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Abstract 1.1 Contributions

This paper considers unconditionally secure protocols for reli- We consider the general problem of reductions among various
able broadcast among a setgflayers, some of which may be ~ types of primitives guaranteeing some form of consistency, in
corrupted by an active (Byzantine) adversary. In the standardthe presence of an adversary who can corrupt certain players.
model with a complete, synchronous network of pairwise au- It is well known that the strongest form of consistency, namely
thentic communication channels among the players, broadcasgonsensus or broadcast, can be achieved among arsptaf-
is achievable if and only if the number of corrupted players is €S connected by pairwise authenticated channels if and only
less thamu/3. We show that, by extending this model only if the number of cheaters is less thary3. The main result of
by the existence of a broadcast channel among three playersthis paper is that broadcast secure against any: /2 cheaters
global broadcast is achievable if and only if the number of cor- ¢an be achieved by only assuming an additional primitive sat-
rupted players is less than/2. Moreover, for this an even isfying some weak form of consistency that is not realizable
weaker primitive than broadcast among three players is suffi-for ¢ < n/3. One example of such a sufficient primitive is a
cient. All protocols are efficient. broadcast channel among three players, but even a weak form
of broadcast among three players suffices. Also any broadcast

. amon layers toleratingng /3] cheaters is sufficient.
1 Introduction gno play dno/3]

. . 1.2 Motivation
Broadcast is a fundamental problem in fault-tolerant dis-

tributed computing. Wit res.pe.ct io the st.andard model of There are several motivations for this work. First, we hope to
a synchronous network of pairwise authentic channels, MaNYinitiate a new line of research on reductions among consistency
protocols have t_)een proposed_ and a large number Of. .resun%rimitives, by giving a few non-trivial examples. Second, the
have been published concerning bounds on fault resmence,question of whether the bourid< n/3 can be improved is
complexity, and alternative models of network connectivity. It a very natural one. As it has been proved that n/3 is a

Is an intere;ting open question to analyzg these bounds Withtight bound, one must assume some additional primitive more
respect o slightly more powerful communication models such owerful than just authenticated channels, and it is natural to

as the sLandardf rEOdTI extended by partial broadcast amonissume the weakest possible primitive not yet implied by the
some subsets of the players. considered model. Third, it is quite possible that some of these

~Appeared at 2000 ACM Symposium on Theory of Computing, May 2000. primitives exist in nature (e.g., based on exploiting some quan-

Research supported by the Swiss National Science Foundation (SNF), SPRUM phenomenon, or simply due to t.he topology Of the com-
project no. 5003-045293 munication network), and this would imply that the important

broadcast primitive could be realized even fox n/2 in-
stead of onlyt < n/3. Moreover, one can show that the same
improvement also applies to the more general task of secure
multi-party computation.

1.3 Broadcast

The goal of broadcast among a set of players is to have one
specific player, called the dealer, consistently distribute some
input value to all the remaining players. Since our model does



not assume a physical channel that provides consistency, thisl.5 Previous work
functionality must be simulated by a protocol among the play-
ers. A broadcast protocol must satisfy the following condi- For the standard communication model with a complete
tions: synchronous network of pairwise authentic channels, Pease,
Shostak, and Lamport [17] proved that perfectly secure broad-
Agreement: All correct players decide on the same output ¢ast is achievable if and only if less than a third of the play-
value. ers is corruptedt < n/3. This tight bound more generally
holds with respect to unconditional security, i.e., when even al-
lowing a negligible error probability, as proven by Karlin and
Yao [15]. For the same model humerous unconditionally se-
cure protocols with optimal resilience have been proposed in
the literature [9, 1, 19, 10, 3, 5, 13] which all have communica-
tion and computation complexities polynomial in the number
Consensus is a closely related problem, in which every playerof players.
initially holds his own input value to the protocol. Again, every The extension of the standard communication model by par-
player must decide on an output value such that the formertial broadcast was already considered by Franklin, Wright,
agreement and termination properties are still satisfied, whileand Yung in [11, 12] in the context of secure point-to-point
the validity condition is replaced by communication over an incomplete network — a problem ini-
tially studied by Dolev, Dwork, Waarts, and Yung [8] for the
Persistency: If all (correct) players initially hold the same in-  standard communication model. The problem in [11] is to
put valuev then all correct players decide enIn other  achjeve private point-to-point communication in the presence
words, i.e., pre-agreement on a value remains persistent. of 3 passive adversary, given partial-broadcast but not neces-
sarily private communication channels among pairs of play-
1.4 The two-cast model ers. [12] considers secure point-to-point communication over
local-broadcast networks in the presence of an active adver-

In this paper we consider a sét of n players. The goal is  Ssary.

to achieve broadcast unconditionally secure against an active

(Byzantine) threshold adversary that may corrupt up tf 1.6 Notation

then players, i.e., the adversary may take full control over the

corrupted players and make them deviate from the prescribedThe player set is denoted B = {pi, ..., p,}. Without loss
protocol in an arbitrary way.Unconditional securitymeans of generality we assumpg to be the dealer of the broadcast.
that, for some arbitrarily small (bat priori fixed) error prob- All pseudo-code descriptions of protocols are stated with re-
ability , the probability that the protocol achieves broadcast spect to the local view of the player who stands for any

is at leastl <¢ (while the outcome is arbitrary if the protocol arbitrary player inP. The complete protocols consist of all
fails) whereas no assumptions are made about the adversary’players executing their local codes in parallel. Variables that
computational power. As a special case of unconditional secu-have no subscript (e.@) are stated with respect to an arbi-
rity, perfect securityllows no probability of errors( = 0). trary player and variables with a subscripfe.g.v,) denote

We assume the standard communication model with a com-the corresponding variable of the particular player

plete (fully connected) synchronous network of pairwise au- The protocol descriptions do not explicitly describe how to
thentic channels among the players extended by uncondi-handle received messages that are outside the value domain as
tionally secure, synchronous broadcast charreisong each  expected for the protocol, e.g., if some player expects a value
triple of players, i.e., for each subset of three playérs (P, v € {0,1} from another player but instead receives a value
|S| = 3) and for any selection of a dealer among them there v ¢ {0,1}. For these cases we always implicitly assume a
is a broadcast channel from the dealer to the remaining twocorrect player to substitute the received value by some arbi-
players. Such broadcast channels from a dealer to two re-trary value inside the required domain.

ceivers will be denoted asvo-cast channels The security Finally, in our protocol constructions, we focus on achiev-
of the two-cast channels is not necessarily required to be per-ng broadcast (and consistency primitives in general) where
fectly secure (i.e., to have zero error probability) but we as- the domain of values is restricted {6, 1} since protocols for
sume their error probability, to be customizable to an arbi- any finite domain can be easily obtained from any bit-protocol
trarily small level. Hence we distinguish tiperfect two-cast  (e.g., by using the construction in [20]). In fact, the general-
modelwhere the two-cast channels are assumed to be perfectlyization to any finite domain could even be directly achieved by
secure £o = 0), and theunconditional two-cast modethere slight modification of the described bit-protocols.

the two-cast channels are allowed to have some negligible er-

ror probabilityeo > 0. 1.7 Outline

Validity: If the dealer is correct then all correct players decide
on the dealer’s input value.

Termination: All correct players terminate the protocol after
a finite number of communication rounds.

1in fact, such a broadcast channel might again be simulated by a syn- . . . -
chronous protocol among the involved players, for instance based on a quan-S€Ction 2 describes a protocol construction for efficient broad-

tum physical phenomenon. cast among: players in the two-cast model, unconditionally



secure against < n/2 actively corrupted players. In Sec- property will be crucial in order to later extend this protocol to
tion 3,¢ < n/2is proven to be a tight bound for the achiev- a broadcast protocol.

ability of broadcast. In Section 4, we first prove that even

a weaker form of two-cast is sufficient to achieve broadcast Definition 1: A protocol achievegraded consenstkit satis-
amongn players in the presence of< n/2 player corrup- fies the following conditions.

tions, and finally prove a large class of consistency primitives
to be equivalent. Implications on general multi-party compu-
tation are discussed in Section 5.

Consistency If any correct playerp accepts a value
v, € {0,1} with g, = 1 then, for every correct player

v, = U,
2 Efficient broadcast protocol Persistency f all correct players enter the protocol with the
same inpub € {0,1} thenv,, = v andg, = 1 for every
This section describes a broadcast protocolrfgulayers in correct playep.

the perfect two-cast model that is perfectly secure against an
adversary that corrupts any minority< n/2 of the players.

At the end of this section we shall see that the same protoco
is still unconditionally secure when the underlying two-cast
channels involve some negligible error probability (i.e., in the
unconditional two-cast model).

IThe following theorem is an immediate consequence of Lem-
mas 1 and 2 in the next sections.

Theorem 1 If pairwise authentic communication is possible
among thes players, then, for any numbeof potential player
corruptions, the achievability of graded consensus implies the
achievability of broadcast. Moreover, efficiency of graded con-

. . sensus implies efficiency of broadcast.
A common approach to construct broadcast protocolsis to find

protocols to solve weaker problems, e.g., graded broadcast b
Feldman and Micali [10], and then to achieve the strong re-
guirements of broadcast by composing the weak protocols in

2.1 Graded consensus implies broadcast

%12 King consensus

. . : " .~ A variant of graded consensus can be achieved by, after first

a clever way. While the constructions in [10] additionally in- . . ;

volve common coins, Berman, Garay, and Perry [3] proposedexecu“ng a graded-conseqsus protoc'ol, .makmg some 'de3|g-
' ' ' nated playep, called the king [3], redistribute his resulting

broadcast protocols that only rely on a consensus variant Ofvalue of the qraded-consensus protocol. Einallv. every plaver
graded broadcast, which we shall denote by graded consen- 9 P ; Y. y play

. who did accept the outcomé of the graded-consensus pro-

sus, and on the fact that there is at least one correct player . )

D . o tocol (9 = 1) sticks to this value whereas all other players
This implies that, whenever< n, the achievability of graded . ) .

. . i . hy (g9 = 0) decide on the value received by the king. We refer to
consensus immediately implies the achievability of broadcast . .
s S . this protocol as th&ingConsensus protocol.

as long as at least pairwise communication is possible. Hence,
with respect to our model, it is sufficient to give a protocol con- Po):
struction for graded consensus, since this protocol can then b (P,v):

extended along the lines of [3]. How to achieve this extension 1 (v,9) := GradedConsensus (P, v);

ePl‘OtOCOl KingConsensus,
k

is described in the following paragraphs. 2. if p = pi thenSendToAll (v); w := v elseReceive (w) fi;
3. if g = 1thenv' := v elsev’ := w fi;
2.1.1 Graded consensus 4. returnv’;

Graded consensus is a weak variant of consensus — yet witHt is easy to see that this protocol still maintains persistency.
the same persistency condition but with a weakened agreemenboreover, agreement is even achieved whengyas correct
property which we shall refer to as i®nsistencyroperty. (which, of course, is generally unknown).

Every player enters the protocol with some value {0,1}

and finally decides on a valug¢ € {0,1}. Moreover, as a
further output of the protocol, every player receives a grade
valueg € {0,1} to be interpreted as a rating on the level of ~Consistency If player p;, is correct then all correct players
agreement that has been achieved, yes 0 for reject, and agree on the same valu¢ € {0,1} at the end of the
g = 1 for accep® protocol.

While pre-agreement cannot be invalidated by this protocol
due to its persistency property, the adversary will still have the
power to prevent agreement in any other case. However, an
accepting playery = 1) always knows that all correct players
decided on the same valu§ i.e., he detects agreement. This

Definition 2: A protocol achieveking consensugwith re-
spect topy) if it satisfies the following conditions.

Persistency If all correct players enter the protocol with the
same inputy € {0,1} thenv, = v for every correct

playerp.

2Note that graded broadcast in [10] originally worked with three grade val- . . .
ues (reject, semi-accept, and accept). However, the intermediary grade valud-€mMma 1 Protocol KingConsensus achieves king consen-
is not necessary for our construction. Sus.



Proof: ConsistencySuppose playes; to be correct. If every  2.2.1 Triple-majority voting

correct playerp acceptsp;’s value by settingy, := w then

all correct players trivially agree on the same value, since  This section describes the basic sub-protocol that exploits the
distributed the same value to every other player. On the otherpower of two-cast. For simplicity, let's assume that two-cast
hand, suppose that any correct playeégnoresp;’s value by works in a way that, besides the two actual receivers, also the
settingv,, := v, sinceg, = 1. Since this implies agreement sender receives an output which is equal to his input value.
after the execution of graded consensus, espegiallijolds The protocolMajorityVoting is defined for any subset of
and redistributes this value. Hence, every correct player will three playerdq,r, s} C P with every player initially holding
decide on this value independently on whether or not he adoptsan input valuev € {0,1,2}, i.e., a value from the original
pr'S value. domain extended by an invalidity val@eand finally deciding

!
Persistency:lf all correct players enter the protocol with the on an outputvalue’ € {0, 1, 2}.

same inputv then, for every correct playefs, v, = v and Protocol MajorityVoting({q,r,s},v): First,q, r, ands

gp = 1 after the execution dfradedConsensus, and hence  two-cast their initial values,, v,, andv,. Second, every

v, = v at the end of the protocol. m player decides on the majority value among his outputs of
the three two-casts, or dhif no majority exists. Letw?, v",
andv® be the values that are effectively received by a player

p € {q,r,s}. Thenp decides on
2.1.3 Broadcast

/Ul‘ 7if3x7y€{q7r78}7x#y:vzzvy7

v = {
Finally, broadcast can be achieved by first having the dealer 2 ,else

p1 distribute his value and then appendihgnstances of

. . . Lemma 3 For any number of corrupted players amon
KingConsensus with distinct kingsp, € P\ {p1 }. y P Pay g

{q,r,s}, all correct players decide on the same output value.
If at most one player is corrupted and any two correct players
Protocol Broadcast,, (P,v): enter the protocol with the same valugthen every correct

' . .
1. if p = p1 thenSendToAll (v) elseReceive (v) fi; player finally decides on’ = v.

2. fork := 210t +1dov := KingConsensus,, (P,v) od; Proof: The lemma immediately follows from the properties of

3. returny; two-cast and from the construction of the protocol. "

Lemma 2 ProtocolBroadcast achieves broadcast if at most TheMajorityVoting protocol will always be applied for all

¢ players are corrupted. (3) distinct subsetgq,r, s} C P of three players in paral-
lel. Thus, during such a round of protocol invocations, ev-
ery playerp receives an output value’?" for each subset
{q,r} C P\{p}.2 Furthermore we assume the player set to be
prdered, i.e., forany two playegsandr, (¢ < r) < =(r < q),
such that the expressioid,r € P\ {p}, (¢ < r)” quantifies
over every subseflg, r} C P\ {p} exactly once. Finally, we
Agreementif the dealer is corrupted then there is at least one define

correct player in{p-, ..., pt+1 } and hence, after this player’s

KingConsensus, agreement holds by Lemma 1. P =w = Vre P\{p,q}: """ =w

Proof: Consistency:If the dealer is correct then agreement
on his input holds before the firkingConsensus protocol is
executed. Hence, by Lemma 1 agreement on the dealer’s inpu
will persist until the end of the protocol.

Termination:Termination is trivially satisfied by construction.  to express that alifajorityVoting protocols that involve
n both of the playerg andq result inw.

2.2.2 Weak consensus

2.2 Achieving graded consensus Weak consensus is a variant of crusader agreement in [7]
and satisfies the same conditions as the Makeunique proto-
This section presents a protocol construction for graded con-col in [14]. It can be seen as an even weaker consensus vari-
sensus in the two-cast model. The construction proceedsant than graded consensus. Every player enters the protocol
in three steps. In Section 2.2.1, two-cast is extended to awith some valuev € {0,1} and finally decides on a value
majority-voting protocol among (still) three players. Any in- v' € {0, 1,2}. Every player will decide on a valué € {0,1}
vocation of two-cast will always be encapsulated by this pro- if and only if, according to his view, agreement on= v’
tocol, i.e., two-cast will not be used in any other context. Sec- could have been satisfied at the beginning of the protocol —
tion 2.2.2 shows how to build a weak consensus variant on topotherwise he will decide oo’ = 2.
of majority-voting among three players, which then in Sec- ~ 3pye 1o the set-based definitionPa™ = v7»" — ... all denote the same
tion 2.2.3 is extended to a graded-consensus protocol. value for any permutation of the occurring players.




Definition 3: A protocol achieveweak consensililt satisfies
the following conditions.

Consistency: Ifv, € {0,1} for any correct playep then
v, € {v,,2} for every correct playey.

Persistency: If all correct players enter the protocol with the
same inpuy € {0,1} thenv, = v for every correct

playerp.

Protocol WeakConsensus (P,v):*

1. Vq,re P\{p}, (¢ < r): vP"":=MajorityVoting ({p,q,r},v);
2.X%:={qeP\{p} : v»" =0}

3. X":={qeP\{p}: v»" =1}

4. if | X% >n—t—1thenv' := 0

5. elseif| X!| >n —t—1thenv' :=1

6. elsev’ :=2

7. fi;

8. returno’

Lemma 4 The protocolWeakConsensus guarantees that, for
any correct playerp and any valuew € {0, 1}, |X’| # 0
implies X}~ = 0.

Proof: ¢ € X}’ impliesv??” = w forallr € P\ {p,q} and
hence thereisnoe P\ {p, q} satisfyingu?"? = 1<w which
implies X!~ = 0. n

Lemma 5 For any two correct playerp andgq and any value
w € {0,1} the setsX” and X, ~* are disjoint: X N
Xl—w — w

q

Proof: If p = ¢ then the lemma immediately follows from
Lemma 4. Suppose now that# ¢ and that there is a player
r € Pandavalue € {0,1} suchthat € X"NX,~*. Then
w = vh" = vI"? = 1 &w in contradiction to the consistency
of MajorityVoting as stated in Lemma 3. [

Theorem 2 ProtocolWeakConsensus achieves weak consen-
sus among: > 3 players secure against < n/2 actively
corrupted players.

Proof: Consistency:For the sake of contradiction, suppose
v, =w € {0,1} andv;, = 1 <w. Then, according to the pro-
tocol,| X}¥| > neteland| X, ~*| > netel. First note that

¢ ¢ X}¥ (and hence by symmetgy¢ X ~*) since otherwise
foranyg; € X, we would getl Gw = vi%? = vPi% = w
would hold. Since alsd(,;’ N X;*w = () by Lemma 5, the
setsX,’, X;—w, and{p, q} are pairwise disjoint and hence
n=|P|> Xy UX;~U{pq} = Xy + X, +2>
2(n ot 1) +2 = 2(n &t) > 2(n&F) = n, whichis a
contradiction.

Persistencyl et C be the set of correct players. Since all cor-
rect players input the same valuec {0,1}, C'\ {p} C X

for every correct playep and hencéX | > n &t < 1. By
Lemma 4,X}" = ( and hences, = v at the end of the
protocol. m

2.2.3 Graded consensus

We are now ready to construct a graded-consensus protocol on

top of the protocol for weak consensus of the previous section.
Refer to the beginning of Section 2.1.1 for the definition of
graded consensus.

Protocol GradedConsensus (P,v):
1. v := WeakConsensus (P, v);
2. Yq,r€ P\{p}, (¢ < r): vP":=MajorityVoting ({p, q, 7}, v);

3.V :=34qeP\{p} : |{r€P\{p,q}:v”‘":0}|2t};
Z°:=3qeP\{p} : qu*EO};

4. 71! .= qg € P\ {p} : |{T€P\{p,q}:qu”:1}|2t};
Z':=3qeP\{p} : qu*E].};

5. if |[Y°] > 0 thenv' := 0 elsev’ := 1 fi;
6. if |Z”'| > ttheng := 1 elseg := 0 fi;
7. return(v’, g);

Lemma 6 Ifin the protocolGradedConsensus, for some cor-
rect playerp and some valuev € {0,1}, Y,* # 0, then
qu—’” = () for every correct playey.

Proof: Let p andq be two (not necessarily distinct) correct
players and for some € {0,1} andr € P\ {p} assume that
r € Y,’. Hence

AR={r1,...,n} CP\{p,r} :Vri€e R: """ =w.
MajorityVoting guarantees that the resulting value eq@als
if all inputs differ. Hence it must hold either that playehad
inputv, = w for all protocolMajorityVoting ({p,r,r:},v)
or that player and all players; € R had inputw for these
protocols. Since and at least one player {m,ry,...,r.} are
correct,WeakConsensus must have resulted i’ = w for at
least one correct player.
On the other hand, the same argumentation would haldif
Y wforanys € P\ {¢},i.e.,Y} " # () would imply that
WeakConsensus must also have resulted iri = 1 <w for at
least one correct player, which is impossible by Theorem 2.

Theorem 3 Protocol GradedConsensus achieves graded
consensus among > 3 players secure againsgt< n/2 ac-
tively corrupted players.

Proof: Consistency:Suppose that some correct playeac-
cepts some, = w with g, = 1. Hence|Z'| > ¢, i.e.,

AR ={ri,...,7} CP\{p}:Vr, e R:vP"* =w,

4Remember that pseudo-code is stated with respect to the local view of and for every correct player # p eitherq € R and hence

playerp (Section 1.6).

VP = pP* = worqg ¢ Randvr; € R : vP™i? = 9P = w,



both of which implyp € Y. ThusY,"” # (), and by Lemma 6
Y,!™ =0, and hence, = w = v,

Persistency: If all correct players enteGradedConsensus
with the same value = w € {0,1} then, by Theorem 2, all
correct players still hold value after WeakConsensus and
use it as an input for allajorityVoting protocols they are
involved in. Hence for every correct playgeiZ,’| > t since
vP?7* = w for every other correct player# p (of which there
are at least), andv,, = w andg, = 1. [

2.3 Broadcast

Theorem 4 In the perfect (unconditional) two-cast model,
perfectly (unconditionally) secure broadcast amang> 3
players is achievable if < n/2. Moreover, there exist proto-

used to build a different system with contradictory behavior,
hence proving that such a protocol cannot exist. Note that we
do not require this new system to solve the broadcast problem,
it is just a distributed system whose behavior is determined by
the local programs and inputs of the involved processors which
can achieve broadcast when being arranged in the original way.
Nor is there anymore an adversary to take control of any pro-
cessor. We will only argue that for some processor pairs that
are considered to be correct, in the new system (without the
presence of an adversary), their views (while being correct)
are indistinguishable from their views in the original system
for some particular strategy of an admissible adversary (with
respect to the original broadcast), and that hence all conditions
for broadcast must still hold with respect to every such a pair
of processors.

We first show that broadcast is impossible for the special case
of n = 4 andt > 2. The general case can then be shown by a

cols with communication and computation complexities poly- generalization of this proof.

nomial inn.

Proof: Achievability in the perfect model follows from Theo-

Lemma 7 Given only pairwise communication channels and
two-cast among each triple of players, unconditionally secure

rem 1 and Theorem 3. Efficiency can be easily verified by code broadcast among = 4 players is not achievable if> 2.

inspection of th@roadcast protocol:3¢ + 1 communication
rounds,tn® two-cast invocations)(tn?) overall message bit
complexity, and?(¢n?) local computation per player.

In order to achieve unconditionally secure broadcast in the ™"
unconditional model exactly the same protocol can be used.2Ctively corrupted. Letr, ..
While the broadcast protocol remains perfectly secure if none
of the two-casts fails, it must already be considered to fail if * € {0,..

any single two-cast invocation faifsHence, an upper bound
on the error probability of the broadcast protocol when given
the error probability, of the underlying two-cast, can be es-
timated as the number of two-cast invocations timgsThe
protocol involves rounds ofkingConsensus each of which
involves two rounds oflajorityVoting among all(}) sets
of three players. Finally, eachajorityVoting involves

Proof: Suppose, for the sake of contradiction, that there is a
protocol that achieves broadcast for the four playgrs. ., p3

with pg being the dealer, even if up to two of the players are
., m3 denote the players’ corre-
sponding processors with their local programs and, for each
.,3} let m;14 be an identical copy of processor
m;. Instead of connecting the four original processors as pre-
scribed for the setting in which they can be used for broadcast,
we build a network among all eight processors (i.e., the origi-
nal ones together with their copies) in the following way:

In the original system, each processgrcommunicates with
the processors;_i, mi+1, andm; 1o (interpreting the indices
modulo4). Instead, the pairwise communication channels are

three two-cast invocations. Hence the entire broadcast proreconnected such that each processosends his outgoing

tocol involves a total number 6t - (;) < tn® single two-cast
invocations, which yields an error probability of< tn3eg.

messages to the processers;, m;+1, andm; 2, interpreting
the indices modul8 instead of moduld.

Hence, in order to achieve broadcast with error probability at In the original system, each processgrcommunicates via

moste, for some giverz, the error probability, of the under-
lying two-cast can be customizeddgp < ;=5, i.e.,c reduced
by a factor polynomial im. m

3 Tightness of the(n/2)-bound

two-cast with the processor pairs;(2,mi—1), (Ti—1,mit1),

and (r;.1,m;+2) (again interpreting the indices moduth In-

stead, the two-cast channels are reconnected such that each
processorr; two-casts his outgoing messages to the processor
pairs @'1'_2,71'1'_1), (7Ti_1,7Ti+1), and QT¢+1,7TZ'+2), interpreting

the indices modul@.

It is now easy to see that the situation for every pair of adja-

In this section we prove that, in the two-cast mOdel, uncondi- cent processors; and’n—((i—i—l) mod 8) is Completely consistent
tionally secure broadcast is not achievable if at least half of the jth the situation of the two adjacent PrOCeSSOIS mod 4)

players are actively corrupted. andm((i+1) mod 4) in the original system:
Our proof makes use of the ideas in [16] for the impossibil-
ity of agreement among three players with one Byzantine fault
with respect to the standard model with only pairwise commu-
nication channels. The idea there is to suppose that there exists
such a protocol involving three processors which then can be

¢ Any message that would have been transferred ameng
andm;; in the original system is still transferred among
them in the new system.

e Any two-cast for the receivers; andr;,; in the original
system is still addressed to the same processpend
mi+1 in the new system.

5Note that we even allow two-cast among three correct players to fail with
the given error probability.



Hence, for every pair of adjacent processars and
T((i+1) mod 8),» theIr common view is completely indistin-
guishable from their view as two Processots; moq 4)
and m(i11) moa 4) IN the original system with respect to

For eachi € {0,...,n 1} let 74, again be an identical
copy of processofr;. The resulting set o2n processors is
partitioned into eight block$ly, ..., II; such thafIl,,,| =
(47, and|[2mq1| = | &] form € {0,...,3}.

an adversary that corrupts the remaining two processorsThese2n processors are now connected similarly as in the

T((i+2) mod 4)» T((i+3) mod 4) IN @ certain admissible way.

This new system involves two processors of the type corre-
sponding to the dealer, namety andr,, that are the only
processors that enter an input. Suppose nowthatnd
have distinct inputs if0, 1}, i.e., that without loss of general-
ity, mp has inputy, = 0 and thatr, has inputy, = 1.

proof of Lemma 7:

The pairwise communication channels are reconnected such
that each processor of blodk; sends his outgoing messages

to the processors of the blocks_,, I1;;, andIl;, while
interpreting the indices modubinstead of moduld.

The two-cast channels are reconnected such that each proces-

We now argue that there are at least two pairs of adjacent pro-sor of blockII; two-casts his outgoing messages to the proces-

cessors (i.e., one fourth among all eight such pairs) for which

sor pairs amon@l; o UII; 1, II; 1 UIl;q, andll;y; UTL; o

the broadcast conditions are not satisfied although being com-while interpreting the indices modufo

pletely consistent with two correct processors in the original
system. For this we distinguish two cases:

e Agreement holds for all pairs of adjacent processors, i.e.,
all eight processors decide on the same valge{0, 1}.
Then both pairs that involve the dealer with inusv
(eithermy or m4) violate the validity property of broadcast.

e Agreement does not holdfor all pairs of adjacent proces-

The rest of the proof proceeds analogously to the proof of
Lemma 7 by arguing about the consistency among adjacent
blocksII; of processors rather than only among adjacent (sin-
gle) processors;. L]

4 Equivalence of consistency primitives

sors. Then there must be at least two such pairs decidingTheorem 4 states that two-cast implies broadcast fonany3
on distinct values since the processors are arranged in aandt < n/2. This result can be generalized by proving equiv-

circle.

alence of a large class of consistency primitives, i.e., that any
single primitive from this class can be used to efficiently sim-

Hence there must be some pair of adjacent processorglate any other one from this class. First it is shown that even

(T4, T((i+1) moa 8)) that fails with a probability of at Ieas;lt.
Otherwise strictly less than two pairs would fail per such in-
vocation of the new system. Let nawy be the probability
that a dealer selects inpdt Then over all invocations of
the new system (for arbitrary inputs af andn,) the same
pair still fails with a probability of at least oo (1 < 0y) (i.e.,

with a probability of at Ieas§ in all runs whereyy = 0 and

vy = 1). Hence, there is an admissible adversary strategy in
the original system of four processors to make the according
pair (T(; mod 4)> T((i+1) mod 4)) fail with a probability of at
least{ oo (1 <o), which is non-negligible. n

Theorem 5 Given only pairwise communication channels
and broadcast channels among each triple of players, uncondi-
tionally secure broadcast amomg> 3 players is not achiev-
able ift > n/2.

Proof: The proof of Lemma 7 can be generalized for any num-
ber of players. For simplicity, suppose= 2k to be even and
t > k (the case, = 2k+1 andt > k-+1 can be easily reduced

to the even case by neglecting one of the players completely,

which can be interpreted as a special kind of active corruption
of this particular player, hence reducing this case te- 2k
andt > k).

6Note that, a priori, we assume that any input value frfin1} will be
selected with some non-negligible probability by the dealer. Otherwise
the broadcast problem could be trivially solved for any n by a protocol
wherein every player decides on the value that is selected with overwhelming
probability.

weak broadcast (the dealer variant of weak consensus (Defini-
tion 3)) among three players, callegak two-casts sufficient

in order to achieve broadcast farand¢ < n/2. Second we
prove that, more generally, any broadcast (or weak broadcast)
primitive for ny players that is resilient againg = [%*]
player corruptions is sufficient. Finally, these results are ex-
tended to consensus, yielding the following theorem whose
proof immediately follows from Theorem 4 and Lemmas 8,

9, and 10.

Theorem 6 The following consistency primitives are equiva-
lent (up to a simulation cost polynomial in the number of play-
ersn):

e weak broadcast for any > 3 witht = [n/3].

e weak consensus for amy> 3 with¢t = [n/3].

two-cast witht < 3.
broadcast for any: with ¢ < n/2.

e consensus for any with ¢ < n/2.

4.1 Weak broadcast
In weak broadcast, the dealer holds an input {0,1} and
every player decides on a valuee {0, 1, 2}.

Definition 4: A protocol achieves/eak broadcasdt it satisfies
the following conditions.



Consistency: If v}, € {0, 1} for any correct playep thenv, € 2. Any weak two-cast withh < 1 can be extended to tolerate
{v,,2} for every correct playeq. arbitrarily many player corruptions. Since the communi-
I . cation model is synchronous there is an upper bound on
Va“dc';ga cilghoenciﬁglg;:le(r:g rirr?;fjttczru;'vjrz correct player f[r'\e delay time on every underlying communication prim-
S itive. Hence there is an upper bound on the delay time of
Lemma 8 Weak two-cast Imp|IeS two-cast W|th a constant the given (poss|b|y Composed) two-cast Whenever only
simulation cost. t < 1 players are actually corrupted. Hence, in order to

Proof: Given weak two-cast, two-cast can be implemented as ~ toleratet < 3, we can letthe players invoke the same two-
follows: First, the dealer distributes his value by a weak two- cast primitive with the only restriction that any receiver
cast protocol. Then both receivers exchange the values they sticks to some de_fault value as soon as the upper bound
have received from the dealer. A receiver who received avalue O the delay time is exceeded. Since, in this case, at most
v < 2 from the dealer sticks to this value whereas in the other one player is correct, all conditions for weak broadcast
case { = 2) he replaces his value by the valuereceived are trivially satisfied.

from the other receiver (during the second round) oOah

w = 2.

Hence, if the dealer is correct, a correct receiver always de-

cides on the dealer’s value. On the other hand, if the dealer is

corrupted, then two correct receivers either receive the same4.3 Consensus primitives

valuev € {0,1} or at least one of them receives= 2 (by

the consistency property of weak two-cast) which makes him ,qenendently of the model, the achievability of consensus al-
adapt the other players’ valueif w € {0,1}. Finally, ifthe 5y implies achievability of broadcast since, given a consen-
weak broadcast resultsin= 2 for both receivers then both of ¢, hrot0col, we can let the dealer multicast his input value in
them replace their values iy . a first phase and then let all players run the consensus protocol
on the received values. On the other hand, the achievability of
broadcast implies the achievability of consensus whenever the
corrupted players form a minority, since we can use broadcast

For our constructions, we always assumed two-cast or weakfOr €very player to publish his input value in a first phase, and

two-cast to be reliable independently of the number of cor- N @ second phase, the players perform a majority voting on all
rupted players that are involved. In fact, the same construc-received values. The same argumentation holds for the mutual

tions even work with two-cast or weak two-cast that is only implication of weak broadcast and weak consensus, and hence

4.2 Even weaker broadcast

secure against one player corruption (whereas nothing is as\e get the following lemma:

sumed about an invocation of this primitive if more than one

player is corrupted). More generally, we show that any broad- Lemma 10 Givenn players andt < n/2 then broadcast and
cast or weak broadcast primitive fog players that s resilient ~ consensus are equivalent, and weak broadcast and weak con-
againstt, = [2] player corruptions is sufficient in order to ~ Sensus are equivalent (up to a simulation cost polynomial in
achieve two-cast among = 3 players witht < 3, and hence  n).

to achieve broadcast for amy> 3 with ¢ < n/2.

Lemma 9 Weak broadcast for anyy > 3 with ¢ty = [ng/3] 5 Secure multi-party computation

implies weak two-cast.
] As a more general task than broadcast or consensus, secure
Proof: The proof proceeds in two steps. Weak broadcast for i narty computation allows the players to distributedly
anyno > 3with ty = [no/3] is first reduced to weak two-cast 5 te an arbitrary function on the player's inputs by keep-
that tolerates < 1 player corruptions. In & second step, this i the player's inputs private and guaranteeing correctness of
two-cast prlmlltlve is generalized to tolerate arbitrarily many 4 o computation. Ben-Or, Goldwasser, and Wigderson [2], and
player corruptions. Chaum, Cepeau, and Danagd [4] proved that in the standard
1. In order to achieve weak two-cast among three playersmodel with a synchronous network of pairwise authentic chan-
p1, p2, andps, we let each of these players simulate (any) nels unconditionally secure multi-party computation among
up to [no/3] players in the given weak broadcast proto- players is possible if and only #f < n/3 of the players are
col (with the only restriction that the dealer of the weak actively corrupted. Rabin and Ben-Or [18] later proved that
two-cast in fact simulates the dealer of the weak broad- when additionally assuming global broadcast channels, uncon-
cast). Since, by assumption, at most one of the play- ditionally secure multi-party is even achievable if (and only if)
ersp; (i € {1,2,3}) is corrupted who simulates at most ¢ < n/2.
[no/3] players in the original protocol, the original pro- Our results now immediately imply that the same bound is
tocol achieves broadcast among the simulated players.achievable under the considerably weaker assumption of weak
Hence we can let each playey decide on the value of  broadcast for only three players each, which is stated in the
any one of his simulated players. following theorem.



Theorem 7 Given weak broadcast among each triple of play-
ers, unconditionally secure multi-party computation amang
players is possible if and only if the numbenf actively cor-
rupted players satisfies < n/2. There exist protocols with
communication and computation complexities polynomial in
n.

Proof: («<=): In order to achieve multi-party computation
amongn players secure againsk n /2 active player corrup-
tions, the protocol of either [18] or [6] is applied by addition-
ally substituting every invocation of the global broadcast chan-
nel by the broadcast protocol that was constructed in Section 2,
and by then simulating two-cast by weak two-cast according to
the proof of Lemma 8. The efficiency of this protocol imme-
diately follows from the efficiency of the protocols in [18, 6]
and from the efficiency of the constructions in Section 2 and
in the proof of Lemma 8.

(=): If secure multi-party computation would be achievable
for anyt > n/2 then especially broadcast would be achiev-
able as a special case of general multi-party computation, in
contradiction to Theorem 5. [

6 Conclusion and open problems

We have shown that, when assuming certain weak consistency
primitives in addition to the standard communication model,
broadcast and consensus amargayers is achievable when-
evert < n/2instead ot < n/3 in the standard model. More-
over, a large class of such consistency primitives is equivalent.
For a further line of research it would be interesting to
find achievability reductions including additional consistency
primitives. For example, one concrete open question is to char-
acterize what is achievable when extending the standard model
with broadcast among, > 3 players that tolerates any num-
ber of player corruptions (instead af = 3 in the two-cast
model). Furthermore it would be interesting to know whether

the same results still hold with respect to an incomplete two- [10]

cast network where only a subset of all two-cast channels is
assumed, i.e., to characterize tight conditions on the network
of two-cast channels for the previous results still being achiev-
able.

(11]
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