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Consider two parties, Alice and Bob, who would like to communicate securely over
an insecure channel to which an eavesdropper Eve has perfect access. Alice and Bob
are assumed to be able to authenticate each others messages (e.g., by speaker identifi-
cation), and the motivation of this paper is to demonstrate protocols that allow Alice
and Bob to exchange messages in a provably-confidential manner. It is well-known
that a conventional cryptosystem together with a shared secret key, or a public-key
cryptosystem [3] when no secret key is shared, can be used for achieving this goal.
However, no cryptosystem (conventional or public-key) has yet been proven to be
computationally-secure.

The unarguably strongest definition of cipher security, perfect secrecy, was defined
by Shannon to mean that plaintext and ciphertext are statistically independent, and
hence even an eavesdropper with infinite computing power can obtain no information
about the plaintext. The well-known one-time pad is an example of a perfect but
generally impractical cipher. Shannon proved the pessimistic result that perfect secrecy
can only be achieved if the entropy of the secret key is at least equal to the entropy of
the plaintext.

This paper is concerned with achieving perfect secrecy between Alice and Bob, even
when they share no secret key initially. For this purpose we allow Alice and Bob to make
use of correlated random variables known to them, for instance a string of random bits
broadcast by a satellite and received on the earth by Alice, Bob and Eve with individual
noise patterns; hence our results do not violate Shannon’s theorem. More precisely, we
assume in this paper that Alice, Bob and Eve know the sequences of binary random
variables XV = [X|, Xy,... Xy], YV = [V,Y,...Y"N] and ZV = [Z),2Z,,... Zy],
respectively, where the triples (X;Y;Z;), for 1 < i < N, are generated by a discrete
memoryless source according to some probability distribution Pxyz, and Pxyz is of
the form Pxyz = Pr - Px|r - Py|r - Pzr for an unbiased binary random variable R
(the bit broadcast by the satellite) and three independent binary symmetric channels
Px\r, Pyir and Pz with bit error probabilities €4, €p and €g, respectively. The
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case of dependent channels can easily be transformed into a corresponding scenario of
independent channels.

Motivated by Wyner’s and Csiszar and Korner’s pioneering definition of, and work
on, the secrecy capacity of a broadcast channel, the secret key rate of Pxyz, denoted
S(X;Y||Z), was defined in [4] as the maximal rate M /N at which Alice and Bob can
generate secret shared random key bits Si,..., Sy by exchanging messages over an
insecure public channel accessible to Eve, such that the rate at which Eve obtains
information about the key is arbitrarily small, i.e., such that
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where C* is the collection of messages exchanged between Alice and Bob over the public
channel. Note that the bits Si,..., Sy can be used as the key in the one-time pad
system for transmitting a message in perfect secrecy over the public channel.

The following upper and lower bounds on S(X;Y||Z) were proved in [4]:
S(X;Y|[|Z) < min[I(X;Y), I(X;Y]Z)]

and
S(X;Y|[|Z) > max[I(Y; X) — I(Z; X), I(X;Y) = I(Z;Y)]. (1)

The lower bound (1) states the intuitive result that the secret key rate is positive if
either Eve (knowing Z) has less information about ¥ than Alice or, by symmetry, Eve
has less information about X than Bob. Furthermore, it was demonstrated in [4] by
an example that, quite surprisingly, S(X;Y||Z) can be positive even if neither of these
conditions is satisfied, i.e., if the right hand side of (1) vanishes or is negative. The
purpose of this paper is to prove lower bounds on the secret key rate of binary random
variables for the case where both Alice’s and Bob’s channels are noisier than Eve’s
channel, i.e., €4 > ex and € > €p.

We propose the following protocol for exploiting such a situation. Alice and Bob
group the received N bits in pairs. Alice sends the | N/2| parities of her pairs over
the public channel. Bob announces, again over the public channel, for which of the
pairs his parity agrees with that received from Alice, and Alice and Bob both keep
the first bits of these selected pairs, thus forming a new, shorter string. In other
words, for ¢ = 1,...,|N/2], Alice keeps Xo; ; and Bob keeps Yy; ; if and only if
Xoi—1 @ Xo; = Y1 @ Ya;. The same step (of grouping a string in pairs, sending the
parities of pairs and keeping the first bit of each selected pair) is iterated K times,
thereby continuously increasing the reliability of the bits at the expense of shrinking
the string. Let L = 2%, The initial bit error probability on Bob’s string compared to
Alice’s string is

€= (1 — GA)GB + €A(1 — GB).
One can show that the bit error probability of the strings held by Alice and Bob at the

end of the protocol is
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and hence Bob’s information about each of Alice’s bits is
Ig =1—h(p).

The compression rate R, of both strings is given by
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where ¢; is the bit error probability after the ith step, i.e.,
€ = 612_1 + (1 — Ei_l)z

fore=1,..., K.

For each bit finally stored by Alice, Eve’s information about this bit consists of
the 2K Z-bits corresponding to those X-bits that contributed to the parity checks sent
over the public channel, together with these parity checks. Moreover, Eve’s information
vectors corresponding to different bits stored by Alice are statistically independent. It
can be shown that Eve’s mutual information I between one of Alice’s bits and all the
corresponding random variables stored by Eve is given by
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dy = [(1—€4)(1 —ep)(1—eg)+eacpes]*"P[(1 —€a)(1 — €p)er + eaen(l — €g)]”
+[(1 — €er)en(l —€g) + ea(l —en)en]"[(1 — es)eper + €a(l — €5)(1 — €x)]¥.

where

According to (1), the secrecy capacity of such a scenario is lower bounded by
S(X;Y(1Z) > Re(ls — I).

In the following analysis we assume that €4 = eg. In order to be able to analyze
a given satellite scenario independently of the signal power used in the satellite for
broadcasting random bits, we consider a fixed ratio D for the channel capacities of
Alice’s and Eve’s channels, e.g.

D = (1— h(er))/(1 — h(ea)),

where €4 and €g can be chosen freely subject to this equation. Table 1 summarizes
the optimal number K of steps, the optimal choice of ¢4 and the achievable secret
key rate R.(Ip — Ig) for various channel capacity ratios D. Note that R.(Ip — Ig)
is a lower bound on S(X;Y||Z). It is an open problem to determine the exact value
of S(X;Y||Z), but the authors conjecture that the described protocol and hence the



Ratio D K €A = €B €R RC(IB—IE)
1| 2 0.0799 | 0.0799 8.778E-3

10| 6 0.4244 0.265 8.283E-5

100 | 9 0.4754 0.259 8.787TE-7
1000 | 12 0.4921 0.256 8.891E-9
10000 | 15 0.4975 0.255 8.082E-11
100000 | 19 0.4992 0.252 8.674E-13

Table 1: The secret key rate of binary random variables for various capacity ratios D
for Eve’s and Alice’s channel, assuming €4 = €g.

values R.(Ig— Ig) are close to optimal. Note that R.(Ig—Ir) decreases approximately
as 1/D?

The purpose of this paper is to present the general scenario and definition of secret
key rate as well as the techniques used to prove the claimed results. It should be pointed
out that the described definition of secret key rate is not completely satisfactory because
only the rate, but not the total amount of information about the key obtained by Eve,
is bounded. If this paper should be selected for long presentation, we would also present
the novel techniques such as those described in [1] for proving that the lower bound
(1) also holds for a much stronger definition of secret key rate, which requires that the
total amount (rather than the rate) of information that Eve obtains about the final
string S, ..., Sy be negligible, i.e.

Aim I(S,..., Su; 2Y,C") =0,
and that [Si,...,Sy] be arbitrarily close to uniformly distributed, i.e. limy_,o[M —
H([S1,...,Su])] = 0. These techniques also allow us to derive results for a similarly
strengthened definition of secrecy capacity introduced by Wyner [5] and generalized by
Csiszar and Korner [2], and are hence of independent interest in information theory.
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