of a witness ξ∗ satisfying Q(ξ∗)∨Q′(ξ∗).

5.2.3.1 Reduction of the challenge space

As an auxiliary transformation, we need to reduce the challenge space of
a given Σ-proof: Consider a Σ-proof (πt, u, πs, φ) for predicate Q, then for
any u′ < u, the tuple (πt, u

′, πs, φ) is a Σ-proof of knowledge of a witness
satisfying Q, where the error probability of the new proof is negligible if
1/u′ is negligible. The security of the new proof (completeness, special
soundness, special honest-verifier zero-knowledge) follow immediately
from the security of the original proof.

5.2.3.2 AND-combinations

Given a Σ-proof (πt, u, πs, φ) of knowledge of a witness ξ satisfying the
predicate Q, and a Σ-proof (π′t, u′, π′s, φ′) of knowledge of a witness ξ′

5.2 Preliminaries 127

satisfying the predicate Q′, a Σ-proof (π∗t , u∗, π∗s , φ∗) of a witness (ξ, ξ′)
satisfying the predicate Q∗ with Q∗(ξ, ξ′) ⇔ Q(ξ) ∧ Q′(ξ′) can be con-
structed as follows: First, we set u∗ = min(u, u′) and restrict the challenge
space of the Σ-proofs for Q and Q′ to Zu∗ . Then, the protocol for proving
knowledge of a witness satisfying Q∗ consists of two parallel executions
of a protocol, once for proving knowledge of a witness satisfying Q, and
once for proving knowledge of a witness satisfying Q′, where the same
challenge is used for both protocols. The protocol is formally depicted
below:

Prover Verifier

knows Q, Q′, ξ, ξ′

with Q(ξ) ∧Q′(ξ′)
knows Q, Q′

select r, r′ at random,
t← πt(ξ, r),
t′ ← π′t(ξ′, r′), -t, t′

� c
c ∈R Zu∗

s← πs(ξ, c, r),
s′ ← π′s(ξ′, c, r′) -s, s′

φ(t, c, s) ∧ φ′(t′, c, s′) ?

Both knowledge extractor and simulator for the new protocol can be
easily constructed from the knowledge extractors and the simulators of
the basic protocols.

5.2.3.3 OR-combinations

Finally, we consider the OR-combination of two Σ-protocols: Given a Σ-
proof (πt, u, πs, φ) of knowledge of a witness ξ satisfying the predicate
Q, and a Σ-proof (π′t, u′, π′s, φ′) of knowledge of a witness ξ′ satisfying
the predicate Q′, a Σ-proof (π∗t , u∗, π∗s , φ∗) of knowledge of a witness ξ∗

satisfying the predicate Q∗ with Q∗(ξ∗) ⇔ Q(ξ∗) ∨ Q′(ξ∗) can be con-
structed as follows: First, we set u∗ = min(u, u′) and restrict the challenge
space of the Σ-proofs for Q and Q′ to Zu∗ . Then, the protocol for proving
knowledge of a witness satisfying Q∗ consists of two parallel executions
of a protocol, once for proving knowledge of a witness satisfying Q, and

128 Receipt-Free Secret-Ballot Voting

once for proving knowledge of a witness satisfying Q′, where only one
challenge c∗ is sent, and the prover is allowed to split c∗ into two sub-
challenges c and c′ with c + c′ = c∗. This allows the prover to use a
simulator for one of the protocols (for the predicate which he does not
know a witness for), but not for both. Again we give the protocol for-
mally. Without loss of generality, we assume that the prover‘ knows a
witness ξ satisfying Q (but not necessarily a witness ξ′ satisfying Q′).

Prover Verifier

knows Q, Q′, ξ with Q(ξ) knows Q, Q′

select r, r′ at random,
c′ ∈R Zu∗

t← πt(ξ, r),
(t′, c′, s′)← S′(c′, r′), -t, t′

� c∗
c∗ ∈R Zu∗

c = c∗ − c′ (mod u∗)
s← πs(ξ, c, r) -c, c′, s, s′

c∗ ?= c + c′ (mod u∗)
φ(t, c, s) ?
φ′(t′, c′, s′) ?

Completeness of the above Σ-proof follows immediately from in-
specting the protocol. In order to prove special soundness, a knowledge
extractor X∗ must be given. Such an extractor can be constructed easily:
Obviously, when the challenge c∗ is different for two accepting conversa-
tions, then also either c or c′ (as sent in the third message) must differ, and
we can apply the knowledge extractor of the corresponding Σ-proof to
find a witness satisfying Q or Q′. Finally, for proving the special honest-
verifier zero-knowledge property, we need to construct a special simula-
tor S∗. Such a simulator can be constructed in a straight-forward manner:
For any given challenge c∗ ∈ Zu∗ , c and c′ are selected at random such
that c+ c′ = c∗. Then, the special simulators S and S′ are invoked to gen-
erate accepting conversations (t, c, s) and (t′, c′, s′), respectively, which
immediately define an accepting conversation of the combined protocol.

5.2 Preliminaries 129

5.2.4 Identification Scheme

We assume an identification scheme which allows the voters to prove
their identity with a Σ-proof. We briefly review Schnorr’s identification
protocol [Sch91] as a Σ-proof and show that it satisfies this requirement:
Let G be a group of order |G| = q, and let g be a generator of this group,
i.e., G = 〈g〉. Each voter selects a secret key zv ∈ Zq at random, and
computes the public key Zv = gzv (in G). Knowledge of the secret
key (i.e., identity) is proven with the following Σ-proof. Formally, the
voter proves knowledge of a witness z satisfying the predicate QZv (z)⇔
(gz ?= Zv). The security of this protocol can be proven with standard
techniques.

Prover Verifier

knows Zv, zv, s.t. Zv = gzv knows Zv

r ∈R Zq, t = gr -t

� c
c ∈R Zq

s = czv + r (mod q) -s
gs ?= Zc

v · t

5.2.5 Ensuring Knowledge of the Secret Key

Furthermore, in a model providing receipt-freeness, it is essential that
each voter knows his own secret key. We provide a protocol that ensures
a voter’s knowledge of his secret key for Schnorr’s identification scheme
(cf. Section 5.2.4). This protocol should be performed as part of the key
registration (in the public-key infrastructure), or alternatively, as part of
the voting protocol if the key infrastructure does not provide this prop-
erty. This protocol requires secure (one-way) untappable channels from
the authorities to the voters, as will also be used by the voting protocols
themselves. The following protocol is based on Feldman’s secret-sharing
scheme [Fel87]. It establishes that a voter v knows the secret key zv cor-
responding to his public key Zv (where gzv = Zv). We stress that this
protocol should be performed as part of the key-infrastructure system,
and not as part of the voting protocol.

130 Receipt-Free Secret-Ballot Voting

• The voter shares his secret key zv among the authorities by using
Feldman’s secret-sharing scheme [Fel87]: The voter v chooses a uni-
formly distributed random polynomial fv(x) = zv + a1x + . . . +
at−1x

t−1 of degree t − 1, and secretly sends23 the share si = fv(i)
to authority Ai (for i = 1, . . . , N). Furthermore, the voter com-
mits to the coefficients of the polynomial by sending ci = gai for
i = 1, . . . , t− 1 to the bulletin board.

• Each authority Ai verifies with the following equation whether the
received share si indeed lies on the committed polynomial fv(·):

gsi ?= Zv · ci
1 · . . . · cit−1

t−1

(
= gzv · ga1i · . . . · gat−1it−1

= gfv(i)
)

.

If an authority detects an error, she complains and the voter is re-
quested to post the corresponding share to the bulletin board. If the
posted share does not correspond to the commitments, the voter is
disqualified.

• Finally, every authority (which did not complain in the previous
stage) sends her share through the untappable channel to the voter,
and the voter interpolates the secret key from those shares that are
consistent with the committed coefficients.

In the above protocol, clearly after the second step, either the (honest)
authorities will have consistent shares of the voter’s secret key zv, or the
voter will be disqualified. However, so far it is not ensured that the voter
indeed knows the secret key, as the shares could have been provided by
the coercer. In any case, in the final step the voter learns zv . There are
at least t honest authorities who either complained (and thus their share
is published), or who send their share to the voter, and hence the voter
can interpolate the secret key zv. The secrecy of the voter’s secret key
zv is preserved under the assumption that at most t − 1 authorities are
dishonest.

5.2.6 Designated-Verifier Proofs

A designated-verifier proof is a proof which is convincing for one partic-
ular (designated) verifier, but completely useless when transferred from

23Either the voter encrypts the share with the authority’s public key, or alternatively the
authority first sends a one-time pad through the untappable channel, and the voter then
encrypts with this pad.

5.3 The Encryption Function 131

this designated verifier to any other entity. The notion of designated-
verifier proofs was introduced in [JSI96].

The key idea of designated-verifier proofs is to prove knowledge of ei-
ther the witness in question, or of the secret key of the designated verifier.
Such a proof does convince the designated verifier (who assumes that the
prover does not know his secret key), but if the proof is transferred from
the verifier to another entity, it loses its persuasiveness completely.

We only consider designated-verifier Σ-proofs. Such a proof is con-
structed as follows: Let (πt, u, πs, φ) be a (normal) Σ-proof for the predi-
cate Q to be proven, and let (π′t, u′, π′s, φ′) be a Σ-proof for proving iden-
tity of the designated verifier, i.e., the Σ-proof of the identification scheme
for the verifier in question (where Q′ denotes the predicate that the ver-
ifier’s secret key is to satisfy). Then, a designated-verifier proof for Q is
constructed as Σ-proof for Q ∨ Q′ with the techniques presented in Sec-
tion 5.2.3.

5.2.7 Non-interactive Proofs

In practice, we will often use non-interactive variants of Σ-proofs.
Such non-interactive proofs can be constructed by using the Fiat-Shamir
heuristics [FS86], which essentially replaces the challenge of the verifier
by a hash value of the first message of the prover. More precisely, for
a Σ-proof (πt, u, πs, φ) for predicate Q, the non-interactive proof is an ac-
cepting conversation (t, c, s) satisfying φ, where c is computed as the hash
value of t, i.e., c = H(t) for an appropriate hash function H . This non-
interactive proof is sound in the random oracle model [BR93].

5.3 The Encryption Function

Our voting schemes require a semantically-secure q-invertible homomor-
phic public-key encryption scheme with threshold key generation and
threshold decryption, according to the definitions of Section 5.2.1. Let
EZ : V × R → E, (v, α) 7→ e denote the encryption function for public
key Z , and Dz : E → V, e 7→ v the decryption function for secret key z.
The encryption function is required to be q-invertible for a large number
q, and we require that there is a number u ≤ q, large enough that 1/u
is considered negligible, with the property that all integers smaller than
u are co-prime with q, i.e., ∀u′ < u : gcd(u′, q) = 1. This property will

132 Receipt-Free Secret-Ballot Voting

be used in the knowledge extractors of the Σ-proofs.24 Obviously, if q is
prime, we can set u = q.

In the sequel, we give two possible realizations of encryption schemes
satisfying the required properties.

5.3.1 ElGamal-Like Encryption

The ElGamal encryption function [ElG84], enhanced with a threshold
setup protocol and a threshold group decryption [Ped91], and slightly
manipulated to provide additive homomorphism [CGS97], satisfies all
above properties. In the following, we give a brief description of this
encryption function. More details can be found in [Ped91] and [CGS97].
Note that this encryption scheme provides efficient decryption only for
small messages (more precisely, the complexity for decrypting an encryp-
tion e = E(v, α) is at most O(v), respectively O(

√
v) when using baby-

step giant-step). This will be no disadvantage in the voting scheme with
ballot shuffling, but will disallow certain types of votes in the scheme
with randomizers.

Let G be a commutative group of order |G| = q, where q is a large
prime, and let g and γ be independently chosen generators of G, i.e.,
G = 〈g〉 = 〈γ〉. G can be constructed as a subgroup of Z

∗
p, where p is a

large prime and q|p−1, but can also be obtained from elliptic curves. The
secret key z is a random element in Zq , and the public key is Z = gz . The
encryption function is defined as follows:

EZ : Zq × Zq → G×G, (v, α) 7→ (gα, γvZα),

i.e., V = Zq , R = Zq , and E = G×G. The group operations in V and in R

are addition modulo q, and the group operation in E is component-wise
multiplication in G. One can easily verify that indeed (V, +), (R, �), and
(E,⊕) are Abelian groups. Clearly, this encryption function is homomor-
phic with respect to the given group operations:

E(v1, α1)⊕ E(v2, α2) = (gα1 · gα2 , γv1Zα1 · γv2Zα2)
= (gα1+α2 , γv1+v2Zα1+α2)
= E(v1 + v2, α1 + α2).

24More generally, it would be sufficient to assume that for a given large u, there exists
an efficiently computable and invertible bijection from Zu onto a subset of Zq , where each
element in this subset is co-prime with q.

5.3 The Encryption Function 133

The semantic security of this encryption function is implied by the
well-known decisional Diffie-Hellman assumption (DDHA) in G (see
e.g., [TY98]). The DDHA says that for two triples (a1, b1, c1) and
(a2, b2, c2) in G3, where one triple is randomly chosen and the other
triples is a Diffie-Hellman-triple (i.e., for some i ∈ {1, 2} there exist
α, β ∈ Zq such that ai = gα, bi = gβ , and ci = gαβ), it is impossi-
ble for any polynomial-time algorithm to determine which triple is the
Diffie-Hellman triple with probability significantly more than 0.5. This
implies that Zα (in the encryption function) could be replaced by a ran-
dom value without changing significantly the attacker’s probability of
success. However, replacing Zα by a random value hides the vote v
information-theoretically.

Finally, the q-invertibility is obvious, because |G| = q: Any element in
G (except the neutral element) has order q, and hence qe is an encryption
of 0 with randomness 0 for any e ∈ E. As q is prime, we can set u = q,
and the condition ∀u′ < u : gcd(u′, q) = 1 is satisfied.

A threshold variant of this cryptosystem can be achieved as follows
[Ped91, CGS97]: In the setup-protocol, the key pair (z, Z) is constructed
in a way that each authority obtains a share zi of z in a (t, N)-threshold
(Shamir) secret-sharing scheme and is publicly committed to this share
by Zi = gzi [Ped91, CGS97]. In order to decrypt the tally T from the
sum encryption e = (x, y) the authorities first jointly compute and reveal
x̂ = xz and prove its correctness. This can be achieved by having every
authority Ai compute x̂i = xzi , where zi is Ai’s share of the secret key
z, and then compute x̂ from x̂i. This is possible if at least t authorities
reveal the correct x̂i. More details can be found in [Ped91, CGS97]. Once
x̂ is known, one can compute

y

x̂
=

γT · Zα

(gα)z
= γT .

Then, the authorities must find T . The computation complexity of this
task depends on the encoding of the votes and the number of voters (re-
spectively on the size of T), and is discussed later.

5.3.2 Paillier Encryption

The probabilistic encryption function of Paillier [Pai99] is homomorphic
with respect to addition. A threshold variant was proposed in [FPS00]

134 Receipt-Free Secret-Ballot Voting

and [DJ01]. In the following we sketch the suitability of this encryption
function. Details can be found in [FPS00] and [DJ01].

Let n = pq be an RSA modulus, and let g ∈ Z∗
n2 be an element with

order a multiple of n. The secret key of this scheme is (p, q), and the
public key is (n, g). The encryption function is defined as follows:

E : Zn × Z
∗
n → Z

∗
n2 , (v, α) 7→ (gv · αn) (mod n2),

i.e., V = Zn, R = Z∗
n, and E = Z∗

n2 . The group operation in V is addition
modulo n, the operation in R is multiplication modulo n, and that in E

is multiplication modulo n2. The homomorphic property of the scheme
can be verified easily:

E(v1, α1)⊕ E(v2, α2) = gv1αn
1 · gv2αn

2

= gv1+v2 · (α1α2)n

= E(v1 + v2, α1α2).

This encryption function is semantically secure if (and only if) the
Composite Residuosity Assumption holds, i.e., if it is computationally
hard to distinguish higher-degree residues. Details can be found in
[Pai99].

Furthermore, this encryption function is n-invertible: For any encryp-
tion e = gvαn, the decryption of ne is 0 with randomness e:

ne = nE(v, α) = (gvαn)n = g0 · (gvαn)n = E(0, gvαn) = E(0, e).

In order to give a u with ∀u′ < u : gcd(u′, n) = 1, we specify a lower
bound on the size of each prime factor of n, and let u be below this bound.
For example, we let n be the product of two primes of 512 bits each, and
set u = 2511.

A threshold-secure setup protocol and a group-decryption protocol
along the lines of [Sho00] were proposed in [FPS00] and [DJ01]. These
protocols are rather complex (though polynomial in the number of au-
thorities) and are out of the scope of this thesis.

5.4 Re-encrypting and Proving Re-encryptions

A random re-encryption e′ of a given encryption e is an encryption with
the same vote v, but a new (independently chosen) randomness α. Such

5.4 Re-encrypting and Proving Re-encryptions 135

a re-encryption can be computed by adding a random encryption of 0 to
e. Formally, a witness ξ ∈R R is chosen at random, and e′ = e ⊕ E(0, ξ),
i.e.,

e′ = R(e, ξ) = e⊕ E(0, ξ).

Due to the homomorphic property of E, the randomness in e′ is uni-
formly distributed over R for a uniformly chosen ξ ∈R R.

Proving that a given e′ is indeed a re-encryption of e can easily be
done by proving that e′ 	 e is an encryption of 0. We present a slightly
more general protocol, namely a Σ-proof which allows the prover to
prove knowledge of a witness ξ such that e = E(v, ξ) for any given en-
cryption e and vote v. The challenge for the protocol is uniformly selected
from Zu, and the soundness of the protocol is proven under the assump-
tion that E is q-invertible and that ∀u′ < u : gcd(u′, q) = 1.

Prover Verifier

knows e, v, ξ,
s.t. e = E(v, ξ)

knows e, v

α ∈R R, e′ = E(0, α) -e′

� c
c ∈R Zu

β = cξ � α -β
E(cv, β) ?= ce⊕ e′

Completeness of the protocol is obvious by inspection. We next show
that the protocol satisfies special soundness, by showing that if for any
e′ the prover can reply to two different challenges c1 6= c2, then he can
compute a witness ξ with e = E(v, ξ). So assume that for two different
challenges c1 and c2, the prover can answer with β1 and β2, respectively,
such that both conversations (e′, c1, β1) and (e′, c2, β2) are accepting, i.e.,
E(c1v, β1) = c1e⊕e′ and E(c2v, β2) = c2e⊕e′, and hence E

(
(c1−c2)v, β1�

β2

)
= (c1 − c2)e. Without loss of generality assume that c1 > c2, hence

0 < c1−c2 < u, and gcd(c1−c2, q) = 1. Hence we can apply the extended
Euclidean algorithm to find two integers a and b such that a(c1 − c2) +
bq = 1. Then, due to the q-invertibility of the encryption function, we can

136 Receipt-Free Secret-Ballot Voting

compute (vq, αq) such that eq = E(vq , αq). This results in

e =
(
a(c1 − c2) + bq

)
e

= a(c1 − c2)e⊕ bqe

= aE
(
(c1 − c2)v, β1 � β2

)⊕ bE(vq, αq)

= E
(
a(c1 − c2)v + bvq, a(β1 � β2) � bαq

)
,

and due to the homomorphic property of E we have qv = vq in V, and
hence

e = E
(
a(c1 − c2)v + bqv, a(β1 � β2) � bαq

)
= E

(
v, a(β1 � β2) � bαq

)
This concludes that indeed e encrypts v with witness ξ = a(β1�β2)�bαq.

Finally, we show that the protocol is special honest-verifier zero-
knowledge by constructing a simulator. The simulator is constructed as
follows: For any given c ∈ Zu, we select β from R at random, and set
e′ = E(cv, β)	ce. Obviously, the probability distribution of β is the same
as the distribution of a real conversation in which α is chosen uniformly
distributed (for the same challenge c).

It is important to note that the simulator can also be applied with
parameters e and v where e is not an encryption of v, and the simulated
conversation is computationally indistinguishable from a conversation
with compatible e and v (an efficient distinguisher of these conversations
would contradict the semantic security of the encryption function). This
indistinguishability is important when several re-encryption proofs are
OR-combined with the techniques of Section 5.2.3.

5.5 Voting Protocol based on Ballot Shuffling

In this section, we construct a voting protocol based on the assumed en-
cryption function, where receipt-freeness is achieved with ballot shuffling.
The idea behind ballot shuffling is that for each voter, the authorities gen-
erate in a mix-net-like construction an encrypted ballot of the desired
vote, under the guidance of the voter. The voter can select the vote that
will be encrypted in the final ballot, but has no influence on the random-
ness in the encryption.

5.5 Voting Protocol based on Ballot Shuffling 137

5.5.1 Model

We assume (unauthenticated) untappable two-way channels between
each authority and each voter. Furthermore, a bulletin board is assumed.
All communication channels are synchronous.

A threshold t denotes the number of authorities that must remain
honest during the whole vote. The outcome of the vote is guaranteed
to be correct as long as at least t authorities honestly cooperate in com-
puting the tally, and the privacy of every vote is ensured as long as no
t bad authorities collaborate. Receipt-freeness is ensured under the as-
sumption that every voter indeed knows the secret key corresponding
to his public key, and that no authority collaborates with the coercer or
the vote-buyer. In some cases, such a collaboration can be tolerated; see
Section 5.5.7 for details.

5.5.2 Ballots

In this voting scheme, a ballot is represented as a list [v1, . . . , vL] of L
sub-ballots (where L denotes the number of candidates), where the i-
th sub-ballot is 1 if the i-th candidate is elected, and 0 otherwise.25 A
ballot is valid if all sub-ballots are either 0 or 1, and the sum of all of
them is equal to K . Every voter casts one encrypted ballot [e1, . . . , eL],
where the encryption is performed component-wise by applying the ho-
momorphic encryption function to each sub-ballot, i.e., [e1, . . . , eL] =
[E(v1, α1), . . . , E(vL, αL)] for arbitrary random elements α1, . . . , αL. Ob-
viously, the required properties of the encryption function (in particular
the homomorphic property and the semantic security) are also satisfied
for this encryption function on ballots.

5.5.3 Set-up

In the set-up phase, the authorities jointly generate a uniformly dis-
tributed secret key and the corresponding public key for the encryption
scheme, where the secret key is shared among the authorities, and the
public key is publicly known. A protocol for (verifiably) generating a
sharing of a randomly chosen secret key and a public key is a require-
ment on the encryption function.

25In fact, any group element can be used to represent a vote for a candidate. However,
for unique decoding, the order of the element should be larger than the number of entitled
voters.

138 Receipt-Free Secret-Ballot Voting

5.5.4 Casting a Ballot

The basic idea of this protocol is illustrated in Fig. 5.1: First, an encrypted
default ballot is constructed, where the first K sub-ballots are encryptions
of 1, and the other sub-ballots are encryptions of 0. The encryptions are
deterministic, e.g., the randomness in the encryption function is set to 0
(on the very left in the figure). Then, the voter sends a permutation to the
first authority, who then picks this encrypted default ballot, re-encrypts
each sub-ballot (illustrated by rotating the entries), reorders them accord-
ing to the voter’s permutation, and hands the resulting encrypted ballot
to the second authority. Furthermore, the authority proves publicly that
the new encrypted ballot indeed contains the same entries as the origi-
nal ballot, and proves secretly in designated-verifier manner (through a
secure untappable channel) to the voter that she used the requested per-
mutation. Then, the voter sends a permutation to the second authority,
who picks the encrypted ballot (from the first authority), shuffles it ac-
cording to the voter’s request, and provides the public and the private
proofs. These steps are repeated t times (then, any less than t authorities
cannot trace all permutations).

If an authority is malicious, she might fail the proof that she used the
requested permutation. Because this proof is sent over an untappable
channel, the voter cannot prove that the authority failed. Hence, we al-
low the voter reject up to N − t of these proofs, i.e., the proofs of all but
t authorities. The ballot is finished as soon as the voter has accepted t
shufflings.

A1

1

0

0
A2

0

0

1

A3

0

1

0

1

0

0

A4 A5

V

Figure 5.1: Constructing a vote in a 1-out-of-3 voting scheme
with N=5 authorities and threshold t = 3. When
there is no dispute between the voter and an author-
ity, the ballot is finished after the third authority.

5.5 Voting Protocol based on Ballot Shuffling 139

The protocol is shown more formally in the following. The essential
sub-protocols, namely a (public) proof that a shuffling of an encrypted
ballot indeed contains the same sub-ballots, and a (designated-verifier)
proof that the shuffling is according to the requested permutation will be
constructed afterwards.

We start with an initial ballot that contains encryptions of 1 in the first
K sub-ballots, and encryptions of 0 in the other sub-ballots. All encryp-
tions are deterministic (i.e., with randomness 0), and hence this initial
ballot is implicitly defined and public:

[e(0)
1 , . . . , e

(0)
L] = [E(1, 0), . . . , E(1, 0)︸ ︷︷ ︸

K times

, E(0, 0), . . . , E(0, 0)︸ ︷︷ ︸
L−K times

]

The voter selects t random permutations πi : {1, . . . , L} → {1, . . . , L}
(for i = 1, . . . , t), such that π1 ◦ · · · ◦ πt results in the desired permutation.
Then, the following steps are performed in turn for each authority Ak , till
the voter has accepted t shufflings.

1. The voter picks the next uncrossed permutation π and sends it over
an untappable channel to Ak. If the channels is not authentic, the
voter must sign π.

2. Ak picks the encrypted ballot [e(k−1)
1 , . . . , e

(k−1)
L] (for the first au-

thority A1, this is the initial ballot with the 1-votes in the first
K sub-ballots, and for all succeeding authorities, this is the bal-
lot of the previous authority). Then the authority shuffles this en-
crypted ballot, and hands it to the next authority. To shuffle the bal-
lot means to re-encrypt each encrypted sub-ballot and to permute
the ordering of the sub-ballots according to the requested permu-
tation. More precisely, the authority selects L random witnesses
ξ1, . . . , ξL ∈R RL, and assigns e

(k)
i = R(e(k−1)

π(i) , ξi) for i = 1, . . . , L.

The new ballot [e(k)
1 , . . . , e

(k)
L] is posted to the bulletin board.

3. Ak constructs a (non-interactive) proof that the new ballot is valid,
under the assumption that the previous ballot was valid, and posts
it to the bulletin board. The construction of this proof is given in
Section 5.5.4.1.

4. Ak secretly conveys to the voter a designated-verifier proof that she
used the requested permutation π through the untappable channel.
The construction of this proof is given in Section 5.5.4.2.

140 Receipt-Free Secret-Ballot Voting

5. The voter publicly announces whether he accepts or rejects the
proof. If he accepts, then he crosses the used permutation, and
the protocol goes on with the next authority and the next per-
mutation. If the voter rejects the proof, we set [e(k)

1 , . . . , e
(k)
L] =

[e(k−1)
1 , . . . , e

(k−1)
L], i.e., the shuffling of this authority is ignored,

and the protocol goes on with the next authority, but the same per-
mutation.

The ballot after the t-th accepted shuffling is the ballot of the voter.
If the voter does not accept t proofs, then he must be dishonest, and he
cannot cast a vote (see analysis in Section 5.5.7).

5.5.4.1 Proof of correct shuffling

We denote the permutation used for re-ordering the sub-ballots by π, and
the witnesses used for re-encrypting the sub-ballots by ξ1, . . . , ξL, i.e.,
e
(k)
i = R(e(k−1)

π(i) , ξi) for i = 1, . . . , L. The proof of correct shuffling con-
sists of the following two steps:

1. Proof that for every i = 1, . . . , L, e
(k)
i is a re-encryption of some sub-

ballot e
(k−1)
1 , . . . , e

(k−1)
L , and

2. Proof that the shuffled sum e
(k)
Σ =

∑L
i=1 e

(k)
i is a re-encryption of

the sum e
(k−1)
Σ =

∑L
i=1 e

(k−1)
i .

The first step ensures that the new ballot contains only encryptions of
0 or 1, and the second step ensures that the number of encryptions of 1 is
the same in old and the new ballot. Both steps together ensure that the
new ballot is a shuffling of the old ballot.

The first step of the proof can be formalized as follows: Let Qij(ξ)
denote the predicate that e

(k)
i is a re-encryption of e

(k−1)
j with witness

ξ, i.e., Qij(ξ) ⇔
(
e
(k)
i

?= R(e(k−1)
j , ξ)

)
. Then the authority must prove

knowledge of a witness (ξ1, . . . , ξL) satisfying the predicate Q, where

Q(ξ1, . . . , ξL) ⇔ (
Q11(ξ1) ∨Q12(ξ1) ∨ . . . ∨Q1L(ξ1)

)
∧ . . . ∧ (

QL1(ξL) ∨QL2(ξL) ∨ . . . ∨QLL(ξL)
)
.

A Σ-proof for this predicate can be constructed in a straight-forward way
with the techniques presented in Section 5.2.3, based on the re-encryption

5.5 Voting Protocol based on Ballot Shuffling 141

Σ-proof of Section 5.4. For simplicity, we do not show the full Σ-proof,
but only a Σ-proof for the first clause (i.e., for proving knowledge of a
witness (ξ1, . . . , ξL) satisfying Q11(ξ1) ∨ . . .∨Q1L(ξ1)). A Σ-proof for the
full predicate Q is constructed as L parallel instances of the shown partial
proof, one for each clause.

Prover Verifier

knows
e
(k−1)
1 , . . . , e

(k−1)
L , e

(k)
1 ,

i, ξ s.t.
e
(k)
1 = e

(k−1)
i ⊕ E(0, ξ)

knows
e
(k−1)
1 , . . . , e

(k−1)
L , e

(k)
1

For j = 1, . . . , L :
cj ∈R Zu, βj ∈R R,
e′j = E(0, βj)	

cj(e
(k)
1 	 e

(k−1)
j)

[Note: e′i = E(0, βi − ciξ)] -e′1, .., e
′
L

� c
c ∈R Zu

adjust ci, βi such that

c =
L∑

j=1

cj (mod u),

e′i = E(0, βi − ciξ) -c1, ., cL, β1, .., βL
c

?=
L∑

j=1

cj (mod u)

For j = 1, . . . , L:
E(0, βj)

?=
cj(e

(k)
1 	 e

(k−1)
j)⊕ e′j

This Σ-proof can easily be made non-interactive by applying the Fiat-
Shamir heuristics (see Section 5.2.7). A non-interactive proof is a vector
[c1, . . . , cL, β1, . . . , βL] satisfying

c1 + . . . + cL
?= H

(
E(0, β1)	 cj(e

(k)
1 	 e

(k−1)
1)

∥∥∥ . . .

. . .
∥∥∥E(0, βL)	 cL(e(k)

1 	 e
(k−1)
L)

)
,

where H denotes a hash function with image Zu. The full proof of the
first step consists of L such vectors (one for each e

(k)
1 , . . . , e

(k)
L).

142 Receipt-Free Secret-Ballot Voting

The purpose of the second step of the proof is to ensure that the sum
of all sub-ballots is the same in the original ballot and in the new ballot
(namely K). We need the following observation:

R(e(k−1)
1 , ξ1)⊕ . . .⊕R(e(k−1)

L , ξL) = R(e(k−1)
1 ⊕ . . .⊕ e

(k−1)
L , ξΣ),

where ξΣ = ξ1 � . . . � = ξL, and hence e
(k)
Σ is a re-encryption of e

(k−1)
Σ

with witness ξΣ. A Σ-proof for proving re-encryptions was given in Sec-
tion 5.4. The non-interactive proof is then the pair [c, β] satisfying

c
?= H

(
E(0, β)	 c

(
e
(k)
Σ 	 e

(k−1)
Σ

))
.

Altogether, the proof of correct shuffling consists of (L2 + 1)(log |R|+
log u) bits.

5.5.4.2 Designated-verifier re-encryption proof

The authority must proof to the voter that she permuted the sub-ballots
according to the requested permutation π. This is achieved by proving
that indeed e

(k)
i is a re-encryption of e

(k−1)
π(i) for i = 1, . . . , L. This proof

must be performed in designated-verifier manner, such that the voter
cannot hand the proof to a vote-buyer or a coercer (see Section 5.2.6).
We show the detailed proof with Schnorr’s identification scheme, but
we stress that the proof can be constructed for any identification scheme
for which a Σ-proof for identification exists. As before, Qij(ξ) denotes
the predicate that e

(k)
i is a re-encryption of e

(k−1)
j with witness ξ, i.e.,

Qij(ξ) ⇔
(
e
(k)
i

?= R(e(k−1)
1 , ξ)

)
. Furthermore, QZv (z) denotes the pred-

icate that z is the secret key that matches the voter’s public key Zv, i.e.,

QZv (z) ⇔ (
gz ?= Zv

)
. We construct a Σ-proof of knowledge of a witness

(ξ1, . . . , ξL, z) satisfying the predicate
(
Q1,π(1)(ξ1) ∧ Q2,π(2)(ξ2) ∧ . . . ∧

QL,π(L)(ξL)
) ∨QZv (z):

5.5 Voting Protocol based on Ballot Shuffling 143

Prover Verifier

knows e
(k−1)
1 , . . . , e

(k−1)
L ,

e
(k)
1 , . . . , e

(k)
L , π, ξ1, . . . , ξL,

s.t. ∀i : e
(k)
i = R(e(k−1)

π(i) , ξi)

knows e
(k−1)
1 , . . . , e

(k−1)
L ,

e
(k)
1 , . . . , e

(k)
L , π

For j = 1, . . . , L:
αj ∈R R, e′j = E(0, αj)

c2 ∈R Zu, s2 ∈R Zq,
t2 = gs2Z−c2

v
-e′1, . . . , e′L, t2

� c
c ∈R Zu

c1 = c− c2 (mod u)
For j = 1, . . . , L:

βj = c1ξj � αj
-c1, c2, β1, ., βL, s2

c
?= c1 + c2 (mod u)

For j = 1, . . . , L:
E(0, βj)

?=
c1

(
e
(k)
j 	 e

(k−1)
π(j)

)⊕ e′j
gs2 ?= Zc2

v · t2

Also this Σ-proof is then turned into a non-interactive proof (see Sec-
tion 5.2.7). A designated-verifier proof that the sent permutation π is
correct is a vector [c1, c2, β1, . . . , βL, s2] satisfying

c1 + c2 = H
(
E(0, β1)	 c1

(
e
(k)
1 	 e

(k−1)
π(1)

)∥∥∥ . . .

. . .
∥∥∥E(0, βL)	 c1

(
e
(k)
L 	 e

(k−1)
π(L)

)∥∥∥gs2Z−c2
v

)
.

5.5.5 Tallying

Tallying is achieved by adding up the cast ballots component-wise (by
using the homomorphic property of the encryption function), and then
jointly decrypting each sub-ballot of the sum. The protocol for joint de-
cryption is a required property of the encryption function. Note that each
sub-ballot contains a number in the range [0, . . . , M], and hence decryp-
tion of the sub-ballot is efficient even if the decryption function requires
O(T) operations for decrypting the tally T .

144 Receipt-Free Secret-Ballot Voting

5.5.6 Efficiency Analysis

We analyze the communication complexity of the K-out-of-L voting
scheme. We assume that there are N authorities and M active (participat-
ing) voters. We denote the number of bits used to represent one group
element with B, i.e., |V| ≤ 2B , |R| ≤ 2B , and E ≤ 22B .

The costs for initialization of the encryption function and for the com-
putation of the tally are independent of the number M of voters, and are
thus ignored in the analysis. The most relevant costs are those related
with casting (and proving) votes. The representation of one ballot costs
2LB bits, and every authority must post one (shuffled) ballot to the bul-
letin board (2LNB bits) per voter. Also, the authority must post a proof
of correct shuffling, which consists of about 2L2B bits. Additionally, the
voter most send a permutation (L logL bits) and the authority must send
a designated-verifier proof (2LB bits) over the untappable channels. Fi-
nally, each voter posts the final permutation (L logL bits) to the bulletin
board. This makes a total of about 2L2MNB bits posted to the bulletin
board and 3LMNB bits sent through the untappable channels.

5.5.7 Security Analysis

5.5.7.1 Correctness

The correctness is based on three facts: First, the ballot generated by the
authorities is a valid ballot, i.e., all sub-ballots contain either a 0- or a 1-
vote, and there are only K 1-votes. This is ensured by the public proofs of
correct shuffling (Sect. 5.5.4.1). Second, the published tally is indeed the
sum of the casted votes. This is ensured by the homomorphic property
of the encryption function and the verifiable decryption of the encryp-
tion scheme. Finally, the voter is able to cast any valid vote, at his free
will. This is ensured by the designated-verifier re-encryption proofs of
the authorities.

If more than N − t authorities are malicious, then some (or all) vot-
ers can be prevented from casting their vote (there might be no t correct
proofs that the voter can accept). Furthermore, if more than N − t au-
thorities are malicious, they can reject computing and proving the tally.
However, any number of malicious authorities cannot add invalid ballots
to the vote, and cannot proof a wrong tally.

5.6 Voting Protocol based on Randomizers 145

5.5.7.2 Privacy

The secrecy of each vote is guaranteed with respect to any set of less than
t authorities. The ballot is shuffled t times, and as long as at least one of
these authority is honest, the bad authorities cannot track the shuffling
of the sub-ballots through the shuffling. A set of t or more authority can
open any ballot by using their shares of the secret key, or by tracing the
permutations.

5.5.7.3 Receipt-freeness

The voter cannot prove which permutations he sent through the untap-
pable channels. Furthermore, the proofs he received through the untap-
pable channels are designed-verifier, and the voter cannot convince the
vote-buyer with these proofs (the voter can easily generate such proofs
for any permutation). The only public communication of the voter is his
confirmation or denial of the received shuffling proof. The vote-buyer
can ask the voter to rejects certain (correct) proofs, but the only results
would be that the voter cannot vote (something that anyway the vote-
buyer can ask for).

In case that authorities collude with a vote-buyer or a coercer, then
apparently receipt-freeness is still ensured as long as each voter knows
at least one authority not colluding with the vote-buyer (then the voter
can lie for the permutation π used with this authority Ak). If a voter
does not know such an authority, he can select one authority at random
and lie for this permutation. In the context of vote-buying this means
that the voter can forge a receipt for a vote he did not cast, and the vote-
buyer accepts such a forged receipt with probability linear in the number
of authorities not colluding with him, which seems to be unacceptable
for the vote-buyer. However, in the context of coercion, this means that
the probability of a lying voter to be caught is linear in the number of
authorities colluding with the coercer, and this seems to be unacceptable
for the voter.

5.6 Voting Protocol based on Randomizers

In this section we present an alternative approach for receipt-free voting.
The proposed protocol is very efficient. However, it relies on an addi-
tional assumption, namely the existence of a randomizer, whose honesty

146 Receipt-Free Secret-Ballot Voting

is essential for the security of the protocol. The randomizer’s task is to
re-randomize encrypted ballots of the voters. More precisely, each voter
constructs an encrypted ballot containing his vote and secretly sends it
to the randomizer. The randomizer re-encrypts this ballot and posts it to
the bulletin board. Furthermore, the randomizer proves to the voter (in
designated-verifier manner) that indeed the new encrypted ballot con-
tains the same vote, and the voter and the randomizer jointly generate a
proof of validity for this new ballot.

5.6.1 Model

In this voting scheme, two-way untappable channels between every
voter and the randomizer are assumed. Furthermore, we make use of
a bulletin board. A threshold t denotes the number of authorities that is
required for decrypting the tally, and which also is able to annihilate the
secrecy of any vote. Collaboration of the randomizer with a voter-buyer
or coercer cannot be tolerated. The randomizer does not learn the vote
of any voter, but he can reject to re-encrypt the ballot of any voter and
thereby prevent this voter from participating the vote. This problem can
be overcome with using several randomizers; this will be discussed at the
end of this section.

5.6.2 Ballots

In this scheme, a ballot is represented as a single vote v. In order to allow
decoding of the sum, a special encoding of the votes is applied: A vote
for the i-th candidate (where 1 ≤ i ≤ L) is represented as M i−1. More
generally, the vote is set as follows:

v =
∑

vote for candidate i

M i−1.

This encoding allows easy decoding of the sum vote by simple remain-
dering. The set V of valid votes in a K-out-of-L scheme is defined as
follows:

V =
{

M I1 + . . . + M Ik

∥∥∥ k ≤ K, 0 ≤ I1 < . . . < Ik < L
}
.

Note that this encoding requires that the decryption sub-protocol al-
lows efficient decryption of arbitrary ciphertexts. The encryption func-
tion based on ElGamal (Section 5.3.1) does not satisfy this requirement.

5.6 Voting Protocol based on Randomizers 147

In order to decrypt a tally in a 1-out-of-L vote, computation complexity

of O(
√

M
L−1

) is required [CGS97]. For large L, this effort may not be ac-
ceptable, and the alternative encryption scheme of Paillier (Section 5.3.2)
is recommended.

5.6.3 Set-up

The set-up phase is identical to the set-up phase of the previous scheme.

5.6.4 Casting a Ballot

A ballot is cast as follows: The voter constructs a random encryption
e = E(v, α) of the encoded vote v, and sends it through the untappable
channel to the randomizer. The randomizer then computes a random
re-encryption e∗ = R(e, ξ) of e, and proves to the voter in designated-
verifier manner that indeed e∗ is a re-encryption of e. Then, the voter
and the randomizer jointly generate a validity proof for e∗, without the
randomizer learning anything about the vote v, and without the voter
learning anything about the re-encryption witness ξ. Finally, the random-
izer posts the re-encrypted ballot e∗ and the validity proof to the bulletin
board, and the voter posts an approval message indicating that indeed e∗

is his vote (i.e., he accepted the re-encryption proof of the randomizer).

Voter Randomizer
Bulletin-
Board

e = E(v, α) -e

� e∗ e∗ = R(e, ξ)

�re-encr. proof prove that e∗ ∼= e

. . . -�validity proof . . .

-e∗, val. proof

-approve e∗

148 Receipt-Free Secret-Ballot Voting

5.6.4.1 Designated-verifier re-encryption proof

The purpose of this proof is to have the randomizer prove to the voter
that the new encryption e∗ is indeed a re-encryption of e. However,
this proof must be non-transferable, such that the verifier cannot con-
vince someone else that e∗ is a re-encryption of e. The technique used
to achieve this non-transferability is explained in Section 5.2.6: The ran-
domizer proves knowledge of either a re-randomization witness ξ with
e∗ = R(e, ξ), or of the voter’s secret key. Obviously, this proof is convinc-
ing for the voter, but completely useless when transfered from the voter
to a third party.

The proof is constructed as an OR-combination of the Σ-proof that the
encryption e∗ 	 e contains the vote 0, and the Σ-proof of the identifica-
tion scheme. We show the proof for Schnorr’s identification scheme. We
denote the voter’s secret key with zv and the public key with Zv = gzv .
The designated-verifier re-encryption proof is constructed as follows:

Randomizer Voter

knows e, ξ, e∗ = e + E(0, ξ) knows e, e∗

α ∈R R, e′ = E(0, α)
c2 ∈R Zu, s2 ∈R Zq,
t2 = gs2Z−c2

v
-e′, t2

� c
c ∈R Zu

c1 = c− c2 (mod u)
β = c1ξ � α -c1, c2, β, s2

c
?= c1 + c2 (mod u)

E(0, β) ?= c1(e∗ 	 e)⊕ e′

gs2 ?= Zc2
v · t2

A non-interactive version of the proof is the vector [c1, c2, β, s2] satis-
fying the equation

c1 + c2 = H
(
E(0, β)	 c1

(
e∗ 	 e

)∥∥∥gs2Z−c2
v

)
.

5.6 Voting Protocol based on Randomizers 149

5.6.4.2 Validity proof

The validity proof is a non-interactive proof that the randomized encryp-
tion e∗ contains a vote from the set V of valid votes. The proof is gen-
erated in an interactive protocol between the voter and the randomizer.
For didactic reasons, we first present a Σ-proof that a given encryption
contains a vote from a given set, then we apply the Fiat-Shamir heuristics
to this protocol and obtain a non-interactive variant. Finally, we present
a protocol which allows the randomizer and the voter to generate such
a non-interactive proof for a re-encrypted vote, where the randomizer
learns nothing about the vote, and the voter learns nothing about the
randomization witness.

The Σ-proof that a given encryption e contains some vote out of a set
V = {v1, . . . , v|V|} is an OR-combined proof of knowledge of a witness α
such that either e = E(v1, α) or e = E(v2, α) or . . . (cf. Section 5.2.3).

Prover Verifier

knows i, α and
e = E(vi, α)

knows e

For j = 1, . . . , |V| :
cj ∈R Zu, βj ∈R R,
e′j = E(cjvj , βj)	 cje

[Note: e′i = E(0, βi � ciα)] -e′1, .., e
′
|V|

� c
c ∈R Zu

adjust ci, βi such that

c =
|V|∑
j=1

cj (mod u),

e′i = E(0, βi � ciα) -c1, ., c|V|, β1, .., β|V|
c

?=
|V|∑
j=1

cj (mod u)

For j = 1, . . . , |V| :
E(cjvj , βj)

?= cje⊕ e′j

The non-interactive proof is obtained by applying the Fiat-Shamir
heuristics to the above protocol. A non-interactive proof of vote validity

150 Receipt-Free Secret-Ballot Voting

is a vector [c1, . . . , c|V|, β1, . . . , β|V|] where the following equation holds:

c1 + . . . + c|V|
?= H

(
E(c1v1, β1)	 c1e

∥∥∥ . . .
∥∥∥E(c|V|v|V|, β|V|)	 c|V|e

)
.

We observe that the above validity proof for encryption e can eas-
ily be converted into a validity proof for a re-encryption e∗ = R(e, ξ) =
e + E(0, ξ): [c1, . . . , c|V|, β1 + c1ξ, . . . , β|V| + c|V|ξ]. However, if the ran-
domizer would publish this adjusted proof, then the voter could easily
compute the re-encryption witness ξ and prove his vote. What we need
is an independent proof of validity of e∗, i.e., the voter must not be able to
proof that the resulting validity proof for e∗ has any relation to the orig-
inal vote e. Such an independent proof can be constructed interactively:
The randomizer randomizes the first message of the voter, and asks as
challenge the hash value of the randomized first message (such that he
can construct a non-interactive proof). However, it would not be safe to
let the randomizer ask any challenge (the protocol for proving validity
of an encryption is only honest-verifier zero-knowledge, so the random-
izer could potentially learn the vote). Therefore, we let the randomizer
send the randomized first message as a whole to the voter, who then com-
putes the hash value by himself. This challenge is “honest-verifier” in the
random-oracle model. Finally, the voter sends back the correct third mes-
sage, and the randomizer adjusts it such that it matches the randomized
protocol.

5.6 Voting Protocol based on Randomizers 151

Voter Randomizer

knows i, α, e = E(vi, α) knows e, ξ, e∗ = R(e, ξ)

For j = 1, . . . , |V| :
cj ∈R Zu, βj ∈R R,
e′j = E(cjvj , βj)	 cje

[Note: e′i = E(0, βi � ciα)] -e′1, .., e
′
|V|

c = H(e′′1 , . . . , e′′|V|) �e′′1 , . . . , e′′|V|

For j = 1, . . . , |V| :
c′j ∈R Zu, β′j ∈R R,
where∑

c′j = 0 (mod u),

e′′j = e′j ⊕ E(c′jvj , β
′
j)	 c′je

adjust ci, βi such that

c =
|V|∑
j=1

cj (mod u),

e′i = E(0, βi � ciα) -c1, ., c|V|, β1, ., β|V|For j = 1, . . . , |V| :
c′′j = cj + c′j (mod u),
β′′j = βj � β′j � c′′j ξ

Note that in this protocol, the randomizer does not need to verify the
third message of the voter — if the voter sends a bad third message, the
generated proof of validity of e∗ will be bad, and the voter’s vote is ig-
nored in tallying. However, we need that all messages are authentic, and
that the messages from the voter to the randomizer are untappable for
the voter. This can be achieved by having the voter digitally sign the first
and the third message. Note that these signatures give the power to the
randomizer (but not to the voter) of proving the received messages. In
our context, this doesn’t matter, because the randomizer is not allowed
to collaborate with a vote-buyer or a coercer.

The proof of validity of e∗ is the vector [c′′1 , . . . , c′′|V|, β
′′
1 , . . . , β′′|V|]. We

first argue that this protocol is correct (i.e., the generated vector is indeed
a proof of validity of e∗), then show that the proof is zero-knowledge for
the randomizer and receipt-free for the voter.

The final proof is accepted exactly if the following equation holds:

c′′1 + . . . + c′′|V|
?= H

(
E(c′′1v1, β

′′
1)	 c′′j e∗

∥∥∥ . . .
∥∥∥E(c′′|V|v|V|, β

′′
|V|)	 c′′|V|e

∗
)
.

152 Receipt-Free Secret-Ballot Voting

One can easily verify (by inspecting the protocol) that if both the voter
and the randomizer are honest, then this equation will hold, and the final
proof will be accepted.

In order to show that the protocol is zero-knowledge, we need the fact
that the previous protocol (for proving that e is valid) is honest-verifier
zero-knowledge. In the new protocol, the only difference for the prover is
the second message, where he does not receive a challenge c, but rather
a string of which the hash value is used as challenge. Obviously, this
ensures that the protocol is zero-knowledge in the random-oracle model.

Finally, in order to show that the protocol is receipt-free, we must
show that even a cheating voter cannot prove any correspondence be-
tween the proof of validity of e∗ (i.e., the vector [c′′1 , . . . , c′′|V|, β

′′
1 , . . . , β′′|V|])

and the encrypted vote e. Obviously, the β′′1 , . . . , β′′|V| are completely ran-
dom and independent from e (because the β′1, . . . , β′|V| are random). The
same holds for the c′′1 , . . . , c′′|V| with the exception that the sum is not ran-
dom but equal to the sum of c1, . . . , c|V| (because c′1 + . . . + c′|V| = 0).
However, in the random-oracle model, this sum is assumed to be random
and independent of any other values, and hence the vector c′′1 , . . . , c′′|V| is
random. It is important to note that the proof [c′′1 , . . . , c′′|V|, β

′′
1 , . . . , β′′|V|] is

random and independent of the voter’s behavior.

5.6.5 Tallying

Tallying is achieved by adding up the cast ballots (by using the homomor-
phic property of the encryption function), and then jointly decrypting the
encrypted sum. The protocol for joint decryption is a required property
of the encryption function. From the tally, the sub-tallies for each candi-
date can be computed by simple arithmetic.

Note that in this protocol, the final tally can be up to ML, and we
must require that the decryption is efficient, whereas the tallying proto-
col of the other voting scheme (Section 5.5) only requires decryption of
small tallies (L partial tallies, each up to M). This makes this protocol
inefficient for large L when used with the ElGamal encryption function,
and Paillier’s encryption function must be used instead.

5.6 Voting Protocol based on Randomizers 153

5.6.6 Efficiency Analysis

We analyze the communication efficiency of this voting protocol for a K-
out-of-L scheme. The number of bits used to store one group element is
B. We assume that B ≥ L log M , i.e., we assume that one vote can be
embedded in one encryption.

Again, we ignore the costs for initialization and decryption of the fi-
nal tally — they are independent of the number M of voters. It remains
to count the costs for casting and proving votes. In order to cast his
vote, every voter sends the ballot to the randomizer (2B bits), who sends
a re-encryption and a re-encryption proof to the voter (2B + 4B bits).
Then, the voter and the randomizer run the interactive validity proto-
col (6|V|B bits), and the randomizer posts the randomized ballot and the
non-interactive proof to the bulletin board ((2|V| + 2)B bits). This gives

a total of
(
6
(

L
K

)
+ 8

)
MB bits sent through the untappable channels, and(

2
(

L
K

)
+ 2

)
MB bits sent to the bulletin board. For K = 1 (i.e., for 1-

out-of-L votes), there are (6L + 8)MB bit sent through the untappable
channels and (2L + 2)MB bit posted to the bulletin board.

5.6.7 Security Analysis

The privacy of this scheme is guaranteed under the assumption that no
t authorities maliciously pool their information. There are no additional
assumption on the honesty of the randomizer. The tally is correct if the
randomizer does not exclude entitled voters from participating the vote,
and if at least t authorities honestly participate in the tally decryption.
The scheme is receipt-free as long as the randomizer does not collaborate
with a vote-buyer or a coercer, and as long as it is guaranteed that each
voter indeed knows the secret key corresponding to his public key.

5.6.8 Variants

We present two variants of the proposed voting scheme. The goal of
the first variant is to reduce the impact of the fact that the randomizer
can disable any voter from participating in the vote. The second variant
improves the efficiency of the scheme when K is large.

154 Receipt-Free Secret-Ballot Voting

5.6.8.1 Multiple randomizers

The major drawback of this voting scheme is the power of the random-
izer. He can disable any voter from casting his vote. One can reduce this
problem by introducing several randomizers, where the voter can select
one randomizer. In this solution, disabling a voter from participating re-
quires collaboration of every randomizer. However, the cost is that we
must assume that no randomizer collaborates with a vote-buyer or a co-
ercer.

5.6.8.2 Alternative encoding of ballots

For large K , the proposed voting scheme becomes very inefficient. The
reason for that is that the number of valid votes is

(
L
K

)
, which grows

exponentially in K for K < L/2. For example, for K = 2, the number of
valid votes is about L2/2, and the size of the validity proof of the ballot
is linear in the number of valid votes, hence quadratic in L. Similarly, the
size of the validity proof grows cubic in L for K = 3.

This super-linear growth of the communication complexity can be
avoided by using another encoding of the ballot, namely the encod-
ing that was used in the voting protocol based on ballot shuffling (Sec-
tion 5.5). There, a ballot is represented as a vector with L elements, where
the i-th entry is an encryption of 1 if the i-th candidate is voted for, and 0
otherwise. This encoding makes the ballots bigger, but the validity proof
becomes shorter. In order to prove that a ballot (a vector of sub-ballots)
is valid, one must prove that every sub-ballot is valid (i.e., an encryption
of 0 or 1), and the sum of all sub-ballots is an encryption of K . This proof
grows only linearly in L, independently of the size of K . A detailed anal-
ysis of the complexity of the modified protocol yields that (17L + 9)MB
bits must be sent through the untappable channels, and (6L + 2)MB bits
must be posted to the bulletin board. For K ≥ 2, the communication
complexity of this variant is lower than the communication complexity
of the original protocol.

This protocol has two other advantages: First, in the original proto-
col, the size of L is limited by the size of B (the encoding requires that
L log M ≤ B holds). As a consequence, B must be increased for large
L, which slows down the whole computation. Second, the original pro-
tocol requires decryption of an arbitrarily large tally, which makes the
protocol unusable with the ElGamal encryption function in many set-
tings. In the modified protocol, L sub-tallies of size each at most M are

5.7 Analysis of the Benaloh-Tuinstra Protocol 155

decrypted, which can be performed efficiently with both proposed en-
cryption schemes.

5.7 Analysis of the Benaloh-Tuinstra Protocol

The notion of receipt-freeness was first introduced by Benaloh and Tuin-
stra in [BT94]. They present two protocols that are claimed to be receipt-
free. In the single-authority protocol, the authority learns how each vote
was cast. This is of course far from satisfactory. In this section, we ana-
lyze the receipt-freeness of their protocol with multiple voting authorities
and show how a voter can construct a receipt for the vote he casts.

5.7.1 Key Ideas of [BT94]

The basic idea of the multiple-authority protocol [BT94] is to have every
voter secret-share his vote among the authorities (using Shamir’s secret-
sharing scheme [Sha79]), who then add up the shares and interpolate the
tally. This idea works due to the linearity of the secret-sharing scheme.
There are two major tasks to solve: First, the voter must send one share to
each authority in a receipt-free manner, and second, the voter must prove
that the secret (the vote) is valid.

We concentrate on the second task: In order to secret-share the vote,
the voter selects a random polynomial P of an appropriate degree, such
that P (0) ∈ {0, 1} is his vote. The share for the j-th authority is hence
P (j). Clearly, it is inherently important that the vote is valid, i.e., P (0) ∈
{0, 1}, since otherwise the tally will be incorrect. Hence, the voter must
provide a proof of validity for the cast vote.

For the sake of the proof of validity, the voter wishing to cast a
vote v0 submits (in a receipt-free manner) a bunch of ` + 1 vote pairs,
where ` is a security parameter. That is, the voter submits the votes
(v0, v

′
0), . . . , (v`, v

′
`), and each pair (vi, v

′
i) of votes must contain a 0-vote

and a 1-vote in random order. For each pair (vi, v
′
i) but the first, a coin is

tossed and the voter is either asked to open the pair and show that indeed
there is a 0-vote and a 1-vote, or he is asked either to prove that vi = v0

and v′i = v′0 is satisfied, or to prove that vi = v′0 and v′i = v0 is satisfied.
This proofs must be performed in public (onto a bulletin board). If the
voter passes these tests, then with probability at least 1 − 2−`, v0 is valid
and is accepted as the voters vote.

156 Receipt-Free Secret-Ballot Voting

5.7.2 How to Construct a Receipt

This cut-and-choose proof of validity offers an easy ability for the voter
to prove which particular vote he casts: In advance, the voter commits
to the ordering of each pair of votes (i.e., he commits to the bit string
v0, . . . , v`). In each round of the cut-and-choose proof, everyone can ver-
ify whether the published data is consistent with this commitment. If no
inconsistencies are detected while proving the validity of the vote, then
with probability at least 1−2−` the voter has chosen the ordering as com-
mitted, and also v0 is as announced.

In order to obtain a receipt, the voter could select an arbitrary string
s, and set the string (v0, . . . , v`) as the bitwise output of a known cryp-
tographic hash function (e.g. MD5 or SHA) for that string s. Then, s is a
receipt of the vote v0.

5.8 Analysis of the Kim-Lee Protocol

In this section, we show that the protocol of Kim and Lee [LK00] is not
receipt-free, opposed to what is claimed in the paper.

5.8.1 Key Ideas of [LK00]

The protocol of [LK00] is based on the assumption of an honest verifier
who ensures the validity of all cast votes. Each voter sends an encryp-
tion e of his vote to this honest verifier and proves its validity. Then, the
honest verifier sends a random encryption e′ of 0 to the voter and proves
(with a three-move honest-verifier zero-knowledge protocol) that indeed
e′ is an encryption of 0. The final ballot of the voter is e∗ = e + e′, which
obviously contains the same vote as e, but different randomness. All
communication between the voter and the randomizer must take place
over an untappable channel.

Note that in this protocol a malicious “honest verifier” can help a
voter to cast an invalid vote and thereby falsify the outcome of the whole
vote. In our opinion, such a protocol in which the correctness of the tally
relies on the trustworthiness of a single entity is questionable.

5.8 Analysis of the Kim-Lee Protocol 157

5.8.2 How to Construct a Receipt

The voter can easily construct a receipt: In the protocol where the honest
verifier proves to the voter that indeed e′ is an encryption of 0, the voter
can choose the challenge as the output of a hash function applied to the
message in the first move. This makes the transcript of the protocol a
non-interactive proof (according to Fiat-Shamir heuristics) that e′ is an
encryption of 0. Hence, the values e′, e, the witness of e, and this proof
are a receipt of the cast vote e∗.

Chapter 6

Concluding Remarks

In this thesis, two related problems were studied: The problem of general
secure multi-party computation, and as an application of it, the problem
of secret-ballot voting. We first briefly summarize our main achievements
concerning secure multi-party protocols:

• The classical distinction between the active model and the pas-
sive model was abolished. Instead, we have introduced a model
in which some of the players are passively corrupted, some other
players are actively corrupted, and some more players are fail-
corrupted. An exact characterization of how many corruption of
each type can be considered was derived for a variety of models. It
turned out that in several models, strictly more corruptions can be
tolerated with our protocols than with previous protocols.

• The classical characterization of tolerable adversaries, namely by a
threshold on the number of players that at most may be corrupted,
was generalized. Strictly more general, we have characterized the
tolerable adversaries by a so-called adversary structure, a set of po-
tentially corrupted player subsets. We have given necessary and
sufficient conditions on this adversary structure for the existence
of secure multi-party computation, for various models. It turned
out that in many settings, strictly more corruptions can be tolerated
than with previous protocols.

160 Concluding Remarks

• Multi-party protocols were known to be very inefficient when some
of the players misbehave. We have proposed a framework for effi-
cient multi-party protocols and have shown a construction of such a
protocol which tolerates arbitrary misbehavior of players, and still
is almost as efficient as the most efficient protocols that are not ro-
bust against misbehavior of players.

The main achievements in the area of secret-ballot voting are as fol-
lows:

• A framework for constructing voting protocols based on homomor-
phic encryption was proposed. This framework allows to construct
modular protocols with generic proofs, and contrasts the special-
purpose proofs of many voting protocols in the literature.

• Within this framework, we have designed two voting protocols that
are receipt-free. Under reasonable circumstances, the first proto-
col even prevents vote-buying by the authorities themselves. Both
protocols are more efficient than any previous receipt-free voting
protocol.

The research on this thesis has also brought several problems to light
that could not be solved yet. These problems might inspire further re-
search.

• Find and prove an exact characterization of tolerable adversaries
in secure multi-party computation for the model with simultane-
ous active, passive, and fail-corruption for general adversary struc-
tures.

• Find more efficient multi-party protocols for non-threshold adver-
saries. There are (at least) two approaches towards this goal: First,
one can apply the proposed framework for efficient protocols to
this setting. In principle, this should work, but still many problems
must be solved. Second, it would be interesting to find restricted
classes of adversary structures, for which more efficient protocols
exist.

• Extend the framework for efficient protocols to the setting where
any minority of the players may be corrupted. The current frame-
work seems not to be applicable to this setting.

161

• Furthermore, all results in this thesis are for the synchronous
model, where the delay of messages in the network is bounded by
a known constant. This assumption is rather strong in many real-
world settings, and it would be interesting to adapt the results for
the asynchronous model.

• In the context of receipt-free voting, the main open problem is a
formalization and a crisp definition of receipt-freeness. So far, there
are many incompatible definitions of receipt-freeness in use, and it
is even unclear how they compare. A good definition would allow
to analyze and prove the security of existing and of new protocols.

Bibliography

[AR63] Sheldon Akers and Theodore Robbins. Logical design with
three-input majority gates. Computer Design, pages 12–27,
March 1963.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-
tolerant computing in a constant number of rounds of inter-
action. In Proc. 8th ACM Symposium on Principles of Distributed
Computing (PODC), pages 201–210, August 1989.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asyn-
chronous secure computation. In Proc. 25th ACM Symposium
on the Theory of Computing (STOC), pages 52–61, 1993.

[Bea89] Donald Beaver. Perfect privacy for two-party protocols. In
Proc. of the DIMACS Workshop on Distributed Computing and
Cryptography, October 1989.

[Bea91a] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Advances in Cryptology — CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 420–
432, 1991.

[Bea91b] Donald Beaver. Secure multiparty protocols and zero-
knowledge proof systems tolerating a faulty minority. Jour-
nal of Cryptology, pages 75–122, 1991.

[BFKR90] Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Ro-
gaway. Security with low communication overhead. In Ad-
vances in Cryptology — CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science. Springer-Verlag, 1990.

164 Bibliography

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. To-
wards optimal distributed consensus (extended abstract). In
Proc. 21st ACM Symposium on the Theory of Computing (STOC),
pages 410–415, 1989.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.
Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In Proc. 20th ACM Symposium on
the Theory of Computing (STOC), pages 1–10, 1988.

[BL88] Josh Cohen Benaloh and Jerry Leichter. Generalized secret
sharing and monotone functions. In Advances in Cryptology
— CRYPTO ’88, volume 403 of Lecture Notes in Computer Sci-
ence, pages 27–35. Springer-Verlag, 1988.

[Bla79] George Robert Blakley. Safeguarding cryptographic keys.
In Proceedings of the National Computer Conference 1979, vol-
ume 48 of American Federation of Information Processing Soci-
eties Proceedings, pages 313–317, 1979.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
round complexity of secure protocols (extended abstract).
In Proc. 22nd ACM Symposium on the Theory of Computing
(STOC), pages 503–513, 1990.

[BPP98] Joan Boyar, René Peralta, and Denis Pochuev. On the mul-
tiplicative complexity of boolean functions over the basis
(∧,⊕, 1). Technical Report PP-1998-19, Department of Math-
ematics and Computer Science, Odense University, October
1998.

[BPW91] Birgit Baum-Waidner, Birgit Pfitzmann, and Michael Waid-
ner. Unconditional byzantine agreement with good majority.
In 8th Annual Symposium on Theoretical Aspects of Computer
Science, volume 480 of lncs, pages 285–295, Hamburg, Ger-
many, 14–16 February 1991. Springer.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are prac-
tical: A pardigm for designing efficient protocols. In 1st ACM
Conference on Computer and Communications Security, pages
62–73, November 1993.

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free
secret-ballot elections (extended abstract). In Proc. 26th ACM

Bibliography 165

Symposium on the Theory of Computing (STOC), pages 544–553.
ACM, 1994.

[BY86] Josh Cohen Benaloh and Moti Yung. Distributing the power
of a government to enhance the privacy of voters. In
Proc. 5th ACM Symposium on Principles of Distributed Comput-
ing (PODC), pages 52–62, August 1986.

[Can95] Ran Canetti. Studies in Secure Multiparty Computation and Ap-
plications. PhD thesis, Weizmann Institute of Science, Re-
hovot 76100, Israel, June 1995.

[Can00] Ran Canetti. Security and composition of multiparty crypto-
graphic protocols. Journal of Cryptology, 13(1):143–202, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multi-
party unconditionally secure protocols (extended abstract).
In Proc. 20th ACM Symposium on the Theory of Computing
(STOC), pages 11–19, 1988.

[CD98] Ronald Cramer and Ivan Damgård. Zero-knowledge for fi-
nite field arithmetic. Or: Can zero-knowledge be for free? In
Advances in Cryptology — CRYPTO ’98, volume 1462 of Lec-
ture Notes in Computer Science, pages 424–441, 1998.

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin
Hirt, and Tal Rabin. Efficient multiparty computations secure
against an adaptive adversary. In Advances in Cryptology —
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer
Science, pages 311–326, 1999.

[CDG87] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Mul-
tiparty computations ensuring privacy of each party’s input
and correctness of the result. In Advances in Cryptology —
CRYPTO ’87, volume 293 of Lecture Notes in Computer Science,
pages 87–119. Springer-Verlag, 1987.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli Maurer. General
secure multi-party computation from any linear secret shar-
ing scheme. In Advances in Cryptology — EUROCRYPT ’00,
volume 1807 of Lecture Notes in Computer Science, 2000.

166 Bibliography

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper B. Nielsen. Mul-
tiparty computation from threshold homomorphic encryp-
tion. In Advances in Cryptology — EUROCRYPT ’01, Lecture
Notes in Computer Science, 2001. To appear.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostro-
vsky. Deniable encryption. In Advances in Cryptology —
CRYPTO ’97, volume 1294 of Lecture Notes in Computer Sci-
ence, pages 90–104, 1997.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers.
Proofs of partial knowledge and simplified design of witness
hiding protocols. In Advances in Cryptology — CRYPTO ’94,
volume 839 of Lecture Notes in Computer Science. IACR,
Springer-Verlag, 1994.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable
cryptographically secure election scheme. In Proc. 26th IEEE
Symposium on the Foundations of Computer Science (FOCS),
pages 372–382. IEEE, 1985.

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor.
Adaptively secure multi-party computation. In Proc. 28th
ACM Symposium on the Theory of Computing (STOC), pages
639–648, November 1996.

[CFSY96] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers,
and Moti Yung. Multi-authority secret-ballot elections with
linear work. In Advances in Cryptology — EUROCRYPT ’96,
volume 1070 of Lecture Notes in Computer Science, pages 72–
83. IACR, Springer-Verlag, May 1996.

[CG96] Ran Canetti and Rosario Gennaro. Incoercible multiparty
computation. In Proc. 37th IEEE Symposium on the Founda-
tions of Computer Science (FOCS), pages 504–513, 1996.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch
Awerbuch. Verifiable secret sharing and achieving simul-
taneity in the presence of faults. In Proc. 26th IEEE Symposium
on the Foundations of Computer Science (FOCS), pages 383–395,
1985.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmak-
ers. A secure and optimally efficient multi-authority election

Bibliography 167

scheme. In Advances in Cryptology — EUROCRYPT ’97, Lec-
ture Notes in Computer Science, 1997.

[CGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Com-
mitted oblivious transfer and private multi-party computa-
tion. In Advances in Cryptology — CRYPTO ’95, volume 963
of Lecture Notes in Computer Science, pages 110–123. Springer-
Verlag, 1995.

[CH94] Ran Canetti and Amir Herzberg. Maintaining security in
the presence of transient faults. In Advances in Cryptology —
CRYPTO ’94, volume 839 of Lecture Notes in Computer Science,
pages 425–438, 1994.

[Cha81] David Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of the
ACM, 24(2):84–88, 1981.

[Cha89] David Chaum. The spymasters double-agent problem. In
Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture
Notes in Computer Science, pages 591–602. Springer-Verlag,
1989.

[CK89] Benny Chor and Eyal Kushilevitz. A zero-one law for
Boolean privacy. In Proc. 21st ACM Symposium on the Theory
of Computing (STOC), volume 21, pages 62–72, 1989.

[CKOR97] Ran Canetti, Eyal Kushilevitz, Rafail Ostrovsky, and Adi
Rosén. Randomness vs. fault-tolerance. In Proc. 16th ACM
Symposium on Principles of Distributed Computing (PODC),
pages 35–44, August 1997.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Ran-
dom oracles in Constantinopole: Practical asynchronous
Byzantine agreement using cryptography. In Proc. 19th ACM
Symposium on Principles of Distributed Computing (PODC),
July 2000. To appear.

[Cra96] Ronald Cramer. Modular Design of Secure yet Practical Crypto-
graphic Protocols. PhD thesis, CWI and Univ. of Amsterdam,
November 1996.

[CW89] Brian A. Coan and Jennifer L. Welch. Modular construc-
tion of nearly optimal Byzantine agreement protocols. In

168 Bibliography

Proc. 8th ACM Symposium on Principles of Distributed Comput-
ing (PODC), pages 295–305, August 1989.

[Dam99] Ivan Damgård. BRICS technical report RS-99-2, February
1999.

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung.
Perfectly secure message transmission. Journal of the ACM,
40(1):17–47, January 1993.

[DFF+82] Danny Dolev, Michael J. Fischer, Rob Fowler, Nancy A.
Lynch, and H. Raymond Strong. An efficient algorithm for
Byzantine agreement without authentication. Information and
Control, 52(3):257–274, March 1982.

[DJ01] Ivan Damgård and Mads Jurik. A generalisation, a sim-
plification and some applications of paillier’s probabilistic
public-key system. In International Workshop on Practice and
Theory in Public Key Cryptography (PKC) 2001, 2001.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on informa-
tion exchange for Byzantine agreement. Journal of the ACM,
32(1):191–204, January 1985.

[DRS82] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong.
‘Eventual’ is earlier than ‘Immediate’. In Proc. 23rd IEEE
Symposium on the Foundations of Computer Science (FOCS),
pages 196–203, 1982. Final version: Early Stopping in Byzan-
tine Agreement. In Journal of the ACM, 37(4):720-741, October
1990.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In Advances in Cryptol-
ogy — CRYPTO ’84, volume 196 of Lecture Notes in Computer
Science, 1984.

[Feh00] Serge Fehr, 2000. Personal communication.

[Fel87] Paul Feldman. A practical scheme for non-interactive ver-
ifiable secret sharing. In Proc. 28th IEEE Symposium on the
Foundations of Computer Science (FOCS), pages 427–437, 1987.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading cor-
rectness for privacy in unconditional multi-party computa-
tion. In Advances in Cryptology — CRYPTO ’98, volume 1462

Bibliography 169

of Lecture Notes in Computer Science, pages 121–136, 1998.
Corrected version is available online.

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli Maurer. General ad-
versaries in unconditional multi-party computation. In Ad-
vances in Cryptology — ASIACRYPT ’99, volume 1716 of Lec-
ture Notes in Computer Science, pages 232–246, 1999.

[Fit96] Matthias Fitzi. Erweiterte Zugriffstrukturen in Multi-Party-
Computation. Student’s project, ETH Zurich, 1996. Super-
vised by Martin Hirt.

[FKN94] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for
secure computation. In Proc. 26th ACM Symposium on the The-
ory of Computing (STOC), pages 554–563, 1994.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for
Byzantine agreement. In Proc. 20th ACM Symposium on the
Theory of Computing (STOC), pages 148–161, 1988.

[FM98] Matthias Fitzi and Ueli Maurer. Efficient Byzantine agree-
ment secure against general adversaries. In Distributed Com-
puting — DISC ’98, volume 1499 of Lecture Notes in Computer
Science, pages 134–148, September 1998.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A
practical secret voting scheme for large scale elections. In Ad-
vances in Cryptology — AUSCRYPT ’92, pages 244–251, 1992.

[FPS00] Pierre-Alain Fouque, Gouillaume Poupard, and Jacques
Stern. Sharing decryption in the context of voting or lotter-
ies. In Financial Cryptography ’00, Lecture Notes in Computer
Science, 2000.

[Fra93] Matthew K. Franklin. Complexity and Security of Distributed
Protocols. PhD thesis, Columbia University, 1993.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems. In
Advances in Cryptology — CRYPTO ’86, volume 263 of Lecture
Notes in Computer Science, pages 186–194, 1986.

[FY92] Matthew K. Franklin and Moti Yung. Communication com-
plexity of secure computation. In Proc. 24th ACM Symposium
on the Theory of Computing (STOC), pages 699–710, 1992.

170 Bibliography

[Gen96] Rosario Gennaro. Theory and Practice of Verifiable Secret Shar-
ing. PhD thesis, Massachusetts Institute of Technology (MIT),
May 1996.

[GHY87] Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic com-
putation: Secure fault-tolerant protocols and the public-key
model. In Advances in Cryptology — CRYPTO ’87, volume 293
of Lecture Notes in Computer Science, pages 135–155. Springer-
Verlag, 1987.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption.
Journal of Computer Security, 28:270–299, 1984.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game — a completeness theorem for proto-
cols with honest majority. In Proc. 19th ACM Symposium on
the Theory of Computing (STOC), pages 218–229, 1987.

[GP92] Juan A. Garay and Kenneth J. Perry. A continuum of failure
models for distributed computing. In International Workshop
on Distributed Algorithms — WDAG ’92, volume 647 of Lecture
Notes in Computer Science, pages 153–165, 1992.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simpli-
fied VSS and fast-track multiparty computations with appli-
cations to threshold cryptography. In Proc. 17th ACM Sym-
posium on Principles of Distributed Computing (PODC), pages
101–111, 1998.

[HH91] Vassos Hadzilacos and Joseph Y. Halpern. Message-optimal
protocols for byzantine agreement. In Proc. 10th ACM Sym-
posium on Principles of Distributed Computing (PODC), pages
309–324, August 1991.

[HM97] Martin Hirt and Ueli Maurer. Complete characterization of
adversaries tolerable in secure multi-party computation. In
Proc. 16th ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 25–34, August 1997.

[HM00] Martin Hirt and Ueli Maurer. Player simulation and gen-
eral adversary structures in perfect multiparty computation.
Journal of Cryptology, 13(1):31–60, 2000. Extended abstract in
Proc. 16th of ACM PODC ’97.

Bibliography 171

[HM01] Martin Hirt and Ueli Maurer. Robustness for free in uncon-
ditional multi-party computation. In Joe Kilian, editor, Ad-
vances in Cryptology — CRYPTO ’01, volume 2139 of Lecture
Notes in Computer Science, pages 101–118. Springer-Verlag,
August 2001.

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient
secure multi-party computation. In Tatsuaki Okamoto, edi-
tor, Advances in Cryptology — ASIACRYPT ’00, volume 1976
of Lecture Notes in Computer Science, pages 143–161. Springer-
Verlag, December 2000.

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting
based on homomorphic encryption. In Advances in Cryptol-
ogy — EUROCRYPT ’00, volume 1807 of Lecture Notes in Com-
puter Science, pages 539–556, 2000.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials:
A new representation with applications to round-efficient se-
cure computation. In Proc. 41st IEEE Symposium on the Foun-
dations of Computer Science (FOCS), October 2000.

[ISN87] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme real-
izing general access structure. In Proceedings IEEE Globecom
’87, pages 99–102. IEEE, 1987.

[Ive91] Kenneth R. Iversen. A cryptographic scheme for computer-
ized general elections. In Joan Feigenbaum, editor, Advances
in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes
in Computer Science, pages 405–419. IACR, Springer-Verlag,
1991.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo.
Designated verifier proofs and their applications. In Ad-
vances in Cryptology — EUROCRYPT ’96, volume 1070 of Lec-
ture Notes in Computer Science, pages 143–154, 1996.

[Kus89] Eyal Kushilevitz. Privacy and communication complexity
(extended abstract). In Proc. 30th IEEE Symposium on the
Foundations of Computer Science (FOCS), pages 416–421, 1989.

[KY] Anna Karlin and Andrew C. Yao. Manuscript.

172 Bibliography

[LF82] Leslie Lamport and Michael J. Fischer. Byzantine generals
and transaction commit protocols. Technical report, SRI In-
ternational (Menlo Park CA), TR, 1982.

[LK00] Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic
voting through collaboration of voter and honest verifier. In
Japan-Korea Joint Workshop on Information Security and Cryptol-
ogy (JW-ISC2000), pages 101–108, 2000.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
Byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems, 4(3):382–401, July 1982.

[MH96] Markus Michels and Patrick Horster. Some remarks on
a receipt-free and universally verifiable mix-type voting
scheme. In Advances in Cryptology — ASIACRYPT ’96, vol-
ume 1163 of Lecture Notes in Computer Science, pages 125–132,
1996.

[MP91] Fred J. Meyer and Dhiraj K. Pradhan. Consensus with dual
failure modes. IEEE Transactions on Parallel and Distributed
Systems, 2(2):214–222, April 1991.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation. In
Advances in Cryptology — CRYPTO ’91, volume 576 of Lecture
Notes in Computer Science, pages 392–404. Springer-Verlag,
1991.

[MR98] Silvio Micali and Phillip Rogaway. Secure computation: The
information theoretic case. Manuscript, 1998.

[Oka96] Tatsuaki Okamoto. An electronic voting scheme. In Proc. of
IFIP ’96, Advanced IT Tools, pages 21–30. Chapman & Hall,
1996.

[Oka97] Tatsuaki Okamoto. Receipt-free electronic voting schemes
for large scale elections. In Proc. of Workshop on Security Pro-
tocols ’97, volume 1361 of Lecture Notes in Computer Science,
pages 25–35, 1997.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile
virus attacks (extended abstract). In Proc. 10th ACM Sym-
posium on Principles of Distributed Computing (PODC), pages
51–59, August 1991.

Bibliography 173

[Pai99] Pascal Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In Advances in Cryptology —
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer
Science, pages 223–238, 1999.

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a
trusted party (extended abstract). In Advances in Cryptology
— EUROCRYPT ’91, volume 547 of Lecture Notes in Computer
Science, pages 522–526, 1991.

[PIK93] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Effi-
cient anonymous channel and all/nothing election scheme.
In Advances in Cryptology — EUROCRYPT ’93, volume 765 of
Lecture Notes in Computer Science, pages 248–259, 1993.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reach-
ing agreement in the presence of faults. Journal of the ACM,
27(2):228–234, April 1980.

[Rab94] Tal Rabin. Robust sharing of secrets when the dealer is hon-
est or cheating. Journal of the ACM, 41(6):1089–1109, Novem-
ber 1994.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and
multiparty protocols with honest majority. In Proc. 21st ACM
Symposium on the Theory of Computing (STOC), pages 73–85,
1989.

[Sak94] Kazue Sako. Electronic voting schemes allowing open ob-
jection to the tally. Transactions of IEICE, E77-A(1), January
1994.

[Sch91] Claus P. Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 1991.

[Sch99] Berry Schoenmakers, 1999. Personal communication.

[Sha79] Adi Shamir. How to share a secret. Communications of the
ACM, 22:612–613, 1979.

[Sho00] Victor Shoup. Practical threshold signatures. In Advances in
Cryptology — EUROCRYPT ’00, volume 1807 of Lecture Notes
in Computer Science, 2000.

174 Bibliography

[SK94] Kazue Sako and Joe Kilian. Secure voting using partially
compatible homomorphisms. In Advances in Cryptology —
CRYPTO ’94, volume 839 of Lecture Notes in Computer Science,
pages 411–424. IACR, Springer-Verlag, 1994.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting
scheme – A practical solution to the implementation of a vot-
ing booth. In Advances in Cryptology — EUROCRYPT ’95, vol-
ume 921 of Lecture Notes in Computer Science, pages 393–403.
Springer-Verlag, 1995.

[TY98] Yiannis Tsiounis and Moti Yung. On the security of ElGamal-
based encryption. In International Workshop on Practice and
Theory in Public Key Cryptography ’ 98 (PKC ’98), volume 1431
of Lecture Notes in Computer Science, pages 117–134. Springer-
Verlag, February 1998.

[Yao82] Andrew C. Yao. Protocols for secure computations. In
Proc. 23rd IEEE Symposium on the Foundations of Computer Sci-
ence (FOCS), pages 160–164. IEEE, 1982.

