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Abstract. The goal of Multi-Party Computation (MPC) is to perform
an arbitrary computation in a distributed, private, and fault-tolerant
way. For this purpose, a fixed set of n parties runs a protocol that toler-
ates an adversary corrupting a subset of the parties, preserving certain
security guarantees like correctness, secrecy, robustness, and fairness.
Corruptions can be either passive or active: A passively corrupted party
follows the protocol correctly, but the adversary learns the entire internal
state of this party. An actively corrupted party is completely controlled
by the adversary, and may deviate arbitrarily from the protocol. A mixed
adversary may at the same time corrupt some parties actively and some
additional parties passively.

In this work, we consider the statistical setting with mixed adversaries
and study the exact consequences of active and passive corruptions on
secrecy, correctness, robustness, and fairness separately (i.e., hybrid se-
curity). Clearly, the number of passive corruptions affects the thresholds
for secrecy, while the number of active corruptions affects all thresholds.
It turns out that in the statistical setting, the number of passive corrup-
tions in particular also affects the threshold for correctness, i.e., in all
protocols there are (tolerated) adversaries for which a single additional
passive corruption is sufficient to break correctness. This is in contrast
to both the perfect and the computational setting, where such an in-
fluence cannot be observed. Apparently, this effect arises from the use
of information-theoretic signatures, which are part of most (if not all)
statistical protocols.
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1 Introduction

1.1 Secure Multi-Party Computation

Multi-Party Computation (MPC) allows a set of n parties to securely perform
an arbitrary computation in a distributed manner, where security means that
secrecy of the inputs and correctness of the output are maintained even when
some of the parties are dishonest. The dishonesty of parties is modeled with a
central adversary who corrupts parties. The adversary can be passive, i.e. can
read the internal state of the corrupted parties, or active, i.e., can make the
corrupted parties deviate arbitrarily from the protocol.

MPC was originally proposed by Yao [Yao82]. The first general solution was
provided in [GMW87], where, based on computational intractability assump-
tions, security against a passive adversary was achieved for t < n corruptions,
and security against an active adversary was achieved for t < n

2 . Information-
theoretic security was achieved in
[BGW88, CCD88] at the price of lower corruption thresholds, namely t < n

2
for passive and t < n

3 for active adversaries. The latter bound can be improved
to t < n

2 if both broadcast channels are assumed and a small error probability
is tolerated [RB89, Bea89]. These results were generalized to the non-threshold
setting, where the corruption capability of the adversary is not specified by a
threshold t, but rather by a so called adversary structure Z, a monotone collec-
tion of subsets of the player set, where the adversary can corrupt the players in
one of these subsets [HM97].

All mentioned protocols achieve full security, i.e. secrecy, correctness, and
robustness. Secrecy means that the adversary learns nothing about the honest
parties’ inputs and outputs (except, of course, for what can be derived from the
corrupted parties’ inputs and outputs). Correctness means that all parties either
output the right value or no value at all. Robustness means that the adversary
cannot prevent the honest parties from learning their respective outputs. This
last requirement turns out to be very demanding. Therefore, relaxations of full
security have been proposed, where robustness is replaced by weaker output
guarantees: Fairness means that the adversary can possibly prevent the honest
parties from learning their outputs, but then also the corrupted parties do not
learn their outputs. Agreement on abort means that the adversary can possibly
prevent honest parties from learning their output, even while corrupted parties
learn their outputs, but then the honest parties at least reach agreement on this
fact (and typically make no output). In our constructions, all abort decisions are
based on publicly known values. Hence, we have agreement on abort for free.1

The traditional setting of MPC has been generalized in two directions. On the
one hand, the notion of hybrid security was introduced to allow for protocols with
different security guarantees depending on the number of corruptions [Cha89,
FHHW03, FHW04, IKLP06, Kat07, LRM10, HLMR11]. Intuitively, the more
corrupted parties, the less security is guaranteed. This model also allows to

1 The impossibility proof holds even when agreement on abort is not required.
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analyze each security guarantee separately and independent of other guarantees.
On the other hand, protocols were presented that do not restrict the adversary to
a single corruption type [Cha89, DDWY93, FHM98, FHM99, BFH+08, HMZ08,
HLMR11]. The mixed adversaries considered there can perform each corruption
with one out of several corruption types. This allows to consider e.g. active and
passive corruption in the same protocol execution.

1.2 Contributions

In this work, we consider a setting with mixed adversaries and hybrid security.
This allows, for the first time, to separately analyze the relation between passive
corruption and the various security guarantees. It turns out that, in the sta-
tistical model, passive corruption does not only affect secrecy, but in particular
also correctness. In most statistically secure protocols, some kind of information-
theoretic signature is used. When combining active and passive corruptions, one
inherent problem of any kind of information-theoretic signature is that passively
corrupted parties cannot reliably verify signed values. Existing protocols for the
statistical setting assume an honest majority. Therefore, a simple majority vote
on the signature guarantees reliable verification even for passively corrupted
parties. In this work, we show that this assumption is too strong, and that
signatures can be used even without an honest majority. As the main techni-
cal contribution, we provide optimal protocols for both general and threshold
adversaries that cope with this issue. As a new technique for the setting with
general adversaries, we introduce group commitments, a non-trivial extension of
IC-Signatures, which might be of independent interest.

Furthermore, we introduce the notion of multi-thresholds. To the best of our
knowledge, all known protocols for threshold mixed adversaries (e.g. [FHM98])
characterize the tolerable adversaries with a single pair of thresholds (one thresh-
old for the number of actively, and one for the number of passively corrupted
parties). This pair represents the single maximal adversary that can be toler-
ated. We generalize this basic characterization to allow for several incomparable
maximal adversaries. It turns out that, in our setting, multi-thresholds allow to
construct protocols that tolerate strictly more adversaries than a single pair of
thresholds, without losing efficiency.

1.3 Model

We consider n parties p1, . . . , pn, connected by pairwise synchronous secure chan-
nels and authenticated broadcast channels2, who want to compute some proba-
bilistic function over a finite field F, represented as circuit with input, addition,
multiplication, random, and output gates. This function can be reactive, where
parties can provide further inputs after having received some intermediate out-
puts.

2 In [PW92] it is shown how broadcast can be implemented given a setup.
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There is a central adversary with unlimited computing power who corrupts
some parties passively (and reads their internal state) or even actively (and
makes them misbehave arbitrarily). We denote the actual sets of actively (pas-
sively) corrupted parties by D∗ (E∗), where D∗ ⊆ E∗. Uncorrupted parties are
called honest, non-actively corrupted parties are called correct. The security of
our protocols is statistical, i.e. information-theoretic with a small error probabil-
ity. We say a security guarantee holds statistically if it holds with overwhelming
probability. The guaranteed security properties (secrecy, correctness, fairness,
robustness, agreement on abort) depend on (D∗, E∗).

For ease of notation, we assume that if a party does not receive an expected
message (or receives an invalid message), a default message is used instead.
Furthermore, we use subprotocols that might abort. Such an abort is always
global, i.e., if any subprotocol aborts, the whole protocol execution halts.

In the analysis of our protocols, we assume “instant randomness”, i.e. parties
generate their randomness on the fly when needed in the protocol run. This al-
lows even passively corrupted parties to e.g. choose challenges in zero-knowledge
proofs that are unpredictable to the adversary. Note that in a setting without
secrecy, we have no input independence3. Hence, standard techniques (e.g. Blum
coin-toss) to jointly generate these challenges are insecure.

1.4 Outline of the paper

The paper is organized as follows: In Sec. 2, we present information checking,
which is used as a basic primitive in our protocols. As a main technical con-
tribution, in Sections 3 and 4, we present protocols for the model with mixed
adversaries and hybrid security for both general and threshold adversaries, to-
gether with optimal bounds. In Sec. 5, we provide conclusions of our results.

2 Information Checking

Information checking (IC) [RB89, CDD+99] is a primitive that allows a sender
to send a value to an intermediary, such that when the receiver obtains this
value from the intermediary, he can check that this is indeed the value from the
sender. When all parties act as receivers, this primitive is called IC signature,
and the sender is called signer. IC signatures are realized using a pair of protocols
IC-Sign and IC-Reveal. IC-Sign allows a signer to sign a value for a particular
intermediary (while providing secrecy with respect to the remaining parties), and
IC-Reveal allows this intermediary to verifiably forward this value to all other
parties.

More precisely, let 〈v〉i,j denote the state of all players where a value v is
IC-signed (or simply signed) by signer pi for intermediary pj . In analogy to tra-
ditional signatures, we equivalently say that the intermediary pj holds the sig-
nature 〈v〉i,j . We require that a default signature 〈v〉i,j can always be generated

3 That means, the adversary can choose the inputs of actively corrupted parties after
learning the inputs of correct parties.
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given that all parties know the value v, and that signatures are linear, i.e., the
sum of two signatures 〈v〉i,j and 〈v′〉i,j from signer pi to intermediary pj for val-
ues v and v′, respectively, is a signature from pi to pj for the sum v+v′. IC-Sign
is a protocol that, given a signer pi and an intermediary pj that both know the
same value v, provides the following guarantees: If pi and pj are correct, IC-Sign
correctly computes a valid signature 〈v〉i,j on v without leaking any information
about v to the remaining parties. Otherwise, IC-Sign either correctly computes
a valid signature 〈v〉i,j on v, or all (correct) parties output ⊥, with overwhelming
probability. Given a signature 〈v〉i,j , IC-Reveal robustly computes the output
xk ∈ {(“accept”, v′), “reject”} for each pk. We make the following correctness
requirements: If pj is correct, all correct parties pk output xk = (“accept”, v).
Else, if both pi and pk are honest, then xk ∈ {(“accept”, v), “reject”} (with
overwhelming probability, even when pj is active). Note that we do not require
agreement on the output of correct parties in IC-Reveal. Furthermore, if pj is
active and pi or pk is not honest, then pk might output xk = (“accept”, v′) for
v′ 6= v.

In the full version of this paper, we provide an instantiation of IC signatures.

3 MPC with General Adversaries

Traditionally, protocols for general adversaries are characterized by an adversary
structure Z that specifies the tolerated subsets of the player set [HM97]. For our
setting, we have to extend this basic representation: On the one hand, we consider
mixed adversaries, which are characterized by adversary structures consisting of
tuples (D, E) of subsets of P, where the adversary may corrupt the parties in
E passively, and the parties in D ⊆ E even actively. On the other hand, each
security guarantee depends on the sets of actually corrupted parties (D∗, E∗).
We consider four security guarantees, namely correctness, secrecy, robustness,
and fairness. This is modeled with four adversary structures Zc, Zs, Zr, and Zf ,
one for each security requirement4: Correctness is guaranteed for (D∗, E∗) ∈ Zc,
secrecy is guaranteed for (D∗, E∗) ∈ Zs, robustness is guaranteed for (D∗, E∗) ∈
Zr, and fairness is guaranteed for (D∗, E∗) ∈ Zf . We have the assumption that
Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, as secrecy and robustness are not well defined
without correctness, and as fairness cannot be achieved without secrecy.

Our protocol for general adversaries is based on [HMZ08], which is an adap-
tation of the perfectly secure protocol of [Mau02] to the statistical case. For a
generic protocol construction, it is sufficient to consider two parameters [HLMR11]:
First, the state that is held in the protocol is defined in terms of a parameter that
influences the secrecy. This parameter is the sharing parameter S, a collection of
subsets of P that defines which party obtains which values. Second, the recon-
struct protocol is expressed in terms of an additional parameter determining the
amount of error correction taking place. This parameter is the reconstruction pa-
rameter R. In contrast to the perfect case, here we need to consider both active

4 Since all our protocols achieve agreement on abort for free, we do not introduce a
separate structure for this security property.
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and passive corruption. Therefore, the reconstruction parameter is a monotone
collection of pairs (D, E) of subsets of P where D ⊆ E : If all errors can be ex-
plained with an adversary (D, E) ∈ R, the errors are corrected and the protocol
continues; otherwise it aborts. This implies that the protocol aborts only if the
actual adversary is not in R. Such aborts are global, i.e., if some subprotocol
aborts, the entire protocol execution halts.

3.1 A Parametrized Protocol for General Adversaries

In the following, we present the parametrized subprotocols for general adversaries
and analyze them with respect to correctness, secrecy, and robustness. The main
result (including fairness) is discussed in Sec. 3.2. As a first step, we introduce
group commitments which are a generalization of IC signatures that allow even
passively-corrupted parties to reliably verify signatures even without an honest
majority. We then use these group commitments to construct a verifiable secret-
sharing scheme, and describe how to perform computations on shared values.

Group Commitments. As a first step, we introduce the notion of group com-
mitments, which is a pair of protocols GroupCommit and GroupReveal.
GroupCommit allows a group G to commit to a value v on which they agree
(while providing secrecy with respect to the remaining parties P \ G), and
GroupReveal allows them to reveal this value to the remaining parties. Our
definitions and protocols for group commitments are based on the IC signatures
introduced in Sec. 2.

Definition 1 (IC Group Commitment). A group G is IC group committed
(or simply committed) to a value v, denoted by 〈〈v〉〉G, if for all pairs (pi, pj) ∈
G × G, v is IC-signed with 〈v〉i,j.

Note that a default group commitment 〈〈v〉〉G can be generated given that all par-
ties in P know the value v. Furthermore, if all parties in G are actively corrupted,
then any values held by correct parties constitute a valid group commitment. Ad-
ditionally, group commitments inherit linearity from the underlying IC signature
scheme.

Protocol GroupCommit: Given a set G of parties that agree on a value v, compute
a valid group commitment 〈〈v〉〉G on v.

1. For each pair (pi, pj) ∈ G×G invoke IC-Sign on v with signer pi and intermediary
pj .

2. If any invocation of IC-Sign outputs ⊥, all parties output ⊥. Otherwise, each
party outputs the concatenation of the outputs of the invocations of IC-Sign.

Fig. 1. The group commit protocol for a group G.
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Lemma 1. Given a set G of parties that agree on a value v. If all parties in G
are correct (i.e. G ∩ D∗ = ∅), GroupCommit correctly computes a valid group
commitment 〈〈v〉〉G on v. Otherwise, GroupCommit either correctly computes a
valid group commitment 〈〈v〉〉G on v, or all parties in P output ⊥. GroupCommit
is always secret and robust.

Proof. Secrecy and robustness follow immediately by inspection. For cor-
rectness, we first have to show that if the protocol outputs a group commit-
ment, then all signatures held by correct parties pj are for the value v. This
follows from the fact that IC-Sign always results either in a correct signature
〈v〉i,j or in ⊥, even when the signer (or intermediary) is actively corrupted. Sec-
ond, if all parties in G are correct, then it follows from the properties of IC-Sign
that it never outputs ⊥. ut

If a group G is committed to a value v (e.g. if the GroupCommit protocol
resulted in a valid group commitment and did not output⊥), the GroupReveal
protocol reveals the value v to all parties in P. During the protocol run, the
adversary might be able to provoke conflicts that depend on the sets D∗ and
E∗ of corrupted parties. Therefore, we introduce a parameter R, which is a
monotone collection of pairs (D, E) of subsets of the player set, where D ⊆ E :
Whenever all conflicts in a given situation can be explained with an adversary
(D, E) ∈ R, the corresponding values are ignored (corrected), and the protocol
proceeds; otherwise it aborts. Note that GroupReveal is the only subprotocol
that might abort. All other protocols abort only if they use GroupReveal as
a subprotocol. Therefore, it is sufficient to discuss agreement on abort only for
this protocol.

We emphasize that the conflicts in GroupReveal do not only depend on the
set D∗ of actively corrupted parties, but also on the set E∗ of passively corrupted
parties, due to their inability to reliably verify IC-signatures. That means, in
this protocol, even passive corruptions have a strong impact on correctness (and
robustness).

Lemma 2. Given the reconstruction parameter R, the commitment group G,
and a group commitment 〈〈v〉〉G for a value v, GroupReveal reveals v to all
parties. The protocol is statistically correct if G 6⊆ D∗ and

∀(D, E) ∈ R :

G \ D 6⊆ D∗ ∨ (G 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (G 6⊆ E∗ ∧ P \ E∗ 6⊆ D).

The protocol is statistically robust if additionally (D∗, E∗) ∈ R, and always guar-
antees agreement on abort.

Proof. Correctness: Consider an actual protocol execution with correct value
v and an adversary corrupting (D∗, E∗). Denote with {Vu} the resulting collection
of subsets of P in Step 3.

We first show that given the precondition G 6⊆ D∗, we have(
P \ (V⊥ ∪ Vv) ⊆ D∗

)
∧
(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗

)
.

The precondition G 6⊆ D∗ implies that there is at least one correct party pi ∈ G.
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Protocol GroupReveal: Given the set G and a group commitment 〈〈v〉〉G , reveal v
to all parties.

1. For each party pi ∈ G:
(a) pi broadcasts v. Denote the broadcasted value with ui.
(b) For each party pj ∈ G: Invoke IC-Reveal on 〈v〉j,i.
(c) A party pk ∈ P \ G accepts ui if all invocations of IC-Reveal output

(“accept”, ui).
2. For each party pk ∈ P \ G:

(a) If pk accepted at least one value in Step 1(c), and all accepted values are the
same, then set uk to this value. Else set uk := ⊥.

(b) pk broadcasts uk.
3. Let Vu denote the set of parties that broadcasted u in Step 1(a) of 2(b), respec-

tively. If ∃(D, E) ∈ R and a value v′, such that
P \ (V⊥ ∪ Vv′) ⊆ D ∧

(
G ⊆ E ∨ P \ Vv′ ⊆ E

)
then output v′. Else abort.

Fig. 2. The group reveal protocol for a group G.

In Step 1, this pi broadcasts its value ui(= v) and invokes IC-Reveal on the
signatures 〈v〉j,i for pj ∈ G. It follows from the properties of IC-Reveal that
all correct parties accept all these signatures. Hence, all correct parties in P \ G
accept the value ui(= v), and broadcast either v or ⊥ in Step 2, but not a wrong
value, i.e. P \ (V⊥ ∪Vv) ⊆ D∗. Furthermore, either G ⊆ E∗, or there is an honest
party pj ∈ G. In the latter case, an actively corrupted pi ∈ G can only forge
the signatures 〈v〉j,i towards passively corrupted parties. Hence, it is guaranteed
that all honest parties pk broadcast the correct value uk = v in Step 2, and we
have P \ Vv ⊆ E∗.

Second, we show that given the precondition in the lemma, the protocol
execution under consideration does not output an (incorrect) value v′ 6= v, i.e.,
for all v′ 6= v and (D, E) ∈ R the condition in Step 3 is violated. To arrive
at a contradiction, assume that for some v′ 6= v and (D, E) ∈ R it holds that(
P \ (V⊥ ∪ Vv′) ⊆ D

)
∧
(
G ⊆ E ∨ P \ Vv′ ⊆ E

)
. From above, we have that(

P\(V⊥∪Vv) ⊆ D∗
)
∧
(
G ⊆ E∗ ∨ P\Vv ⊆ E∗

)
. Furthermore, by assumption we

have that the precondition in the lemma is fulfilled. We split the proof according
to which or-term of the second part of this precondition is fulfilled for the given
(D, E):

Case G \ D 6⊆ D∗: Since P \ (V⊥ ∪ Vv′) ⊆ D and G ⊆ P, we have
G \ (V⊥ ∪ Vv′) ⊆ D. It follows by inspection of the protocol that G and
V⊥ are disjoint. Hence we have G \ Vv′ ⊆ D. Analogously, it follows from
P \ (V⊥ ∪ Vv) ⊆ D∗ that G \ Vv ⊆ D∗. Therefore we have that G ⊆ D ∪ D∗,
which is a contradiction to G \ D 6⊆ D∗.

Case G 6⊆ E ∧ P \ E 6⊆ D∗: Since G 6⊆ E , we have P \ Vv′ ⊆ E . Furthermore,
we have that P \ (V⊥ ∪Vv) ⊆ D∗. It follows by inspection from the protocol
that V⊥, Vv′ , and Vv are pairwise disjoint. Hence, we have that P ⊆ D∗ ∪E ,
which is a contradiction to P \ E 6⊆ D∗.
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Case G 6⊆ E∗ ∧ P \ E∗ 6⊆ D: This proof is identical to the previous case, with
the only difference that (D∗, E∗) is swapped with (D, E) and v with v′.

Robustness: In the proof of correctness, we have shown that(
P \ (V⊥ ∪ Vv) ⊆ D∗

)
∧
(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗

)
.

Hence, given the correctness condition and (D∗, E∗) ∈ R, it follows immediately
that the condition in Step 3 is fulfilled for the correct value v and (D∗, E∗), i.e.,
that the protocol terminates without abort.
Agreement on abort: Since the abort decision is based only on broadcasted
values, we always have agreement on abort. ut

Given group commitments, protocols for sharing, reconstruction, addition, and
multiplication can be constructed in a rather straightforward manner. Due to
lack of space, the description of these protocols, as well as the proof of security
of the parametrized protocol πS,R (as stated in the following lemma) was moved
to the full version of this paper.

Lemma 3. Given the sharing specification S and the reconstruction parameter
R, the protocol πS,R guarantees statistical correctness if

∀(D, E) ∈ R, S, S′ ∈ S : S ∩ S′ 6= ∅ ∧ S 6⊆ D∗ ∧(
S \ D 6⊆ D∗ ∨ (S 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (S 6⊆ E∗ ∧ P \ E∗ 6⊆ D)

)
Furthermore, the protocol guarantees statistical secrecy if additionally ∃S ∈ S :
S ∩ E∗ = ∅, and/or statistical robustness if additionally (D∗, E∗) ∈ R.

3.2 Main Result

The following theorem states the optimal bound for statistically secure MPC for
general adversaries with both mixed adversaries and hybrid security. We show
that the bound is sufficient for MPC by providing parameters for the generalized
protocols described above. In the full version of this paper, we prove that the
bound is also necessary.

Theorem 1. In the secure channels model with broadcast and general adver-
saries, statistically secure (reactive) MPC among n ≥ 2 parties with respect to
(Zc,Zs,Zr,Zf ), where Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, is possible if Zs = {(∅, ∅)}
or

∀(·, Es), (·, Es′) ∈ Zs, (Dr, Er) ∈ Zr, (Dc, Ec) ∈ Zc :

Es ∪ Es′ 6= P ∧ Es ∪ Dc 6= P ∧(
Dc ∪ Dr ∪ Es 6= P ∨ (Es ∪ Er 6= P ∧ Dc ∪ Er 6= P)

∨ (Es ∪ Ec 6= P ∧ Dr ∪ Ec 6= P)
)

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.
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Proof (Sufficiency). If Zs = {(∅, ∅)}, there is no secrecy requirement, and we
can directly use the trivial non-secret protocol described in the Appendix of
[HLMR11]. Otherwise, we employ the protocol πS,R described in Sec. 3.1. We
set S := {Es | (·, Es) ∈ Zs} and R = Zr ∪ Zf .

We apply Lemma 3 to derive correctness, secrecy and robustness: Given the
bound in the theorem, the choice of the structures S and R, and the fact that
(D∗, E∗) is an element of the corresponding adversary structure, it is easy to
verify that the condition for each property is fulfilled. In particular, note that
the correctness condition is also fulfilled for (D, E) ∈ Zf : Using that Zf ⊆ Zs, we
have that Es∪E ⊆ Es∪Es′ 6= P (for some Es′) and Dc∪E ⊆ Dc∪Es 6= P (where
the inequalities follow from the second line of the condition in the theorem).
This implies the condition for correctness.

Note that by our choice of R, we have Zf ⊆ R. Hence, for (D∗, E∗) ∈ Zf

the protocol is robust, and the adversary cannot abort. ut

4 MPC with Threshold Adversaries

Trivially, the protocol for general adversaries can also be applied to the special
case of threshold adversaries. Yet, protocols for general adversaries are super-
polynomial in the number of parties for most adversary structures. Therefore,
we present a protocol that exploits the symmetry of threshold adversaries, and
is efficient in the number of parties.

The characterization for general adversaries (Sec. 3) can be adjusted for
threshold adversaries: A mixed adversary is characterized by two thresholds
(ta, tp), where he may corrupt up to tp parties passively, and up to ta of these par-
ties even actively. The level of security (correctness, secrecy, robustness, and fair-
ness) depends only on the number (|D∗|, |E∗|) of actually corrupted parties. In the
perfect setting [HLMR11], this is modeled with four pairs of thresholds, one for
each security requirement, specifying the upper bound on the number of corrup-
tions that the adversary may perform, such that the corresponding security re-
quirement is still guaranteed. In the statistical setting, it follows from the bound
for general adversaries that we need to consider multiple pairs of thresholds for
each security guarantee. Consider the following example: Let n = 6 and tsp = 2. It
is possible to obtain correctness for (|D∗|, |E∗|) ≤ (2, 6) and (|D∗|, |E∗|) ≤ (3, 3),
and robustness for (|D∗|, |E∗|) ≤ (1, 6) and (|D∗|, |E∗|) ≤ (2, 3) in the same proto-
col. Yet, correctness and robustness cannot be guaranteed for (|D∗|, |E∗|) ≤ (3, 6)
and (|D∗|, |E∗|) ≤ (2, 6), respectively. Hence, this situation cannot be captured
using only a single pair of thresholds for each security guarantee. Therefore, we
introduce multi-thresholds T , i.e. collections of pairs of thresholds (ta, tp).

We consider the four multi-thresholds T c, T s, T r, and T f :5 Correctness is
guaranteed for (|D∗|, |E∗|) ≤ T c,6 secrecy is guaranteed for (|D∗|, |E∗|) ≤ T s,

5 As in the setting with general adversaries, we do not introduce a separate multi-
threshold for agreement on abort.

6 We write (ta, tp) ≤ T if ∃(t′a, t′p) ∈ T : (ta, tp) ≤ (t′a, t
′
p), where (ta, tp) ≤ (t′a, t

′
p) is a

shorthand for ta ≤ t′a and tp ≤ t′p.
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robustness is guaranteed for (|D∗|, |E∗|) ≤ T r, and fairness is guaranteed for
(|D∗|, |E∗|) ≤ T f . Again, we have the assumption that T r ≤ T c and T f ≤ T s ≤
T r,7 as secrecy and robustness are not well defined without correctness, and as
fairness cannot be achieved without secrecy.

For threshold adversaries, we proceed along the lines of the general adver-
sary case: We generalize the protocol of [FHM98, CDD+99] and introduce the
sharing parameter d (corresponding to S), and the reconstruction parameter E
(corresponding to R). Since we consider multi-thresholds, the reconstruction
parameter E is a list of pairs (ea, ep) where ea ≤ ep. Since for secrecy the ac-
tively corrupted parties D∗ are not relevant, there cannot be two incomparable
maximal adversaries. Hence, a single threshold is sufficient.

In this section, we assume that each party pi is assigned a unique and publicly
known evaluation point αi ∈ F \ {0}. This implies that the field F must have
more than n elements.

4.1 A Parametrized Protocol for Threshold Adversaries

In the following, we present the parametrized subprotocols and analyze them
with respect to correctness, secrecy, and robustness. The main result (including
fairness) is discussed in Sec. 4.2. The protocol is based on IC signatures as
introduced in Sec. 2.

Verifiable Secret Sharing. The state of the protocol is maintained with a
Shamir sharing [Sha79] of each intermediate result.

Definition 2 (d-Sharing). A value s is d-shared when (1) there is a polynomial
ŝ(x) of degree d with ŝ(0) = s, and every party pi holds a share si = ŝ(αi), (2) for
each share si, pi holds a share polynomial ŝi(y) of degree d with ŝi(0) = si, and
every party pj holds a share share sij = ŝi(αj), and (3) for each share share sij,
party pi holds a signature 〈sij〉j,i, and pj holds a signature 〈sij〉i,j. We denote
a d-sharing of s with [s], and the share si with [s]i. A sharing parameter d is
t-permissive, if the shares of all but t parties uniquely define the secret, i.e.,
n− t > d.

Note that it follows from the linearity of Shamir sharings (i.e. a polynomial ŝ(x)
with ŝ(0) = s where each party pj ∈ P holds ŝ(αj)) and IC signatures, that
d-sharings are linear.

Lemma 4. Let d < n be the sharing parameter. A d-sharing is secret if |E∗| ≤ d,
and uniquely defines a value if d is |D∗|-permissive.

Proof. It follows directly from the properties of a polynomial of degree d that
secrecy is guaranteed if the number |E∗| of (actively or passively) corrupted
parties is at most d. Furthermore, n − |D∗| > d implies that there are at least
d+ 1 correct parties whose shares uniquely define a share polynomial. ut
The share protocol takes as input a secret s from a dealer, and outputs a d-
sharing [s] (see Fig. 3).

7 We write T1 ≤ T2 if ∀(ta, tp) ∈ T1, ∃(t′a, t′p) ∈ T2 : (ta, tp) ≤ (t′a, t
′
p).
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Protocol Share: Given input s from the dealer, compute a d-sharing [s] of s.

1. The dealer chooses a random (bivariate) polynomial g(x, y) with g(0, 0) = s,
of degree d in both variables, and sends to each party pi ∈ P the (univariate)
polynomials ki(y) = g(αi, y) and hi(x) = g(x, αi).

2. For each pair of parties (pi, pj): pi sends ki(αj) to party pj , and pj checks whether
ki(αj) = hj(αi). If this check fails, it broadcasts a complaint.

3. For all ki(αj), for which no inconsistency was reported, IC-Sign is invoked once
with signer pj and intermediary pi to compute the signature 〈ki(αj)〉j,i, and once
with signer pi and intermediary pj to compute the signature 〈ki(αj)〉i,j .

4. The dealer broadcasts each value for which either an inconsistency was reported
(Step 2), or the output of IC-Sign was ⊥ (Step 3), and a default signature is
used.

5. If some party pi observes an inconsistency between the polynomials received in
Step 1 and the broadcasted values in Step 4, it accuses the dealer. The dealer
answers the accusation by broadcasting both ki(y) and hi(x). Now, if some other
party pj observes an inconsistency between the polynomial received in Step 1 and
these broadcasted polynomials, it also accuses the dealer. This step is repeated
until no additional party accuses the dealer. For all broadcasted values, default
signatures are used.

6. If the dealer does not answer some complaint or accusation, or if the broadcasted
values contradict each other, the parties output a default d-sharing of a default
value (with default signatures). Otherwise, each party pi outputs the share si :=
ki(0), the share polynomial ŝi(y) := ki(y) with signatures 〈ŝi(αj)〉j,i (for j =
1, . . . , n), and the share shares sji := hi(αj) with signatures 〈sji〉j,i (for j =
1, . . . , n). The dealer outputs ŝ(x) := g(x, 0).

Fig. 3. The share protocol for threshold adversaries.

Lemma 5. Let d < n be the sharing parameter. On input s from the dealer,
Share correctly, secretly, and robustly computes a d-sharing. If d is |D∗|-permissive,
and if the dealer is correct, the sharing uniquely defines the secret s.

Proof. Secrecy: It follows from the properties of a bivariate polynomial that
g(x, y) reveals no more information about s than the specified output. After
Step 1, the adversary does not obtain any additional information: In Step 4, a
value sij is broadcasted only if pi, pj or the dealer is actively corrupted, i.e., the
adversary knew the value already beforehand. Hence, the protocol does not leak
more information than the specified output, and thus always provides secrecy.

Correctness: First, we have to show that the protocol outputs a valid d-
sharing. Due to the bilateral consistency checks, any inconsistency in the values
held by correct parties is detected in Step 2 and resolved in Step 4. Therefore,
the values held by correct parties uniquely define a polynomial g′(x, y) of degree
d, which implies that g′(x, 0) is of degree d. Furthermore, it follows from the
properties of IC-Sign that in Step 3, either a correct IC-signature is computed,
or all parties output ⊥. In the latter case, a default (and hence correct) IC-
signature is used. Therefore, the output is a valid d-sharing. Second, we have to
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show that if d is |D∗|-permissive and if the dealer is correct, then the shared value
equals the input of the dealer. A correct dealer can always consistently answer all
complains and accusations with the correct values. Hence, if d is |D∗|-permissive,
the unique value defined by the sharing is the secret s.
Robustness: By inspection, the protocol does not abort. ut

The public reconstruction protocol (Fig. 4) proceeds sharewise: For each share si,
first party pi broadcasts the share si together with the sharing polynomial ŝi(y),
and opens the signatures on all share shares ŝi(αj). Second, all parties broadcast
their share shares sij , and open the corresponding signatures. If active corrup-
tion took place, these two steps might produce conflicts between certain parties.
Note that these conflicts do not only depend on the actively, but also on the pas-
sively corrupted parties, due to their inability to reliably verify IC-signatures. If
these conflicts can be explained with an adversary corrupting (|D∗|, |E∗|) ≤ E,
then the share is accepted. Otherwise it is ignored. This technique allows also
passively-corrupted parties to reliably verify signatures and therefore reconstruct
the correct value. Finally, the secret is reconstructed using the accepted shares.
Note that Public Reconstruction is the only subprotocol that might abort.
All other protocols abort only if they use Public Reconstruction as a sub-
protocol and the invocation thereof aborts. Therefore, it is sufficient to discuss
agreement on abort only for this protocol.

Protocol Public Reconstruction: Given a d-sharing [s] of some value s, recon-
struct s to all parties.

1. For each party pi:
(a) pi broadcasts ŝi(y) and invokes IC-Reveal on the signatures 〈ŝi(αj)〉j,i

(j = 1, . . . , n) of all share shares.
(b) Each pj broadcasts its share share sij and invokes IC-Reveal on the corre-

sponding signature 〈sij〉i,j .
(c) Voting: Each pk checks whether

i. the polynomial ŝi(y) broadcasted in Step 1(a) is consistent with its share
share, i.e. sik = ŝi(αk),

ii. the output of all invocations of IC-Reveal in Step 1(a) was “accept”,
iii. for all sij broadcasted in Step 1(b) either sij = ŝi(αj) or the output of

IC-Reveal on the corresponding signature 〈sij〉i,j was “reject”.
pk broadcasts “yes” if all checks succeed, “no” if check i. or ii. fails, and ⊥
otherwise. Let a and r denote the number of parties broadcasting “yes” and
“no”, respectively.

(d) Decision: Accept si if ∃(ea, ep) ∈ E : r ≤ ea ∧ (ep + d ≥ n ∨ a ≥ n− ep).
Otherwise ignore si.

2. Output: If at least d + 1 shares are accepted, interpolate these shares with a
polynomial ŝ′(x) and output ŝ′(0). Otherwise abort.

Fig. 4. The public reconstruction protocol for threshold adversaries.
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Lemma 6. Given the sharing parameter d, the reconstruction parameter E, and
a d-sharing [s] of some value s, Public Reconstruction reconstructs s to all
parties. The protocol is statistically correct if |D∗| < n− d and

∀(ea, ep) ∈ E : |D∗| < n− d− ea ∨
(d+ ep < n ∧ |D∗| < n− ep) ∨ (|E∗| < n− d ∧ |E∗| < n− ea).

Furthermore, it is statistically robust if additionally (|D∗|, |E∗|) ≤ E, and always
guarantees agreement on abort.

Proof. Correctness: The protocol outputs a value only if at least d+ 1 shares
are accepted. Trivially, the output is correct if all accepted shares are correct,
i.e., when incorrect shares are not accepted. More precisely, we have to show
that for any incorrect share s′i 6= si and for each (ea, ep) ∈ E, the condition
in Step 1(d) is violated. In this proof, we distinguish three cases, depending on
which or-term of the condition in the lemma is fulfilled:

i. Case |D∗| < n− d− ea:
In order to broadcast a wrong share s′i 6= si, an actively corrupted party pi
has to change the value of at least n− d share shares. At least n− d− |D∗|
of these share shares belong to correct parties that subsequently vote “no”,
i.e. r ≥ n − d − |D∗|. Since |D∗| < n − d − ea, this implies r > ea, and the
share is not accepted.

ii. Case d+ ep < n ∧ |D∗| < n− ep:
Since |D∗| < n− d, there are at least d+ 1 correct parties. Hence, in order
to broadcast a wrong share s′i 6= si, an actively corrupted party pi has to
change the value of at least one share share belonging to a correct party. In
Step 1(b), this correct party broadcasts the correct share share with a valid
signature, and no correct party accepts the wrong share s′i, i.e. a ≤ |D∗|.
Since |D∗| < n− ep, we have a < n− ep. Since we also have d+ ep < n, the
share is not accepted.

iii. Case |E∗| < n− d ∧ |E∗| < n− ea:
Since |E∗| < n − d, there are at least d + 1 honest parties. Hence, in order
to broadcast a wrong share s′i 6= si, an actively corrupted party has to
change the value of at least one share share belonging to an honest party,
and to create the signature on this (incorrect) share share. All honest parties
notice that this signature is not valid and reject, i.e., r ≥ n − |E∗|. Since
|E∗| < n− ea, we have r > ea, and the share is not accepted.

Robustness: Given that the correctness condition holds, the protocol guar-
antees robustness if enough (i.e. d + 1) shares are accepted. Let (ea, ep) ∈ E
such that (|D∗|, |E∗|) ≤ (ea, ep). First, observe that if party pi is correct, then
r ≤ ea: All share shares and signatures broadcasted in Step 1(a) are correct and
valid. Therefore, no correct party votes “no”. Furthermore, if party pi is honest,
then a ≥ n − ep: If some pj broadcasts a contradicting (wrong) share share in
Step 1(b), then the signature on this share share is invalid for all honest parties.

It follows from the two observations above that shares from honest parties
are always accepted. If ep + d < n, then there are at least d + 1 honest parties
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and the protocol does not abort. Otherwise, if ep + d ≥ n, then also shares from
correct parties are accepted. Since |D∗| < n − d there are always at least d + 1
correct parties and the protocol does not abort.

Agreement on abort: Since the abort decision is based only on broadcasted
values, we always have agreement on abort. ut

Addition, Multiplication, and Random Values. Linear functions (and in
particular additions) can be computed locally, since d-sharings are linear: Given
sharings [a] and [b], and a constant c, one can easily compute the sharings [a]+[b],
c[a], and [a] + c. Computing a shared random value can be achieved by letting
each party pi share a random value ri, and computing [r] = [r1] + . . .+ [rn].

For the multiplication of two shared values, we first provide a non-robust
multiplication protocol, which we then make robust using dispute control [BH06]
and circuit randomization [Bea91]. Due to lack of space, the full description of
the multiplication protocol was moved to the full version of this paper.

The Security of the Parametrized Protocol. Considering the security of
the subprotocols described above, we can derive the security of the parametrized
protocol, denoted by πd,E :

Lemma 7. Let d be the sharing parameter, and E be the reconstruction parame-
ter, the protocol πd,E guarantees statistical correctness if
d < n− |D∗|, 2d < n, and

∀(ea, ep) ∈ E : |D∗| < n− d− ea ∨
(d+ ep < n ∧ |D∗| < n− ep) ∨ (|E∗| < n− d ∧ |E∗| < n− ea).

Furthermore, the protocol guarantees statistical secrecy if additionally |E∗| ≤ d,
and/or statistical robustness if additionally (|D∗|, |E∗|) ≤ E.

Proof. πd,E provides a certain security guarantee against (|D∗|, |E∗|) if all sub-
protocols and the sharing provide this guarantee against (|D∗|, |E∗|). For each
guarantee, it can easily be verified that the condition in the lemma implies the
conditions in the corresponding lemmas. ut

4.2 Main Result

The following theorem states the optimal bound for statistically secure MPC for
threshold adversaries with both mixed adversaries and hybrid security. We show
that the bound is sufficient for MPC by providing parameters for the generalized
protocols described above. The necessity of the bound follows directly from the
corresponding proof for general adversaries that can be found in the full version
of this paper.
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Theorem 2. In the secure channels model with broadcast and threshold ad-
versaries, statistically secure (reactive) MPC among n ≥ 2 parties with multi-
thresholds T c, T s, T r, and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if
T s = {(0, 0)} or

∀(tca, tcp) ∈ T c, (tra, t
r
p) ∈ T r, (·, tsp), (·, tsp

′) ∈ T s :

tsp + tsp
′ < n ∧ tsp + tca < n ∧(

tca + tra + tsp < n ∨ (tsp + trp < n ∧ tca + trp < n)

∨ (tsp + tcp < n ∧ tra + tcp < n)
)

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof (Sufficiency). If T s = {(0, 0)}, there is no secrecy requirement, and we
can directly use the trivial non-secret protocol described in the Appendix of
[HLMR11]. Otherwise, we employ the parametrized version πd,E of the proto-
col of [BGW88] described in Sec. 4.1 with d := t̃sp and E := T r ∪ T f , where

t̃sp = max{tsp | (·, tsp) ∈ T s}.
We apply Lemma 7 to derive correctness, secrecy and robustness: Given the

bound in the theorem, the choice of the parameters d and E, and the fact that
(|D∗|, |E∗|) is below the corresponding threshold, it is easy to verify that the
condition for each property is fulfilled. In particular, note that the correctness
condition is also fulfilled for (ea, ep) ∈ T f : Using that T f ≤ T s, we have d+ep ≤
2t̃sp < n and ea + ep ≤ tca + d < n (where the inequalities follow from the second

line of the condition in the theorem with tsp = tsp
′ = t̃sp).

For fairness, note that T f ≤ E. Hence, for (|D∗|, |E∗|) ≤ (tfa , t
f
p) the protocol

is robust, and the adversary cannot abort. ut

5 Conclusion

Our results provide insights into the relations between passive corruption and
different security requirements. The bounds presented in this work quantify the
impact of passively corrupted parties on all security guarantees. We have shown
that, in the statistical setting, passively corrupted parties play a significant role
for all security guarantees, and not only for secrecy. Consider the following ex-
ample: Let n = 4, tca = 2, tcp = 2, tra = 1, trp = 2, and tsp = 1. For this choice of
thresholds, the construction in this paper provides a protocol that is correct and
robust (given that the adversary remains below the corresponding thresholds).
Yet, we show that it is impossible to construct a protocol that tolerates a single
additional passive corruption.

Furthermore, in addition to the known tradeoff between different security
guarantees like robustness and correctness [HLMR11], we obtain a novel trade-
off between active and passive corruptions even when only considering a single
security guarantee.
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Solutions for the setting with general adversaries encompass all possible ad-
versary structures. Yet, these protocols are usually superpolynomial in the num-
ber of parties. Therefore, protocols for the setting with threshold adversaries are
of more practical relevance. In this work, we provide the first protocol allowing for
multi-thresholds, a setting that is strictly more flexible than single-thresholds.
This constitutes a substantial step towards general adversaries without losing
efficiency.
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