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Chapter 1

Introduction

Most cryptographic schemes rely on a key that has to be kept secret. For
example in a digital signature scheme, we assume that the secret key to sign
a message is known only to one person or to a group of people where each
participant can sign messages in the name of the whole group.

However, there are several disadvantages to this assumption. When, for
instance, the digital signature scheme is being used by a company to sign
checks or contracts in the name of the company, then it must completely
trust the person who knows the secret key not to lose it and not to misuse
it either. When there is a group of people where each knows the secret key,
then the risk of a security breach, both by accident or on purpose, increases
with the size of the group.

It would be nice if the company could apply a scheme to share the secret
key among a group of people in such a way that only specified subsets of
the people in that group, called authorized subsets, can establish the key,
whereas the unauthorized subsets cannot. Even though this would not solve
the above signature problem satisfactory, it is a main primitive for what it is
called signature sharing schemes. Schemes to realize this primitive of sharing
a secret are called secret sharing schemes. One could think, for instance, of
a scheme that requires that out of [ people, any ¢ can construct the key
while fewer people have no information about it. Such a scheme, called
(t,1)-threshold scheme, was presented by Shamir in [21].
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In this scheme, the dealer generates a random polynomial f(X) of degree
at most t — 1 over a finite field (whose size is greater than /) with the only
restriction that f(0) = s, the secret, and gives each player ¢ the share f(7).
Using Lagrange interpolation, any ¢ players can compute s from their shares.
But a group of less then ¢ shareholders cannot; in fact, their shares give away
no information about the secret at all.

There are three major restrictions in this scheme. The first one is, of
course, that it only works if the authorized subsets are defined by such a
threshold ¢, but it cannot be used for other, more general access structures.
An access structure describes which subgroups are authorized and hence
should be able to reconstruct the secret and which are not. Indeed, one
could think of a company where to sign checks, there should be present, for
example, at least two directors, a director and three vice-directors or five
vice-directors. In this case, the Shamir-scheme cannot be used, at least not
in a straight forward way.

The second restriction is that it is not secure against active adversaries.
Some faulty players can sabotage the reconstruction by sending incorrect
shares instead of the ones received from the dealer. Or a faulty dealer can
distribute random elements instead of shares of a correctly shared secret. A
scheme which is secure against faulty players is called robust, if it is secure
against a faulty dealer and faulty players, it 1s called verifiable.

The third restriction in the Shamir-scheme i1s that the secret s has to be an
element of a finite field. But, for instance, in the RSA signature scheme [20],
the secret key is an element of Z (), an Abelian group. One way to share
a secret from this group would be to see Z(,) as a subset of Z,, where p is
a prime larger than ¢(n), and to share the secret s € Z,) as an element
from the finite field Z,. The problem with this method is that it is not
homomorphic. Namely, if s; and s}, ¢« € P, are the shares of the secret s
and s', respectively, then s; + si, ¢ € P, are not necessarily shares of s + s'.
But as this 1s needed in many applications of secret sharing schemes, e. g.
multiparty computations [1], this is an important property.

There exist many papers that deal with the first restriction, i. e. with
secret sharing schemes for (more) general access structures than threshold
access structures. We will give a quick and incomplete overview.

The first to suggest a method for sharing a secret for an arbitrary access
structure were Ito, Saito and Nishizeki [13]. Their main idea was to apply the
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(rm, m)-threshold scheme independently for every minimal authorized subset
A where m = |A|, the cardinality of A. The problem herewith is of course
that the number of minimal authorized subsets is, in general, exponential in
the size of the group of people.

Completely different from this method is Brickell’s vector space construction
[3]. For this we have to assume that for the access structure there exists
a so called wvector distribution function. This is a function that identifies
every player 1 € P with a vector v; € F¢, where F is a field, such that
a set of players A C P is authorized if and only if the first unit vector
e; = (1,0,...,0) € F€ is in the subspace span{v; | € A}. If every player 1
gets the share s; = (v;,x), where x = (s,2,...,2.) with s € F the secret
and the other coordinated chosen at random, then an authorized subset A
can compute the secret as s = ZieA A;si, where the coefficients A; fulfil
ZieA Aiv; = e;. Further, it can be shown that an unauthorized subset gets
no information about the secret.

In [2] Benaloh and Leichter presented secret sharing schemes for general
access structures based on monotone formulae.

Finally, Karchmer and Wigderson [14] introduced span programs and showed
how monotone span programs give rise to secret sharing schemes for general
access structures. A monotone span program identifies every player 1 € P
with some vectors in F'© which we see as columns of the matrix M,. If a set A
of players is authorized if and only if e; = (1,0,...,0) € F* lies in the span
of the vectors of the players in A, then the monotone span program is said to
compute the access structure. Note that the special case of a monotone span
program where every player is identified with only one vector coincides with
Brickell’s vector distribution function. A secret s € F can now be shared
by distributing the shares s; = M;x, where x € F° i1s chosen at random
with the only restriction that the first coordinate is the secret s. It can be
reconstructed by an authorized subset in a similar way as in Brickell’s vector
space construction. It can be shown that not only Brickell’s vector space
construction but all the schemes mentioned so far are special cases of this
scheme based on span programs.

In [6] Chor et al. introduced robust and verifiable secret sharing schemes,
schemes secure against faulty players and a faulty dealer plus faulty players.
Their methods are based on some intractability assumption (such as “factor-
ing large integers is infeasible”), whereas the verifiable schemes by Ben-Or,
Goldwasser and Wigderson [1] and by Chaum, Crépeau and Damgard are
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unconditionally secure. Cramer, Damgard and Maurer [8] presented an (un-
conditionally secure) verifiable scheme for general access structures, based on
Karchmer and Wigderson’s span program construction [14]. They also in-
troduced span programs with multiplication as a primitive for general secure
multiparty computations.

Desmedt and Frankel showed in [10] how to modify the Shamir-scheme to
a homomorphic threshold scheme which shares a secret from a finite Abelian
group G 1instead of a finite field. Their idea was to see G as a module
over Z., where e is the exponent of G, or over Z. A secret s € G can
now be shared analogue to Shamir’s scheme. The dealer chooses a random
polynomial f(X) of degree at most t —1 with coefficients in G with the only
restriction that f(0) = s, and gives each player ¢ the share f(w;), where
w; € Z, is associated with player 7. If the w; fulfil some assumption, namely
that w; and w; — w; (1 # j) are units, then it can be shown that every
authorized subset can interpolate the polynomial and hence reconstruct the
secret whereas an unauthorized subset cannot.

The aim of this thesis is to combine these three improvements of the
Shamir-scheme

e general access structures
e security against active adversaries and

e more general secret-space, namely modules instead of fields

to one scheme. To achieve this, we will unify Karchmer and Wigderson’s
scheme based on span programs with Desmedt and Frankel’s threshold scheme
over finite Abelian groups and adapt Cramer, Damgard and Maurer’s verifi-
able scheme to our somewhat more general situation.

After some definitions in chapter 2, we will, motivated by [10], show in chap-
ter 3 that for every R-module E with a finite number of elements, where R
is a commutative ring with 1, there exists a threshold scheme over E. Note
that every finite Abelian group can be seen as a module over the ring Z or
Z., where e is the exponent of the group. In chapter 4, we will introduce ez-
tended span programs. An extended span program is in fact a span program
over a ring R instead of over a field F' where, further, the condition that
the first unit vector e; = (1,0,...,0) € F*° does not lie in the span of the
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vectors of the players in A if A 1s unauthorized is replaced by the somewhat
more general condition that there exists a vector which is perpendicular to
all vectors of the players in A and whose first coordinate is a unit. Then
we show, how such extended span programs can be used to construct secret
sharing schemes over modules for general access structures. Motivated by
[8], we will investigate in chapter 5 on what can be done if the dealer and/or
the shareholders play faulty. We will show that the schemes developed in
the chapter before can be made secure against active adversaries. Finally, in
chapter 6, we will, as an application, present a robust RSA function sharing
scheme, which also can be seen as a robust RSA signature sharing scheme.
Note that, coming back to our initial example of a company wanting some
groups of people to be able to sign checks and contracts in the name of the
company, lets say using an RSA signature scheme, it is not sufficient to share
the secret key among the people and then to recover it by the group that
wants to sign some document, because then, after the first signature, every
single person of this group and every person who listened silently to the key
reconstruction knows the secret key and 1s able to sign further checks on its
own. Therefore, either a trusted party has to be included which does the
key recovering and the signing or the group has to somehow sign the check,
using their shares, without first to reconstruct the secret key. This can be
done with the RSA function sharing scheme presented in chapter 6, even if
some people try to sabotage the signing by not following the protocol.



Chapter 2

Definitions and Notations

Let [ be a positive integer and P = {1,...,1}, the set of players. A monotone
collection I' of subsets of P is called an access structure over P. Monotone
means that if A € T', then every superset A’ O A is in I' too. If a subset
A C Pis an element of T', then A is called authorized, otherwise unauthorized.

Let K be some set. A secret sharing scheme over K for I' contains two
algorithms, the first, the distribution algorithm, which will be executed by
the dealer, takes as input an element s in K and outputs, besides some public
information, [ shares sy, ..., s, each being privately sent to the corresponding
player, such that any authorized subset of players can reconstruct the secret
s from their shares and the public information using the second algorithimn,
the reconstruction algorithm, yet an unauthorized subset of players cannot,
using any method.

A secret sharing scheme is perfect, if an unauthorized subset not only
cannot compute the secret from their shares, but, in the information theo-
retical sense, their shares give away no information about the secret at all.
For 1 € P let S; be the set where the i-th share s; lies in. If the S; are all of

the same size as K, then the secret sharing scheme is called ¢deal.

We will only consider secret sharing schemes where K and the 5; carry
the structure of a module over some common commutative ring R with 1.
Such a secret sharing scheme is called homomorphic, if the following property
is satisfied. If s; is player ¢’s share of s, s is ¢’s share of s’ and A € R, then
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s; + s and As; is ¢’s share of s 4+ s’ and As, respectively.

For K an infinite subset of N and « € K let E,, be a finite module ! over a
commutative ring R, with 1, not necessarily finite. We say that the family of
modules (Ey)cex is efficient if addition, subtraction and scalar multiplication
in E, and the ring operations in R, may be computed in polynomial time
in log k and generating uniform random elements of E, can be performed in
probabilistic polynomial time in log k. Let £ be some infinite subset of N,
and for [ € £ let P; be the set of players P; = {1,...,l} and I'; an access
structure over P;. Then we call a family of secret sharing schemes, indexed by
[ € £ and & € K, over the modules (E,).ex for the access structures (I'})e,
efficient, if the distribution and the reconstruction algorithms of the schemes
run in polynomial time in max(/,logx). From now on we say a module E
over a ring R instead of a family of modules (Ey).ex over the family of rings
(Ry)rek, we say an access structure I' instead of a family of access structures
(T1)iec and we say a secret sharing scheme instead of a family of schemes,
indexed by [ and «.

L According to [15], a finite module is a module which has a finite number of generators.
In our definition, a finite module is one with a finite number of elements.



Chapter 3

Threshold Schemes

In this chapter we look at a special class of access structures, the so called
threshold access structures, which are of the form I' = {A C P | |A| > t},
where P = {1,...,1} is the set of players and ¢,1 < ¢ < [, the threshold. A
secret sharing scheme for such an access structure is called a (¢,1)-threshold
scheme. In [21] Shamir presented a threshold scheme over finite fields and in
[10] Desmedt and Frankel generalized this Shamir-scheme to share a secret
from a finite Abelian group. For this, they looked at the group as a module
over Z or Z., where e is the exponent of the group. In this chapter we present
a threshold-scheme over finite R-modules, where R is a commutative ring
with 1. We will first show that such a scheme exists under some assumption
on R and then that this assumption can always be achieved.

During the whole chapter let E be an efficient finite module over R, where
R is a commutative, not necessarily finite ring with 1.

3.1 A Generalized Shamir-Scheme

Let ' = {A C P | |A| > t} be a threshold access structure with threshold
t over a set P = {1,...,1} of [ players. We first assume that there exist [
distinct elements w; € R such that w; € R*,+ =1...,], and w; — w; € R*,
i # j, where R* denotes the group of units of R. We will call a ring [-good if
1t fulfils this condition.

10
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The following secret sharing scheme over the R-module E is a generalization
of the Shamir-scheme, in the sense that if E 1s a finite field seen as a module
over itself, then this scheme coincides with the Shamir-scheme.

Scheme 1

Distribution phase. Let wy,...,w; € R satisfy the conditions
above. The dealer associates w; with player 7 and makes it public.
Further, he chooses elements y,,...,y;—1 € F at random and sets
f(X)=s4+uyuX 4+ 4y X", where s € E is the secret the
dealer wants to share, and for all players 7+ € P he calculates the
share s; = f(w;) and sends it privately to player :.

Reconstruction phase. Let A € T' with |A| = t. Then the secret
can be computed as s = EiEA 1:,ASi, Where

NiA = H @ER

w. Wi
JEAG# I

Note that the 7, 4 exist as we assumed that w; —w; € R*. The assumption
that also w; € R* will be needed for the proof of the perfectness of this
scheme. Further, we will need the following lemmas from elementary ring
theory, see e. g. [15, pp. 516, 518|.

Lemma 3.1 Let V be a Vandermonde matriz over some commutative ring
R, i.e. V = ()\g)i,jzo,...,m for some distinct \; € R, A\; # 0. Then the
determinant of V is

det(V) = TN = X))

i>7

If we define 0° = 1, then lemma 3.1 holds also when one of the ); is equal to

Z€ero.

Lemma 3.2 A square matriz over some commutative ring R with 1 is in-
vertible iof and only of the determinant of the matriz s a unit in R.

Proposition 3.3 Scheme 1 is an efficient, perfect, ideal and homomorphic

(t,1)-threshold scheme.
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Proof. We first proof the correctness and then the perfectness, the other
claims should be clear. Correctness: Let A € I'. We assume wlog that A is
minimal, i. e. |A| = ¢t. Cousider the polynomial

pa(X) =) (pia(X) - s:)

€A

with coefficients in F, where

Pz’,A(X>: H T

JEAG#I

;From the construction of the p; 4(X) it follows that ps(w;) = s, = f(w;)
for all i € A. We claim that this implies p4(X) = f(X). (From this the

correctness follows immediately, namely

s= f(0)=p(0) = ZPi,A(O)Si = Z'f/z’,ASi

i€A i€A
To prove that ps(X) = f(X), we look at the linear equation system
fO + flwi + -+ ft_lw;’_l = Sigi = A

in the indeterminate f;, j = 0,...,2 — 1. The corresponding matrix is the
Vandermonde matrix V' = (w])ic4,j=0,...t—1. According to lemma 3.1 the
determinant of V' is detV = Hl->j(w,- — wj), which is a unit since w; — wj is
a unit. Thus V is, according to lemma 3.2, invertible which induces that the
solution of the equation system is unique. This proves that ps(X) = f(X).
Perfectness: Let A ¢ I'. We assume wlog that A is maximal,i. e. |[A| =t —1.
We will show that A’s share s;, 1 € A, do not reveal any information about
the secret, i. e. every s’ € E is equally possible to be the secret. We will do
this by showing that for every s’ € E there exists exactly one polynomial

f'(X) with coeflicients in E such that

S, — fl(o)

S; = f’(w,-) 1€ A
For this look at the linear equation system

s = f(’)
si = fotfwi+-+flw™ i€A
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in the indeterminate f,j = 0,...,¢—1. The determinant of the correspond-
ing matrix is according to lemma 3.2 [[;c , wi []; je 4.5 ;(wi —wj), a unit, and
therefore there exists exactly one solution to the above equation system what
we had to prove.

O

Corollary 3.4 If A is an unauthorized subset, then s4 = (S;)ica, the super-
position of the shares s; with i € A, is uniformly distributed in EA!.

3.2 Extension of the Ring

We have seen that if the ring R is [-good, then there exists a (t,[)-threshold
scheme over the R-module E for any threshold ¢ <. But of course, it might
happen that the ring R is not [-good, 1. e. there are not enough elements w;
in R such that w; and w; — w; are units as requested in scheme 1. In the
Shamir-scheme (over a finite field F') the problem of F' being too small can
be solved by extending F to a larger field F and sharing the secret over this
field extension F.

When the ring R is not [-good we can do something similar. We extend the
ring R to a ring R which is l-good. Simultaneously we have to extend the
module E to a module E over the ring R.

In this section we will present a method to construct such an extension ring
R and in the next section we will show how the R-module E can be extended
to a module E over R and how this gives rise to a secret sharing scheme over

E.

For the first part of this section we will not only assume that R is commu-
tative and contains the 1, but, further, that R is Noetherian, has zero-divisors
and every prime ideal is a maximal ideal. It is easy to see that, for instance,
all finite rings—commutative and containing the 1-— which are no fields fulfil
these further assumptions. We will look at the general case in the second
part of this section, but we already stress at this stage that the construction
of the appropriate ring extension in the general case is less efficient than in
this special case we are looking at now.

First, we have a closer look at the structure of R.
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Proposition 3.5 If R is a commutative Noetherian ring with 1 and zero-
divisors such that every prime ideal is mazimal, then R is of the form

R~ R/m{* x...x R/m" (3.1)

where the m; are the mazimal ideals of R and the e; positive integers.

Wlog we can assume that |R/my| < ... < |R/m,|* .
For the proof of this proposition we need the following lemmas.

Lemma 3.6 In a commutative Noetherian ring R, each non-zero ideal con-
tains a product of prime ideals.

Proof.  Assume that there exists an ideal a # {0} that does not contain
a product of prime ideals. Because R is Noetherian we may wlog say that
a is maximal with this property. Note that a cannot be a prime ideal. So
there exist b, ¢ € R such that be € a but b,c¢ ¢ a. The ideals b = <a,b> and
¢ = <a,c> both contain a strictly, therefore b and ¢ both contain a product
of prime ideals, say b D [] pf"' and ¢ D[] q;‘j. But thena D be D [] p?" IT q;j,
which is a contradiction.

O
Note that if a and b are ideals in R, then a4 b, anNb and ab denote the ideals

a+b = {a+blacabecb}
anb = {c|c€a,cecb}
ab = <{abla€abeb}>

Lemma 3.7 For any commutative ring R with 1, the following holds. If a
and b are ideals such that a+b = R, i. e. a and b are coprime, then ab = anb
and a" +b* =R for all r,s € N.

Proof. The first claim is well known from elementary ring theory, see e. g.
[15, p. 87]. For the second claim it is sufficient to show that a" + b = R.
By induction, let a,_; € a"~! and ¥ € b such that a,_; + % = 1. Further,
let @ € aand b € b such that a4+ b = 1. Then 1 = (a + b)(a,—1 + V') =
aa,—1 + (ab' 4+ a,_1b + bb') € a” + b.

O

'Tf some of the R/my, are infinite, then we can assume that |R/my| < ... < |R/my,| < oo
and |R/mgoy1l,..., |R/my,| = oco.
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Lemma 3.8 If a commutative ring R with 1 is of the form (8.1) for some
mazimal ideals my, then [ mi* = {0} and

m C R mazimal = T ko : m = my,

t. e. the my are all the mazimal ideals of R.

Proof. Using Chinese Reminder Theorem and the above lemina, it follows
from R = R/m{" X ...x R/m¢ that {0} = [\m = [[ my*. Thus for every
maximal ideal m there is [[m{* C m. But as m is prime, it follows that
mg, C m for a kg and thus, as my, is maximal, mg, = m.

O

Proof of proposition 3.5. Let 0 # a,b € R such that ab = 0. Lemma 3.6
guarantees that the ideals @ = <a> and b = <b> both contain a product
of prime ideals, i. e. a D Hp?”’ and b D Hq;‘j for p;, and q; prime ideals.
Hence, {0} = ab D Hp?l 11 q;j. As we assumed that every prime ideal is
maximal, this means {0} = [[ m}* for some maximal and pairwise different
ideals my and positive integers eg. ;From lemma 3.7 and the fact that two
different prime ideals are always coprime it follows that the m;* are pairwise
coprime and {0} = [m}*, and thus Chinese Reminder Theorem implies
that R/m{' x --- x R/m¢ = R/(m* = R/{0} = R. Finally, lemma 3.8
guarantees that the my are all the maximal ideals of R.

O
The next thing we have to do is to characterize the units in R.

Lemma 3.9 If R is a commutative Noetherian ring with 1 and € € R, then
€ is a unit if and only if € ¢ m for all mazimal ideals m C R.

Proof. If € € R*, then from ¢ € m it would follow that m = R, which
contradicts the maximality, thus € ¢ m. Let now e ¢ m for all maximal
ideals m C R. Counsider the ideal generated by € and suppose <e> # R.
Then, as every ideal not equal to R is contained in some maximal ideal, see
e. g. [15, p. 93], there exists a maximal ideal m" C R such that <e> C m/'.
But by € ¢ m for all maximal ideals m C R, this is a contradiction. Hence,
<e> = R and therefore € € R*.

O
Now we are ready to give a sufficient and necessary condition for R to be

[-good.
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Theorem 1 The ring R with decomposition (3.1) is -good if and only if

Note that m; is the largest of the my in the sense that |R/my| is minimal.

Proof. Isl < |R/m1| —l then there exist wk € R, : € P, such that

k) # 0 and (.ul()— j ,i_ 0 (modmy), ¢ # 7, for k = 1,...,n. As
R — R/m; X -+ X R/m,, is surjective, which follows from (3.1), there exist
w; € R such that w; = wfk) (mod my) for all k, i € P. It follows from the
construction and from proposition 3.9 that the w; fulfil w;, w; —w; € R* for
all 7 # j. But is [ > |R/my| — 1, then for every choice of wy,...,w; € R it
must w; =0 (mod my) for at least one ¢ or w; = w; (mod my) for at least
one ¢ and j, 7 # j. But this induces according to proposition 3.9 that w; or

w; — wj, respectively, is not a unit.
O

Now we are so far that we know when the ring R is not /-good. We will
in the following show how such a ring can be extended to a ring R which is
[-good.

For this let m be a positive integer such that

F<|R/m ™ —
Choose a monic polynomial f(X) = fot X+ + fma X'+ X™ € R[X]
such that for every £k = 1,...,n f( ) is irreducible modulo my and there-

fore (R/my)[X]/< f(X ) (R/my)[x] 15 @ field . This can be done by choosing
irreducible monic polynomials of degree m in (R/my)[X] and using Chi-
nese Reminder Theorem on the coefficients to compute f(X) as requested.
R = R[X]/< f(X)> is a ring extension of R and by putting my = <my >z
we get

Proposition 3.10 The my, are all the mazimal ideals in R and
R=R/m x...x R/m"
Further, |R/mi| = |R/mp|™, k = 1,...,n, especially |R/my| < ... < |R/m,].

For the proof we need the following lemmas from elementary ring theory.
The former is also known as the third ring isomorphism theorem, see e. g.

[16, p. 134].
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Lemma 3.11 If a C b are two ideals in R, then R/b = (R/a)/(b/a).

Lemma 3.12 If a,b C R are two ideals, then <a,b>p/b = <a>py in
R/b.

Proof of proposition 3.10.  First we show the maximality of the my. Let
m be one of the m; and m the corresponding m; and put M = <m>px.
Note that R[X]/9t = (R/m)[X]. For the rest of the proof, <-> stands for

<->p[x]- Because
Rfm = (RIX)/<f(X

>)/<m>p
Lemma3.12 (RIX]/< f(X)>)/(<m, f(X)>/< F(X)>)

= R[X]/<M, f(X)>
Lemma 3.11

=" (RIX]/M)/ (<M, F(X) > /M)
Lemng&l? (R[X]/fm>/< f(X) >R[X]/gm
= (R/m)[X]/< F(X)> /myx]
and the latter is a field, R/m is a field and therefore m is maximal in R.

Further, it follows that |R/m| = |(R/m)[X]/< f(X)> (R/m) [X]| = |R/m|™.
Note that for M, = <m,; >
Bt

[T <o, f(x
<<Hmf?’>,f X)>
N—_——
={0}
<f(X)>

)
)

N

N

so therefore
[T = TLe<m, f(X) > /< f(X) )
[T <o, £(X) > /< £(X) >

C<fF(X P>

= {0}

Analogue to the proof of proposition 3.5 it now follows that R can be written
as R = R/m" . X R/m¢ . Finally, lemma 3.8 guarantees that the my are
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all the maximal ideals of R.

O
Now we know that the cardinality of_R/ﬁll is |[R/mi| = |R/mi|™ and therefore
[ <|R/m| — 1, which means that R is [-good. This proves the following

Theorem 2 If R is a commutative Noetherian ring with 1 and zero-divisors
such that every prime ideal is maximal, or R is in fact a field, then there
exists an extension ring R = R[X]/< f(X)> of R which is l-good. Further,
deg f(X) = O(log ).

. . . A .
Corollary 3.13 If R has characteristicn #0, 4. e.n-1=14---4+1=101in
R and n > 0 is minimal with this property, then there exists a ring extension

R = R[X]/< f(X)>, deg f(X) = O(log ), which is I-good.

Proof. R contains Z, as a subring 2. According to theorem 2 there exists
a ring extension Z,[X]/< f(X)> of Z,, which is [-good, therefore the corre-
sponding ring extension R = R[X]/< f(X)> of R has to be [-good as well.

O

Now we will show that such a ring extension which is l-good can be found
for any commutative ring R with 1, even though the construction will be less
efficient. For this, we will first describe how the ring Z can be extended to a
ring which is /-good, this was presented in [10], and then we will show that
this construction can be applied to any commutative ring with 1.

Of course, the ring Z is not [-good for any [ > 1. To find an appropriate
extension ring, we choose a monic irreducible polynomial f(X) € Z[X].
Then, Z[X]/< f(X)> is an extension of Z. But how do we have to chose
f(X) such that the extension Z[X]/< f(X)> is [-good? We have to be
aware that in general we cannot use the (extended) Euclidean algorithm in
Z[X]. Therefore, ged(f(X),g(X)) = 1 does not necessarily imply that g(X)
is invertible modulo f(X). There exists a special class of polynomials f(X)
such that the above question can easily be answered.

Let ¢ be a prime greater then [ and f(X) the cyclotomic polynomial

X?1-1

£ = S

=14+ X+ -+ X" € Z[X]

2To be precise, R contains a subring which is isomorphic to 7Z,,
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Bertrand’s Postulate [17, p. 243] guarantees that ¢ can be chosen smaller
as 2[. It is known from elementary polynomial ring theory that f(X) is
irreducible [15, pp. 279, 280]. The following proposition guarantees that the
extension ring Z[X|/< f(X)> is l-good. Note that Z[X]/< f(X)> & Z[ul],

where u is a zero of f(X) in some extension ring of Z.

Proposition 3.14 Fori € P let w; = 2_:10 uf € Z[u]. Then w; and w; — w;
are units in Zu] for all 1 # j.

For the proof we need the following lemma.

Lemma 3.15 Let f(X)=14+X+4+---+ X" and g(X)=1+X+---+ X"
in Z[X]. Then there exist polynomials r(X), s(X) € Z[X] such that

s(X)F(X) +#H(X)g(X) = ged (f(X), 9(X))

Following the Euclidean algorithm, it is quite easy to see that even though
in general it does not work for polynomials in Z[X], it does work for f(X)
and ¢g(X) as in the lemma. Therefore, such s(X) and #(X) exist. Still, we

give a formal proof.

Proof. For simplification, we will omit the argument X during this proof.
Induction on m + n. If m 4+ n = 0 and therefore f = g = 1, then s = 0 and
t =1 fulfills sf+tg =1 =ged(f,9). m+n>0and wlog m > n (the
case m = n is trivial), then we put h = f — X" "g =14+ X 4 ... 4 X™7"71,
Then, ged(f,g9) = ged(g,h) and, as degh < m, by induction there exist
r,s € Z[X] such that rg + sh = ged (g, h). For t =r — X™ "s we then have

sf4+tg = s(h+X""g)+ (r — X" "s)g
= sh+ryg
= ged(g,h)
= ged(f.9)

which is what we had to prove.
O

Proof of proposition 3.14. As the polynomial f(X) is irreducible and has
degree greater than deg(>,— X*), it must ged(f(X),Y 1y X*) = 1. The
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above lemma 3.15 implies that EZ_:IO X* is invertible modulo f(X) and thus

w; = 22_:10 u* is a unit in Z[u]. Further, note that «*, 0 < k < ¢ — 1, is
invertible, namely (u*)~' = u?™* and therefore w; — w; = 2_:1] ub = wlw;_;
1s a unit.

O
Finally, we show that this construction we applied to Z can be applied to

any commutative ring with 1.

Theorem 3 Let R be a commutative ring with 1 and | € N. Then there
exists a ring extension R = R[X]|/< f(X)> of R which is l-good. Further,
deg f(X) = O(l).

Proof. If R has characteristic 0, 1. e. n -1 # 0 in R for all n > 0, then R
contains Z as a subring. As Z[X|/< f(X)> constructed as above is [-good,
R = R[X]/< f(X) >, which contains Z[X]/< f(X) >, must be l-good as well.
If the characteristic of R 1s a positive integer n, then the claim follows from
corollary 3.13.

O
We have to be aware that even theorem 3 is more general than theorem 2, the
ring extension constructed to prove the former is much smaller than the one
constructed to prove the latter. In the former, the degree of the polynomial

f(X) is about log [, whereas in the latter, the degree of f(X) is about /.

3.3 Extension of the Module

As mentioned in the beginning of the previous section, we not only have to
extend the ring R to a ring R which is I-good, we also have to extend the
R-module E to a module E over R to be able to apply scheme 1.

This can be done the following way. Consider the R-module R ® E. By

Rx(R®E) — RQ®E
WY @) — Y M@

we can extend the scalar multiplication over R to a scalar multiplication over
tﬁhe extension ring R and t}}us extend the R-module R ® E to a module over
R which we will denote as R®@p E (more on this can be found in [15, p. 623]).
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By identifying z € E with 1 ® + € R ®p E, E can in a natural way be seen
as a submodule of E = R Qr E.

In [10] Desmedt and Frankel gave a more constructive description of RQrE in
the special case where E is an Abelian group, seen as a module over R = Z...
In the following we generalize their construction. For this we look at the
product E™ = Ex...x E, where m still denotes the degree of f(X), with the
component-wise addition (z1,...,Zm)+ (Y1, Ym) = (T14+ Y15« T+ Ym)-
We can define a scalar multiplication over R = R[X]/< f(X)> as follows.
Let x = (21,...,%,,) be in E™ and A € R. Note that A can be uniquely
represented by a polynomial g + M\ X + -+ + X,,_1 X™ ' € R[X]. We now
define

m—1
AX = Z N Xix
=0
where recursively
)\ZXZX = X()\z’Xi_IX>

and

Ai(zr, ooy xm) = (Nizr, .o, Nim) and
—X’(mla"'al‘m) = (Oaxlv"'amm—1>+(_fOJ;ma_flJ;ma--'7_fm—1*7:m)

This makes E™ to a module over R. It is easy to see that the function

R@RE — E™
Z/_\,;@.Ii — ZS\Z(;U,,O,,O)

is an isomorphism.

Now, coming back to what we actually want, namely a secret sharing
scheme over the R-module E, a secret s € E can be shared by sharing
(s,0,...,0) € E™ using scheme 1. Note that the scheme we obtain this way
is perfect and homomorphic as scheme 1 but it is not ideal as the secret space
E is smaller than the share space E.

Therefore, we have finally proven

Theorem 4 Let E be a finite module over a commutative ring with 1. Then

there exists an efficient, perfect and homomorphic (t,1)-threshold scheme over
E for any threshold t, 1 <t <.
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3.4 Application:
Secret Sharing over Abelian Groups

Let G be an efficient finite Abelian group, that means G 1s in fact a whole
family (Gy)wex of finite Abelian groups in which the group operation and
the inversion may be computed in polynomial time in log x and generating
uniform random elements of GG, can be performed in probabilistic polynomial
time. We assume wlog that G is additive. If e is the exponent of G, 1. e.
e = min{n € N|ng =0V g € G}, then G can in a natural way be seen as an
efficient module over the ring Z.. So by applying scheme 1 to the Z.module
G or to the (Z.[X]/< f(X)>)-module G™ if G is not [-good, which is the
case when p — 1 < [ for the smallest prime factor p of e, we get a perfect,
homomorphic (¢,)-threshold scheme over the group G.

Note that this method to share a secret from G only works if, first, the dealer
knows the exponent e of G and, second, the shareholders are allowed to know
e as well, which is not the case in many cryptographic algorithms (e. g. in

RSA [20] ¢(n) has to be kept secret).

What we want, or need, is a so called zero-knowledge secret sharing

scheme. This is a scheme such that every unauthorized subset A of players
can, with their knowledge before they got their shares, construct a proba-
bilistic, in max(/,log ) polynomial time algorithm, which outputs simulated
shares for the players A and public information which are indistinguishable
from those generated in the distribution phase of the scheme for any secret.
Such a zero-knowledge secret sharing scheme guarantees that an unautho-
rized subset not only gets no information about the secret, but they get no
new information at all.
A minimal-knowledge secret sharing scheme guarantees that every authorized
subset gets no new information except the secret (and what follows from
this). This is the case if every authorized subset A can, with their knowledge
before they got their shares, construct a polynomial time algorithm which
takes a possible secret as input and outputs correct shares of this secret for
the players A and public information which are indistinguishable from those
generated in the distribution phase of the scheme for the same secret.

In [10] Desmedt and Frankel presented a secret sharing scheme over the
finite Abelian group G which is zero-knowledge and minimal-knowledge. For
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this, we have to look at GG as a module over Z. By extending G to the module
G™ over Z[u] as described in the previous sections and applying scheme 1
we get a secret sharing scheme over G which is zero-knowledge and minimal-
knowledge. For instance, according to corollary 3.4 an unauthorized subset
A can simulate their shares and the public information by choosing elements
from G™ with uniform probability and computing the deterministic public
information w; = ZZ_:IO u® for i € P.

This simulator only works if the players can pick elements from G (or
G™) with uniform probability. This, of course, is not the case with the group
G = Zy(n) in RSA, as the players do not know (n). It is shown in [9] that
the distribution of choosing a random element from Z,, and choosing a ran-
dom element from Z,), both elements being represented by an integer in
{0,1,...,n — 1} and {0,1,...,p(n) — 1}, respectively, are statistical indis-
tinguishable for large p and ¢, the two prime factors of n. This means that
the number of samples needed to distinguish the two distributions is larger
than polynomial in min(log p,log ¢). Therefore, the players can simulate their
shares by choosing random elements from Z,, instead of Z ). Thus, we have
a secret sharing scheme over Z,) which is statistical zero-knowledge.



Chapter 4

Extended Span Programs

In [14] Karchmer and Widgerson introduced span programs as a linear al-
gebraic model of computation. They also described how monotone span
programs can be used to construct secret sharing schemes over fields for
general access structures. As we are only interested in monotone span pro-
grams, we will from now on skip the word monotone and refer to them just
as span programs. In this chapter, we will construct secret sharing schemes
over modules. For this we will have to extend the definition of Karchmer
and Wigderson’s span programs [14], which are defined over fields, to span
programs over rings, and to stress the difference, we will (sometimes) call the
latter extended span programs. Further, we will show that the Shamir-scheme
discussed in the previous chapter can be expressed in terms of extended span
programs and how this can be used to construct span programs.

During the whole chapter, E i1s an efficient finite module over a com-
mutative ring R with 1, not necessarily finite. Remember that a module 1s
called efficient if all the module and ring operations and choosing random
elements can be performed in (probabilistic) polynomial time. Further, we
assume that in R linear equation systems can be solved. We will show in the
appendix A that this for instance is the case in the rings Z, Z,,, Z[X] and
ZIX]/< f(X)>.

24
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4.1 Definition

Let M be a matrix with entries in R, having d rows and e columns. We will
write this as M € R?™°. We assume that M is labelled in the sense that
every row is indexed by some integer i € P = {1,...,1}, where every index
¢ occurs at least once. Finally, let 0 # u € R°. An estended span program
over R is a triple (R, M, u), defined as above.

By M;, 1 <1 < [, we denote the matrix that consists of the rows in M
indexed by ¢. Similarly, if } # A C P, M, stands for the matrix consisting
of the rows in M indexed with elements: € A. d; and d4 denote the number
of rows of M; and M4, respectively. Let I' be an access structure over P. If

forall ACP

Ael = uecImM and
A¢l' = daceKerM, C R :(u,a) € R*

holds, then the extended span program is said to compute T'.

The following lemma guarantees that Ker M4 = (Im M*)*. This implies that
the second condition is in general stronger than u ¢ Im M’ the correspond-
ing condition of the span program introduced by Karchmer and Wigderson
n [14], and equivalent if R is a field.

Lemma 4.1 Any matriz M with entries in R fulfils Ker M = (Im M*)*.

Note that this claim is a well known fact in the case where R is a field.

Proof. 1t is easy to verify that (Mb,c) = (b, M'c) for all vectors b and ¢
with proper dimensions. So let first b be an element of Ker M, i. e. Mb = 0.
Then for all ¢ we have 0 = (Mb,¢) = (b, M'c), hence, b € (Im M*)1. Now
let b € (Im M%)+, Then 0 = (b, M'c) = (Mb,c) for all ¢, especially for
c =epey,...,e., where e, = (0,...,0,1,0,...,0) ' with the 1 in the i-th
position, thus Mb = 0.

O
We call an extended span program (R, M,u) efficient over R, if R is of
the form R = R[X]/< f(X)> and the number of rows and columns of M,
the length of the entries of M and the degree of f(X) are bounded by a

polynomial in max(/,log k).

'Even though we write the vectors as row vectors, they are normally to be seen as
column vectors.
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4.2 Sharing a Secret from a Ring

This extension from a span program over a field to a span program over a ring
gives an extension from Karchmer and Widgerson’s secret sharing schemes
over finite fields to schemes over finite rings. So let R be a finite commutative
ring with 1, ' an access structure over a set P of [ players and (R, M, u),
M € R¥™° and u € R°, a span program that computes I'. If R is a field and
therefore R® a vector space, we can, just by changing the basis, achieve that
u=-¢e; =(1,0,...,0). In the general case where R is not necessarily a field
we can also assume wlog that u = ey, as follows from

Proposition 4.2 If (R, M,u), M € R™° and u € R°, is an extended span
program computing I', then there exists an extended span program (R, M', ey),
M' € R**¢ and ey € R, computing T with d' and ¢ bounded by d' < d +1
and ¢’ < e+ 1.

Proof. We proof proposition 4.2 in two steps. In step one we show that
(R, M',ey) exists under some assumption and in step two we show that this
assumption can always be achieved. Step one: We assume that one coor-
dinate of u = (Ay,..., )" is a unit, wlog we say A\; = 1. By choosing the
basis u, ey,...,e. of R, (R, M,u) transforms to (R, M',e,), M’ € R¥*¢ and
e; € R°. Note that if A; is not a unit, then u,e,,...,e. is not a basis of
Re¢. Step two: By adding a (e + 1)-st column, filled with zeros, and [ rows
(0,...,0,1) of length e + 1, labelled with ¢ from 1 to [, to the matrix M and
by replacing u € R° by (111) € Rt we get a span program computing T
which fulfils the assumption needed in step one. The bounds on d' and ¢’
follow from the construction in step two.

O
Remember, for the following secret sharing scheme we assumed that the ring

R is finite.

Scheme 2
Distribution phase. (R, M, e;) is public knowledge. Let s € R be
the secret. The dealer chooses random elements 3,,...,8. € R

and sets b = (s,33,...,0.). For every player : € P he then
computes the share s; = M;b € R% and sends it privately to
player ¢ € P.
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Reconstruction phase. Let A € T, and let v4 be in R4 such that
M!ivs = e;. If sx € F4 is the superposition of the s;, i € A,
then the secret can be computed as s = (va4,s4).

Note, because linear equation systems can be solved in the ring R, as we
assumed, the vector v, can be computed by the players in A.

Proposition 4.3 If the span program (R, M, ey) is efficient and computes
[', then scheme 2 is an efficient, homomorphic and perfect secret sharing

scheme for T'. If d; = 1 for all 1 € P, it is ideal.

Proof. We first proof the correctness and then the perfectness, the other
claims should be clear. Correctness: Let A € T' and v 4 such that Miv, = e;.
Then

<VA,SA> = <VA,MAb> = <M£VA,b> = <e1,b> =S

Perfectness: Let A ¢ I'. The solution space of the equation Myb' = s4 is
b + Ker M4, and as there exists x € Ker M4 whose first coordinate is a unit,
M4b" = s4 has the same number of solutions for each possible choice of a
secret s’ in the first coordinate of b’.

O
In the next section we will extend this secret sharing scheme to a scheme
over a module.

4.3 Sharing a Secret from a Module

In this section we will present a secret sharing scheme based on span programs
that allows us to share a secret s from the R-module E. The simplest way
to do so would be to share the coefficients of s in respect to a fixed basis of
E, using scheme 2. But to do so we have to assume that a basis of E exists,
which e. g. is not the case if R is infinite, and, further, is known or easy to
compute. The scheme we are going to present below is basis free, but, as we
will see at the end of this section, equivalent to sharing the coefficients of the
secret in respect to a fixed basis in the case where E has a basis.
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But before we can present the scheme, we have to introduce some nota-
tions. Isa = (A,...,Ac) € R® and x = (21,...,2.) € E°, then we put

(a,x] = Z)\ixi S
=1

which is linear in both arguments and (e;, x| = z;. We use this asymmetric
notation to stress the asymmetry of the two arguments. If N = (n,;) € R™*°,
we define the matrix multiplication with an element x = (zy,...,2.) € E°
as

Nx = (Z Ni;Th. .., Z ndjxj) € E?
7=1 7=1

This makes N to a linear map N : B¢ — E?. Of course, N also acts on a
vector in R with the normal matrix multiplication. It is easy to see that
(Na,x] = (a, N'x] where in the former expression N is seen as N : R® — R?
and in the latter as N : E° — E?. Further, if N € R™' i. e. N is in fact a
(column) vector, then Nx = (N, x]|.

Note that in the case where the module F is in fact R, seen as a module
over itself, (-, -] is the standard inner product (-,-) over RP and N : R® — R?
coincides with N : B¢ — B¢,

Now we are ready to present the secret sharing scheme. Let [' be an access
structure over a set P of | players and (R, M,u), M € R and u € R°,
a span program that computes I'. In the last section we have seen that we
can wlog assume that u = e; = (1,0,...,0). A secret sharing scheme is now
constructed as follows.

Scheme 3
Distribution phase. (R, M, e;) is public knowledge. Let s € E be
the secret. The dealer chooses random elements x;3,...,z. € E

and sets x = (s,z9,...,2.). For every player 1 € P he then
computes the share s; = M;x € E% and sends it privately to
player : € P.

Reconstruction phase. Let A € T', and let v4 be in R% such that
Miv, = e;. If s; € R is the superposition of the s;, i € A,
then the secret can be computed as s = (V4,84 ]
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Proposition 4.4 If the span program (R, M,ey) is efficient and computes
[', then scheme 3 is an efficient, homomorphic and perfect secret sharing

scheme for T'. If d; = 1 for all 1 € P, it is ideal.

Proof. We again only proof the correctness and the perfectness. Correctness:
Let A € ' and v 4 such that M%v4 = e;. Then

(Va,sa] = (va, Max] = (M vs,x]=(e;,x] =s

Perfectness: Let A ¢ I', thus there exists a = (Ay,...,A) € Ker M4 C R°
with Ay = 1. As for every y € E there exists y € Ker (M4)r C E° with
y in the first coordinate, namely y = a-y = (My,...,Acy), the equation
M4x' = s4 has the same number of solutions for each possible choice of a
secret s’ € E.

O

Therefore, we have proven the following

Theorem 5 If the access structure T' is computed by an efficient extended
span program over R, then there exists an efficient, homomorphic and perfect
secret sharing scheme over E for T'.

Finally, we show that if £ has a basis, which umplies that R is finite, then
scheme 3 is equivalent to sharing all coordinates of the secret in respect to a
fixed basis using scheme 2.

Proposition 4.5 In the case where E = R™ for a finite commutative ring
R with 1 and an integer m € N, scheme 3 is equivalent to sharing the m
coordinates of s € R™ independently using scheme 2.

Proof. Lets = (s ... s(™)) € R™ be the secret and x; = (.IZ(-I), . ,.IZ(-m)) €
R™,1=2,..., ¢, therandom elements chosen by the dealer in the distribution
phase. Look at s;, the share that player ¢ € P gets. Is Mi(]k) the entry in the

j-th row and k-th column of M;, then

S, = Ml’X

e

= (Ml-(jl)s + Z Ml’(jk)xk>j:1,...,di

k=2
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- ((MZ(JI)S(n) + Z Ml'(jk)x](cn))n:l,...,m)j:l,...,di
k=2

Note that s; is a d;-dimensional vector with entries in R™. Looking at the
coefficients with n = ny we have

(Mi(jl)s(”o) + Z M,-(jk)x;(c%))jzl,...,di = M;x("0)
k=2

where x(") = (s(”o),;cgno),...,;c((ano)), that is s(™) shared correctly using
scheme 2. Note that the ;cgcn) are just random elements from R. So the
equivalence of the distribution phase is proven. The equivalence of the re-

construction phase can be shown similarly.
O

4.4 Span Programs and the Shamir-Scheme

In this section we will show that the Shamir-scheme presented in chapter
3 can be expressed in terms of span programs. We first note that we can
describe scheme 1 in a slightly different way. We can say that the dealer puts
Yy =(891,---,y—1) € E', where yy,...,y4—1 € E are chosen independently
at random and s € E is the secret he wants to share. Then for every player
i € P he defines the vector w; = (1,w;,...,w'™') € R, where the w; € R are
distinct elements such that w;,w; —w; € R* for all « # j. Finally, he hands
each player his share
si= (W, y]=s+ywit+ -y

It is now easy to see that scheme 1 is just a special case of scheme 3, namely
when M is the matrix whose [ rows are the vectors w;, indexed by 2, for ¢
from 1 to /. With this in mind, the following proposition is not surprising.

Proposition 4.6 If the matric M s constructed as described above, then

the extended span program (R, M, e1) computes the threshold access structure
F={ACPIIA] =t}
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Proof. We only have to show that for |A| =t the equation

Mix =¢e;
and for |A| =t — 1 the system
(e1,x) = 1
MAX =0

1s solvable. But this follows straight from lemma 3.1 and 3.2 as in the
proof of proposition 3.3. Remember that the rows of M are of the form
(1,wj, ..., "), where w;,w; —w; € R* for i # j.

O

4.5 Construction of Extended Span Programs

We have seen how we can share a secret for a given access structure I' over
P ={1,...,1}, if we have a span program computing I'. In this section we
investigate on how such a span program may be constructed.

Benaloh and Leichter showed in [2] how a monotone circuit, consisting of AND
and OR gates with an arbitrary number of inputs but only one output, that
recognizes I' can be used to build up a secret sharing scheme for I'. We will
show how such a monotone circuit can be used to construct a span program
that computes I'. But we will allow the circuits not only to consist of AND
and OR gates but of arbitrary threshold gates. But still we consider that
every gate has only one output wire.

A monotone circuit C' with n boolean inputs zy,..., z,, called input wires,
and one output, y = C(xy,...,x,), where every input wire z; belongs to a
player i € P, written as ¢ = bel(j) 2, is called to recognize the access structure

T, if for €1,..., € {0,1}
{1 eP | € = 1} €l — C(ebel(l)a'--aebe](n)> =1

Further, we say that an extended span program (R, M, e;) computes a circuit

C, if (R, M, e,) computes the access structure T = {A C P |C(A) = 1} over

Zbel(-) : {1,...,n} — P does not have to be injective, several input wires may belong
to the same player.
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P ={1,...,n}, where C(A) stands for C(z1,...,z,) withz; =1 & j € A,
i. e. for A C P we have

C(A)=1 = e, €lmM,
C(A)=0 = da€eKerM4 C R°:(ej,a) € R*

Note that if (R, M,e;) computes C, then we only have to change the la-
belling on M to get a span program that computes I'. Indeed, if we replace
every index j € P of the rows of M by the corresponding index i = bel(3),
then (R, M, e;) computes I', the access structure that is recognized by C.
Therefore, to show how to construct a span program that computes I' which
1s recognized by the circuit C', 1t 1s enough to show how to construct a span
program that computes C.

Suppose we are given a circuilt C that recognizes I' and consists only of
threshold gates, 1. e. every gate k has [} input wires and one output wire
and the output is 1 if and only if at least #; input wires carry a 1, where
1 < tp <. Let R be a commutative ring with 1. We assume that R is
lk-good for every gate k in the circuit C. We have seen in theorem 3 that this
can always be achieved. We know from proposition 4.6 that every gate k can
be computed by an extended span program (R, My, e;) with My € RI**.
Our aim now is to combine these span programs to a span program (R, M, e;)
that computes the whole circuit C, and therefore, after changing the labelling,
computes ['. Let f be the output gate and ¢i,...,¢g, the subcircuits of C
whose output wires are the input wires of f such that C = f(g1,...,9n).
We will first show that from span programs computing f and gi,...,gn, we
can construct a span program computing C. ;From this it will follow by
induction that a span program computing C can be constructed from the

(Ra Mk7e1>-

In [8] Cramer, Damgard and Maurer showed, how a span program over
a field computing C can be constructed given span programs computing f
and g;, respectively 3. We are now going to show that their construction
also works for extended span programs. So let (R, F,e;) and (R, G;,e),
i = 1,...,n, be extended span programs computing f and g,, respectively.
The following construction of an extended span program (R, M, e;), that, as
we will show later, computes C, is taken from [8].
Let x; denote the [-th literal of ¢;, for + = 1,...,n, I = 1,...,m;. Let

3Their result also holds for span programs with multiplication.
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(yo..y 5 ...,) be a vector whose first location we number 0 and subsequent
locations (¢,k) with 1 < ¢ < n and 1 < k < rows(F;), where F; consists of
the rows of F that correspond to the i-th literal of f (i. e. indexed by 1),
hence there are 1 + rows(F) locations. The rows of M will be vectors whose
locations are indexed as above. Next, let 7,7,k be any integers satisfying
1<i<n, 1<y <rows(G), 1 <k <rows(F)).

The rows of M will consist of vectors m;j; to be defined hereafter. Consider
(w;jVik, W;;), where v, is the k-th row of F}, and (w;;, w;;) is the j-th row of
G, (i. e. w;; is the first coordinate of that row and w;; collects the remaining
coordinates). The row m;;; of M is constructed as follows. Place w;;v; in
the first location and w;; in location (i, k). Fill up all other locations with 0.
The dimensions of vectors placed in specific locations should be clear from
the context. Note that the rows in M corresponding to the /-th literal z;
of function g¢; are exactly those m,j; where j is the index of a row in G;
assoclated with z;;.

Before we proof that (R, M, e;) really computes h, we remark that using
M to share an element s from a module E (with scheme 3) is equivalent to
the following scheme. Use F' to share s to n imaginary players and then for
every share s; use G; to share all coordinates of s; independently. From this
it follows that if A is authorized, i. e. h(A) = 1, then e; € MY. Indeed,
if we use M to share a secret in, let say, R seen as a module over itself,
then this i1s, as we have mentioned, equivalent to using first ' and then
G. Therefore if A is authorized, then the secret s can be calculated by a
linear combination of the shares s, = M;x, 1 € A. Thus there exists v, such
that s = (va,s4) = (va, Max) = (Mva,x). But also s = (e, x), hence
(M'v4,x) = (ey,x). This holds for every x, therefore Miv, = e.

Proposition 4.7 The estended span program (R, M, e;) constructed as above
computes h. Further, the number of rows and columns of M are given by
rows(M) = Zl'ows(Fl-)I'ows(Gi)

i=1

columns(M) = columns(F)+ Z rows(F)(columns(G;) — 1)
=1

1 = e € ImM,. Let now

Proof. ~ We have already seen that h(A) =
n,my)} such that h(A) = 0. We will

AC{(1,1),...,(1,my),...,(n,1),....(
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show that there exists a € Ker M4, whose first coordinate is a unit. For
B={ie{l,...,n}|gi(A) =1} we have f(B) = 0. Therefore, if F'g consists
of the rows of F' that are indexed by a ¢ € B, there exists agp € Ker Fg such
that the first coordinate of ag is a unit, wlog say 1. Let now i ¢ B, i. e.
gi(A) = 0. There exists a; in the kernel of the matrix consisting of the rows
of G; that belong to A, such that the first coordinate is a unit, wlog say
a, = (1,b;). Let a be the vector having ag in the first location, (v, ag)b;
in the locations (i,k), i ¢ B, k = 1,...,rows(F;), and 0 in the locations
(1,k), 2 € B, k = 1,...,rows(F;). Remember, v is the k-th row of F;. It
is clear from construction that the first coordinate of a is a unit, namely 1.
We will now show that a € Ker M 4. Every coordinate of M 4a is of the form
(m; i, a), where m;j;, = (w;;vix,0,...,0,w,;,0,...) belongs to A and w;; is
in location (¢, k). If 1 € B, then

(myj, a) = wij(vir, ap) = 0
as ag € Ker Fg and v;;, are the rows of Fg. If i ¢ B, then
<mijk7 a> = wij<vikaaB> + <Wij7 bi><Vz'k7 aB>
(wij + (Wij, bi))(Vik, an)
((wij, wij), ai)(Vik, aB)
= 0

as @; 1s 1n the kernel of the matrix consisting of the rows of G; belonging to
A, which are exactly the (w;;, w;;) we are here looking at. So it is proven
that (R, M, e;) computes k. The bounds on the number of rows and columns
follow immediately from the construction of M.

O

When for the circuit C the expression £ € C' means that k 1s a gate of C
and ¢(C) stands for the number of input wires of C, then we can prove now

Theorem 6 Let ' be an access structure over P = {1,...,1} recognized by
a circuit C such that every gate k € C is an (ty,l)-threshold gate for some
1 <ty <, and let R be a commutative ring with 1. Then there exists an
extended span program (R, M, e1) that computes T' over some extension ring
R of R. Furthermore, the number of rows and columns of M are bounded by

rows(M) < «(C)
columns(M) < L(C)—Z(lk—tk)

keC
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Thus, if 1(C) is bounded by a polynomial in 1 *, the number of players, then
(R, M,e) is efficient.

Proof. According to theorem 3 there exists an extension ring R of R which
is lp-good for every gate k € C. We prove the theorem by induction on
m, the number of gates in C. If m = 0, 1. e. C consists only of a wire
which is input and output wire at the same time, thus «(C) = 1, or, in other
words, C is the circuit C(z) = z, then M = 1, seen as a 1 x 1 matrix,
computes C and 1s bounded as claimed. If m > 0, then C' can be written
as C = f(g1,...,9n), where f € C is the final gate and ¢1,...,¢g, are the
subcircuits of C' whose output wires are the input wires of f. Gate f is a
(tf,1f)-threshold gate with [; = n. According to proposition 4.6 there exists
an extended span program (R, F,e;) with F € R'***/ that computes f. For
every ¢ € {1,...,n}, the subcircuit g; has less gates than C, therefore, by
induction, there exists (R, G;, e;) computing g; such that rows(G;) < (gi)
and columns(G;) < ¢(g;) - Zk€gi<lk — gx). Proposition 4.7 implies that there
exists a span program (R, M, e;) which computes C = f(¢1,...,0n), and,
after relabelling, the access structure I', and which is bounded by

n

rows(M) < ZIOVVS(FZ')I‘OVVS(GZ') = Zrows(Gi) < Za(gi) =(C)

=1

and

n

columns(M) < columns(F) + Z rows( F;)(columns(G;) — 1)

= t; 4+ z”: columns(G;) — Iy
- Z 1(g:) — Z D (e —t) = (Iy = ty)
= (C) =) (I —t)

Note, F; consists of only one row.
O

4This, of course, only makes sense if we are looking at a whole family of circuits, indexed

by .



Chapter 5

Security against Active
Cheaters

Until now we always assumed that every participant of a secret sharing
scheme does exactly what the scheme asks him to do. All the schemes pre-
sented so far fail if, for instance, some of the shareholders play faulty and
give incorrect shares in the reconstruction phase, i. e. not the shares received
from the dealer.

In the first section of this chapter we will modify scheme 3 in such a
manner that it allows a set of players A = BUC, BN C = 0, to reconstruct
the shared secret, even if the players of C, we will call them corrupted players,
give incorrect shares and the others, the players in B which we will call honest
players, do not know which shares are correct and which are not. Of course
this can only work if there are not too many corrupted and enough honest
players. A secret sharing scheme for T' with this property for B and C
bounded by

Ccgrl and

1
VDCB,DgT:B\DeT (5.1)

is called robust.
If T is a threshold access structure with threshold ¢, then these bounds mean
that |C| < t —1 and |B| > 2t — 1. If BUC = P, which means that

36
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all players are supposed to take part in the secret reconstruction (and the
honest players do), then the second condition of (5.1) follows from the first if
the access structure I has the property that A, A", A" ¢ T = AUA'UA" £ P
(see also [12] and [§]).

In the second section of this chapter we will even allow the dealer to play
faulty, and we will show how the players can by communication between
each other detect that the dealer cheated or at least agree on a set of correct
shares. And this even if some of the players play faulty as well. A verifiable
secret sharing scheme is a robust scheme such that—even if there might be
a faulty dealer and P contains, besides an authorized subset of players, an
unauthorized subset of corrupted players—after the reconstruction phase the
honest players have consistent shares defining some secret which is equal to
the dealers secret if he is honest. The robustness guarantees that this secret
can be reconstructed by a set A = BU C as above, B and C bounded as in
5.1.

During the whole chapter, E again denotes an efficient finite module over
a commutative ring R with 1 such that linear equation systems can be solved
in R.
The following scheme 4 and the secret verification protocol in section 5.2 are
taken from [8] and adapted to our somewhat more general situation. For the
secret verification see also [1].

5.1 Robust Secret Sharing

Let T' be an access structure computed by an extended span program (R, M, e;),
where M € R™° and e; = (1,0,...,0) € R°. We will extend scheme 3 to a
robust secret sharing scheme.

If the honest players could find out somehow which shares are correct and
which are not, they could ignore the incorrect shares and just use the correct
ones to reconstruct the secret. This is achieved by the following scheme.

Scheme 4

Distribution phase. (R, M, e;) is public knowledge. Let s € E
be the secret. The dealer chooses at random a symmetric matrix
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X € E°*¢ with the only restriction that the upper-left corner of
X contains s and sends the matrix U; = M; X privately to player
© € P. The actual share s; of player ¢ is the first column of U;.

Reconstruction phase. Let A = B U C be the set of players who
want to reconstruct the secret such that B, the honest players,
and C, the corrupted players, fulfil (5.1). Every player ¢ € A
broadcasts U;. Let a be what the player ¢+ € A claims to be U;
and §; the first column of U;. Every player computes for all i € A
D;={je A|M;U! # (M;U')'} and D= {i € A| D, ¢ T'}.

The secret s can now be reconstructed as in scheme 3 using the
shares s; with 2 € D.

The following proposition ensures that all corrupted players who give an
incorrect share s; are detected in the above reconstruction phase.

Proposition 5.1 The set D computed in the reconstruction phase of scheme
4 contains all the honest players but no corrupted player who gave a wrong
share s;.

Note that if player i € A is corrupted, i. e. U; # U;, but §; = s;, then it does
not matter if he is detected or not.
For the proof of proposition 5.1 we need

Lemma 5.2 For two vectors x,y € E° with different first coordinates x,
and y1, M;x = My holds at most for an unauthorized subset of players j.

Proof. Let D= {j € P|M;x = M,y}. If D €T, which means that e; can

be written as e; = Mhvp for a vector vp, then

1 — U <elaX—Y]
= <MtDVDaX_Y]
— <vDaMD(X - y)]
=0

which is a contradiction.
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Proof of proposition 5.1. As (M,-U;)t =U;M! = M;XM! = M;U}, it follows
straight from the restriction on C| i. e. from C ¢ I', that if ¢ € A is honest,
then D; ¢ T.
Let now 1 € A be corrupted and s; # s;. Applying lemma 5.2 to the different
columns of (7; and U! we can conclude that Mj(?f = M;U! holds at most for
an unauthorized subset of honest players j. ;From this and from the lower
boundary (5.1) of B it follows that Mj(jf differs from M; U} for an authorized
subset of honest players j. But as M;U! = (MZ-U;)t = (Mz(j;)t for honest
players 7, this means D; € T.

O

Proposition 5.3 This modified scheme s still perfect, i. e. if A & T, then

the U;, 1 € A, give away no information about the secret s.

This claim seems pretty obvious as, compared to scheme 3, the additional
information the players get, 1. e. the U; minus the first column s;, written as
U; \ si, does not depend on the secret s. Still, we have to be careful, because
both s; and U; \ s; being independent of s does not necessarily imply that
U; = (s;,U; \ s;) is independent of s as well.

Proof. Let A ¢ T, thus there exists a = (A,..., ;) € Ker M4 C R® with
A = 1. Let a ® a denote the e by e matrix (A;};), 1. e. the matrix whose
i-th column is A;a. Note, a ® a is symmetric and My (a ® a) = (0), the zero
matrix. If U, denotes the superposition of the U;, 1. e. Uy = M4 X where X
is the symmetric matrix with s in the upper-left corner, then the symmetric
matrices X' fulfiling the equation M4 X' = Uy are given by X + Y where
Y is symmetric and M4Y = (0). As for every y € E there exists such a
Y with y in the upper-left corner, namely a ® a-y = (\;\;y), the equation
M4 X' = Uy, has the same number of symmetric solutions for every possible
choice of s’ € E in the upper-left corner of X".

O

This proves

Theorem 7 If the access structure I' is computed by an efficient extended
span program over R, then there exists an efficient, robust and perfect secret
sharing scheme over E for I.

In the next section we will need the following generalization of proposition

0.1
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Proposition 5.4 If in the distribution phase of scheme 4 the matriz X is
not necessarily chosen symmetrical but in such a way that M;U} = (MiU;)t
for all honest players 1,5 € P, then the set D computed in the reconstruction
phase of scheme 4 still contains all the honest players and no corrupted player
who gave a wrong share s;.

Proof. As in the proof of proposition 5.1 it follows that D; ¢ T'if 1 € A is
honest.

To show that D; € T if 1 € A is corrupted and §; # s;, we first claim that
for an honest player ¢ € P the first column of M;X coincides with the first
column of M;X*. Indeed, as for a fix honest player ¢

M;(MiX)' = M;U! = (M;UY)! = M;XM! = M;(M;X")!

holds for all honest players j € P and the honest players are an authorized
set, the claim follows straight from lemma 5.2.
Let now 1 € A be corrupted and s; # s;. Consider the subset of honest
players B; = {j € B | M;U} = (M;U})'}. If B; is authorized, i. e. e; can
be written as e; = Mp vp,, then §; = Uie, = (]}MEZ_VBZ. = (MBZ.G'})tVBi =
MiUltquBi = MiXtMlt;iVBi = M;X'e; = M;Xe, =s; which is a contradiction
and therefore B; ¢ I'. From the lower boundary 5.1 for B it thus follows that
Mj(jf # (M;U})! for an authorized subset of (honest) players j and therefore
D, ¢T.

O

5.2 Verifiable Secret Sharing

Now we will extend scheme 3 even further such that if there is a faulty dealer,
then the honest players can correct the inconsistent shares. For this let again
I' be an access structure computed by an extended span program (R, M, e;),
and let E be a module over R. Further, we assume that some dealer—honest
or faulty—has distributed matrices U; according to scheme 4, supposedly of
the form U; = M; X for a fix symmetric matrix X.

Note that two players ¢ and j can in a way compare their shares by checking
if MU} = (M;U})'. If MU # (M;U})", then truly something is wrong.

Either one of the players is corrupted, 1. e. U; or U; 1s not what player ¢ or
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J, respectively, got from the dealer, or U; and U; are not consistent, which
means that the dealer is faulty.

The following secret wverification protocol, carried out between the players
after the distribution phase, provides that all honest players get consistent
shares of a secret if, besides the dealer, there is only an unauthorized set of
corrupted but an authorized set of honest players.

Step 1. Every two players ¢ and j check if M;U! = (M,-U]t-)t by
privately exchanging these values. If a player ¢ did not receive U,
from the dealer (in the right format), he uses a default value.

Step 2. For each player i, if player ¢ finds disagreements in values
received from an authorized set of players, then the dealer is
clearly faulty and player ¢ broadcasts an accusation against the
dealer, asking him to broadcast U;. If there are disagreements
only in values received from an unauthorized set of players, player
¢ broadcasts a request to the dealer to make public those M;U;,
J € P, that did not agree with the received values.

Step 3. The dealer has to response to all the accusations and
complaints by making public all the values he has been asked for.
If then some player 7 observes that some new public information
contradicts the U; he 1s holding, he accuses the dealer asking
him to broadcast U;. Again the dealer has to response to all
accusations, and this goes on like this until no accusation is made
anymore.

Step 4. If at this point an authorized set of players have accused
the dealer, the dealer is clearly faulty and all the players take a
fixed default set of shares to represent the dealers secret. Like-
wise, if the dealer did not answer all the broadcasted requests or
if the public information contradicts itself he is declared faulty.
Otherwise, the complaining players take the public information
as their shares.

It is easy to see that if the dealer shares his secret correctly, then the cor-
rupted players do not learn anything new from this communication and the
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shares held by honest players consistently determine s, the dealers secret.
This proves one part of

Proposition 5.5 As long as the set of honest players is authorized and the
set of corrupted players is unauthorized, the above protocol results in the
correct players holding consistent shares s; of some secret s € F.

Proof. Because of the above remark, we have only to look at the case where
the dealer plays faulty. If the dealer is recognized to play faulty, so that the
players take the default set of shares, the theorem is clearly true. Otherwise,
the honest players, say B, end up with matrices U;, either received in the
distribution phase or after accusing the dealer, such that M;U! = (M;U})!
for all 7+ and j in B. Indeed, if there still was some disagreement between
honest players, the protocol would not be finished. As B € T', there exists
vy with Mbvy = e;. Therefore, for 1 € B

S, = Uz-el = Ul'M]t;VB = (MBU:)tVB = MiUEVB

Thus, the s; form a consistent set of shares for the players in B.

O
As the above secret verification only provides consistent shares s; but not
necessarily consistent matrices U;, 1. e. matrices of the form U; = M; X for a
fixed matrix X chosen as in the distribution phase of scheme 4, we can only
guarantee that the secret, determined by the s;, can efficiently be computed
if there are no corrupted players in the reconstruction phase. But as we
assumed that there are cheaters in the secret verification, this is not a realistic
scenario.
In the following scheme, the secret can be reconstructed efficiently even if
there are corrupted players in the reconstruction phase.

Scheme 5

Distribution phase. (R, M,e;y) is public knowledge. Let s € E
be the secret. The dealer chooses the matrix X as in scheme
4. Further, he chooses random symmetric matrices X; € R*°,
J = 1,...,e, with the restriction that the first column of X;
is equal to the j-th column of X. He then sends the matrices

Ui=MX and U;; = M; X, j=1,..., ¢, to player 1.
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To verify the secret, every player « € P checks if the first col-
umn of Uj; 1s equal to the j-th column of U; for y =1,...,e. If
a player finds disagreement, he accuses the dealer. Further, the
players apply the above secret verification protocol to the ma-
trices U;, Uiy, ..., Use. If a player ¢ € P accuses the dealer, the
dealer has to make public 7’s matrices U;, Uy, . . ., Ue.

Reconstruction phase. The secret can now be reconstructed as in
scheme 4 using the matrices U,.

It is clear from proposition 5.5 that the s;, the first columns of the U;, define
a secret s. Further, if the dealer is honest, then s is the secret he shared.
The following proposition, together with proposition 5.4, guarantees that the
secret can be recovered even if some players play faulty.

Proposition 5.6 The U; of the honest players, either received in the begin-
ning of the distribution phase or after having accused the dealer, are of the

form U; = M;X for a fized matriz X and fulfil M;U! = (M,U;)t

Proof. Proposition 5.5 guarantees that the first column of U;;, and therefore
the j-th column of U;, is of the form M;x;. Hence, U; = M; X for the matrix
X = (x1,...,%.). The equality M,U}! = (MiU;)t for honest players ¢ and j
follows from the fact that there are no accusations against the dealer anymore.

O

We have to ensure that this scheme is still perfect.

Proposition 5.7 If A is an unauthorized subset of players, then the matrices
U;,Un,..., Ui for i € A reveal nothing about the secret.

Proof.  Let A be an unauthorized subset. Consider the linear function
that maps an (e + 1)-tuple of matrices (X, X;,...,X,) as in the scheme,
1. e. all symmetrical and the first column of X; equals to the j-th column
of X, to the (e + 1)-tuple of matrices (M4 X, M4 X,,...,M4X.). To prove
the proposition it is sufficient to show that for every element y € E there
exists a (e + 1)-tuple (Y. Y7,...,Y.) in the kernel of this linear function such
that y is in the upper-left corner of Y. Let a = (Ay,...,A.) € Ker M4 C R°
with Ay = 1. a® a i1s defined as in the proof of proposition 5.3 as the
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matrix (AiAj) and a ® a -y as the matrix (A Ajy). Now it is easy to see that
Y=a®@a -y,Yi=Ma®a-y,...,Y. = lca® a -y is exactly what we are
looking for. Remember that Ay = 1.

O
Therefore, we have proven

Theorem 8 If the access structure T' is computed by an efficient extended
span program over R, then there exists an efficient, verifiable and perfect
secret sharing scheme over E for T'.



Chapter 6

Application:
RSA Function Sharing

If the secret key of a digital signature scheme, for instance RSA [20], is
shared among a set of people with some secret sharing scheme, then an
authorized subset of these people can reconstruct the secret key and sign
any message, whereas an unauthorized subset cannot. But after one such
signature has been realized, the secret key is known to every single person of
this authorized subset and even to others who have silently listened to the key
reconstruction. So everyone of these persons can now sign messages on their
own. In this chapter we will present an RSA function sharing scheme which
enables an authorized subset of people to sign messages without computing
the secret key. And this even 1if some players play faulty and try to sabotage
the signing.

In [9] de Santis et al. investigated threshold function sharing and gave
sufficient conditions for functions to be sharable. Especially, they presented
a threshold scheme for the RSA function [20]. Using their scheme and em-
ploying extensions developed of [18, 19] and [5], Gennaro et al. developed
in [11] a robust (and even verifiable) (¢,1)-threshold RSA function sharing
scheme.

We will now use our results about secret sharing schemes based on span
programs to build up an RSA function sharing scheme for any access struc-
ture which is computed by a span program. Further, we will extend this to
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a robust scheme. We have to be aware that the robustness we achieve 1s
somewhat weaker than the robustness achieved by Gennaro et al. in [11]. If
we apply our scheme to a (¢, [)-threshold access structure, we have to demand
that, besides not more than ¢+ — 1 corrupted, at least 2¢ — 1 honest players
are present in the reconstruction phase, whereas in [11] only ¢ honest players
are needed.

6.1 Definitions

Let T be an access structure over the set of players P = {1....,l}. Further,
let F' be some set of functions with common domain. A function sharing
scheme for I' contains two algorithms, the first, the distribution algorithm,
which will be executed by the dealer, takes as input a function f in F and
outputs, besides some public information, [ share functions fi,..., f;, each
being privately sent to the corresponding player, such that any authorized
subset of players can compute the function evaluation f(z) for any z in the
domain of f from their partial function evaluations f;(z) using the second
algorithm, the evaluation algorithm, yet an unauthorized subset of players
cannot, using any method.

We call a function sharing scheme perfect if for any unauthorized subset A
the following property is fulfiled. Given a set of tuples (z;, f(z;)), then the
corresponding partial function evaluations f;(z;) of all players i € P, the
share functions f; of the players ¢ € A plus the public information give away
no more information about f(z) for a fix x as the (z;, f(z;)) alone.

The definition of an efficient function sharing scheme is analogue to the one
of an efficient secret sharing scheme given in chapter 2. That means, we
are looking at a whole family of access structures, indexed by the number
of players [, and a whole family of sets of functions, indexed by &, and the
distribution and the evaluation algorithm must run in polynomial time in
max(/,log k).

Whereas a secret sharing scheme is a one-time operation in the sense that
after the reconstruction phase the secret is revealed, in a function sharing
scheme the secret function is never revealed and therefore reusable many
times.

Analogue to secret sharing schemes we can define zero-knowledge and minimal-
knowledge function sharing schemes. A function sharing scheme is called
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(statistical) zero-knowledge if the following holds. Any unauthorized subset
A can, with their knowledge before the function distribution, construct a in
max(/,log k) polynomial time algorithm that takes a polynomial number of
tuples (z;, f(z;)) as input and outputs simulated share functions f, for the
players ¢ € A, partial function evaluations f;(z;) for all i € P and z; plus
public information, everything (statistical) indistinguishable from the corre-
sponding information generated in the scheme for the function f. It is clear
that a zero-knowledge function sharing scheme must be perfect.

A function sharing scheme is called (statistical) minimal-knowledge if any
authorized subset A can, with their knowledge before the distribution, con-
struct a polynomial time algorithm which takes a function f and a polynomial
number of elements z; as input and outputs simulated share functions f; for
the players ¢ € A, partial function evaluations fl(:zzj) for all players 7 € P and
public information, all (statistical) indistinguishable from those generated in
the scheme for the same function f.

A zero-knowledge and minimal-knowledge function sharing scheme guaran-
tees that the players of a subset—authorized or unauthorized—get only that
amount of information they are supposed to get and nothing more.

The basic idea for sharing an RSA function m — m?® is the following. We

share the secret exponent s using a secret sharing scheme. In the evaluation
phase, every participant ¢ computes from his share s; and the function input
m the partial function evaluation ¢; = m® such that ¢ = m® can be computed
from the ¢;.
Of course, such an RSA function sharing scheme can only be as secure as RSA
itself. Indeed, if an adversary is able to compute the exponent s from the
values m and ¢ = m?®, then the function is revealed after one evaluation, even
though the scheme is be perfect. But if we assume that RSA cannot be broken
efficiently in the sense that there exists no polynomial time algorithmm which
computes m® from a polynomial numbers of tuples (rmy,m3), (ma, ms), ...,
all m; different from m, then a zero-knowledge and minimal-knowledge func-
tion sharing scheme guarantees that no unauthorized subset can compute (in
polynomial time) ¢ = m® for a new m, even after having listened to (a poly-
nomial number of) function evaluations being computed with the evaluation
algorithm.
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6.2 Preliminary

During the whole chapter let n be the RSA composite, 1. e. n = pq for two
large primes p and ¢, and ¢(n) = (p — 1)(¢ — 1), the order of Z}. The
group Zg,) can be seen as a Z-module. If for a given access structure T'
there exists an (efficient) extended span program (Z, M, e;) that computes
', then the secret exponent s € Zg(,) can be shared using M. But it might
be that, to get an appropriate span program, we have to extend the ring
Z and therefore the module Zg (), as in sections 3.2 and 3.3, to Z[u] and
(Z o)™, respectively, where u is a zero of a irreducible monic polynomial
f(X) = fot + faar X™ '+ X™ € Z[X], fu # 0, for instance the
cyclotomic polynomial f(X) =1+ X 4 --- 4+ X"~! for a prime r. We will
denote R = Z[u] and E = (Zy(n))™ and, further, H = Z}. For h € H and
X = (21,...,2m) € E we define the x-th power of h as

KX = (h™,...,h™) € H™

Note that as ¢(n) is the order of H, A% is well defined for z; € Z y(n)- We have
to be aware that h* is not an element of H but of H™. If multiplication in H™
is meant component-wise we can further define for h = (hy,... , hy,) € H™
and A = Ao+ Mu+ -+ N\_qu™ ! € R the A-th power of h, h* € H™, as

follows.

h)\ — h)\g h/\lu . h)\m_lu"”_
where recursively

h/\iui — (h/\iui_l )u

and

h = (A),...,hY)  and
h* = (Al bl A BT

See the similarity to the scalar multiplication on E, defined in section 3.3.
We have to be aware that the elements of E act as powers on H whereas the
elements of R act as powers on H™. We leave it to the reader to prove that
the following exponentiation rules hold.
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XY —  pXRY h*M# = h*h*
(gh)* = g*h* (gh)* = g'n’
h/\x _ (hx)/\ h)\u — (h)\)u (61)
h(O,...,O) -1 h() - 1
h(l,...,l) — (h’ . ’h> hl — h

forall g,h € H,g.he H” , x,y € E and A\, u € R.

As a final remark of this section we want to stress that the value m*®, m €
Zy and s € Z (), is the first entry of the tuple m(0:0) with (s,0,...,0) € E.
Hence, if we can find a scheme that shares the function H — H™,m — m®
for s € E, then we automatically have a function sharing scheme for the RSA
function H — H,m +— m® for s € Z ().

6.3 RSA Function Sharing without Cheaters

Let R = Zu], E = (Zy(n))™ and H = Z} as in the previous section. The coor-
dinates of E = (Z,(,,))™ will be represented by integers in {0,1,...,p(n)—1}.
The case r = 1 which yields to the special case R = Z and E = Z ) is al-
lowed. In this section we will not worry anymore about the fact that the
elements of R and E are polynomials in u and m-tuples but see them as
formal objects of the ring R and the R-module E and use the exponentia-
tion rules (6.1) when acting on H™ and H, respectively. Also, H™ with the
component-wise multiplication can be seen as a formal group. Finally, let
(R, M, el) be an extended span program computing an access structure T

Before we can present the function sharing scheme we have to introduce
some notation. For an element h € H and a matrix U = (u)) with entries
in B we write

hU — (hujk)

Note that the entries of the matrix AV are elements from the group H™.
Further, if K’ = (k;j) and S = (sx) are matrices with entries in R and H™,
respectively, such that the number of columns of K is equal to the number
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of rows of S, then XS denotes the matrix

Kg = (H s50 ik
J
having the same number of rows as K and the same number of columns
as §. If we would write the exponentiation and the multiplication in H™
as (scalar) multiplication and addition, respectively, then %S would be the
normal matrix multiplication K S.
The following rules are easy to verify. For all matrices S and T with entries in
H™ hY as above and K and L with entries in R, all with suitable dimensions,
it 1s
K(hV) = RKV
e’y — (s11, 812, - - .), the first row of §
KLg = KIg)
KS.T) = K§.57

where in the second equation e; is a row vector and in the last equation the
multiplication is meant component-wise.

Now we are equipped to present the scheme that shares the function
H — H™ m — m?® for every secret exponent s € E.

Scheme 6

Distribution phase. Let s € E be the secret exponent. The dealer
shares s as in scheme 3. For 1 € P let s; denote player ¢’s share.

Evaluation phase. Let A be in I' and m € H the input of the
secret function. Further, let v4 be such that M{v, = e;. Every
player 1 € A computes and broadcasts the partial function evalu-
ation ¢; = m® and then computes ¢ = VACCA, where ¢4 1s the
superposition of the ¢;, 1 € A.

Note that R = Z[u] 2 Z[X]/< f(X) >, therefore, according to corollary A.5,

the vector v can be computed.

Proposition 6.1 The value ¢ computed in the evaluation phase of scheme
6 is equal to the function evaluation m?.
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Proof. It A €T and s4 denotes the superposition of the s;, ¢+ € A, then

c="Vic, = vAt(msA) = mVa's4 = pivasal = s

which 1s what we claimed.

O
Because a tuple message and signature, (m, m*), already uniquely defines the
secret s, the share functions and the partial function evaluations give no fur-
ther information about s, hence, according to the definition given in section
6.1, scheme 6 1s perfect. But this is of course not satisfactory. What we want
is that the share functions of an unauthorized subset and the partial function
evaluations cannot be used to compute something (efficiently) which cannot
be computed from (m, m®). So we want the scheme to be zero-knowledge.
A necessary condition for zero-knowledge is that the shares (the share func-
tions) of an unauthorized subset can be simulated. In the threshold case,
this can be done by choosing random elements as mentioned in section 3.4,
but it is easy to see that this simulator fails in the general case. Indeed, if,
for instance, one row of A only consists of even numbers (i. e. of multiples
of two), then the corresponding coordinate of the share must be even as well
(as also ¢(n) is even). Further, if one row of M; only consists of multiples of
a positive integer k, but k does not divide the corresponding coordinate of
the share, then ¢(n) cannot be a multiple of k. So it seems that scheme 6
1s 1n fact not zero-knowledge, even though it seems to be secure in the sense
that there exists no method which allows an adversary to compute ¢(n) effi-
ciently. In the following section we present a modification of scheme 6 which
1s statistical zero-knowledge if the number of players is constant.

6.4 Zero-Knowledge RSA Function Sharing

Let E' = Z™, seen as a module over R = Z[u] with the scalar multiplication
as in section 3.3. For a < b € Z we define the interval

[a,0] = {(z1,...,2m) EE' |a<z;<bfori=1,..m} CE

Note that the interval [a,b] consists of (b —a + 1)™ different elements.
Before we can present the scheme we have to introduce some kind of a norm

in R and E'.
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For \= X+ -+ Apoi™ ' € R = Zluland z = (z1,...,2,) € E' =727

we define |A| and |z| as

= max |
ol = maxa
where | - | stands for the absolute value of an integer. It is clear that for an

integer a > 0 the set {z € E'||z| < a} coinsides with the interval [ — a, +a].
Further, we have the following rules.

Lemma 6.2 All A € R and x,y € E’ fulfil

2] + Iyl
[Allz[A

|z +yl

<
Az| <

where A only depends on f(X).

Remember that f(X) = fo + -+ fmo1 X™ ' + X™ is the irreducible poly-

nomial of which v is a zero.

Proof. The first inequality should be clear. To prove the second, let A =
Mo+ o+ Apou™ ! and § = max|f;|. From the definition of the scalar
multiplication on E’ it follows that |A\;z| < |A||z| and |uz| < (1 + d)|z| and
therefore (for x # 0)

Pel = Qo+ + Amoru™ ]
|)\0| + |)\1|||UI|| +--- 4+ |)‘m—1|||um_1;c||
L+ I+ O]+ - + I+ 8)™ e

(14 el + 5 =)

14+6—(14+9)m2
e (1 - 2= 0O

<
<

IN

(146721
5

which proves the second inequality if we put A = ((1+4§)™"2 —1)/4.

N A
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From now on, we again forget that the elements of R are polynomials in u
and the elements of E’ m-tuples and just use the fact that E’ is a module
over R, that the above proposition holds and that an interval [a, b] contains
(b —a+ l)m different elements of E’.

For vectors a = (A1,...,A) € R® and x = (1,...,2.) € E' we define

la = max|xd

x| = maxed

It is clear that for an integer a > 0 the set {x € E"|||x|| < a} coinsides with
the set [ — a, +a]” and that the following corollary follows straight from the
above proposition.

Corollary 6.3 AllAX € R,a= (\,...,A.) € R°, x € E' and x,y € E" fulfil

Ix+yll < [x[+ [yl
Ax[| < Alllx]lA
la-z| < [afz]A
where a- x is defined as a-x = (Az,..., Ax).

It is clear that the following scheme is correct in the sense that an autho-
rized subset can, from their shares, compute ¢ = m® for any given m.

Scheme 7

Distribution phase.  Let s € [0,¢(n) — 1] be the secret (or,
to be precise, a representation of the secret). The dealer puts

X = (8, Z3,...,x.) where the coordinates z; are chosen at random
from [ — n?,+n*] C E'. Then, he privately distributes the shares
s, = M;x € E'di,

Evaluation phase. Let A be in I' and m € H the input of the
secret function. The players in A compute the function evaluation
¢ =m?* as in scheme 6.

Proposition 6.4 If the number of players | (and the access structure) is
constant, then, for an unauthorized subset A, the simulation §, = M X with
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x = (0,22,...,2.) and the z; € [ — n?, +n?] chosen at random is statistical
indistinguishable from the shares generated by the scheme for any secret s.

Proof. The claim 1s certainly true for the secret s = 0. For an arbitrary
s, we know that x = X + a - s has s as first entry and solves M x = 8§y,
where a € Ker M4 with first coordinate 1. The probability that this x lies
in [ —n? +n?]° is

Pllx|| <n*] = P[[x+a-s| <n?]
> P[] <n®—a-s]]
> P[[x]| < n*—]a]lls|A]
> P[] <n® —|all(¢(n) —1)A]
> P[|x]| < n* —n|la]|A]
_ <2<n2 — nlal]a) + 1>’”<@‘”
2n? +1
. ( 1 Jalla L )"“*”
T \l+55 n+5 20241

As the numbers ||a]|, A, rn and e only depend on the number of players and
the span program, this final value differs only by an exponentially (in logn)
small number from 1, which proves the claim.

O

Proposition 6.5 If the number of players | (and the access structure) is
constant, then scheme 7 is statistical zero-knowledge and perfect minimal-
knowledge.

Proof. Tt is clear that scheme 7 is minimal-knowledge, as an authorized
subset can use the scheme itself as a simulator. To show that it is statistical
zero-knowledge, let A be an unauthorized subset. The players in A can
simulate their shares s4 = M4X according to the previous proposition. Let
m € H and ¢ = m®. We have to show that, knowing (m, ¢), the players in
A can simulate the corresponding partial function evaluations ¢;. For this
let a = (A,...,A) € Ker My with the first coordinate 1. We know that
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X = X + a- s fulfils Myx = s4, has s in the first location and is not in
[ — n?, +n?] with only an exponentially small probability. Therefore,

Cp\a = mMP\ax
mMp\aX ., Mp\a(a:s)

mM'p\Ai MP\A(ma-s>

— mMP\Ai MP\A<m(A15,...,AeS)>
— mM'P\Ai M'P\A(m}‘ls’ el m}\gS)
mMP\aX Mpra(h A

which is consistent with €4 = mS54, is statistical indistinguishable from partial
function evaluations generated by the scheme.
O

Hence, the following theorem is proven.

Theorem 9 If for a constant number of players the access structure T' is
computed by an extended span program over some extension ring of Z, then
there exists an efficient statistical zero-knowledge and perfect minimal-knowl-
edge RSA function sharing scheme for T.

6.5 Robust RSA Function Sharing

We will now present a robust RSA function sharing scheme which is based
on the robust secret sharing scheme introduced in the last chapter. Let R,
E, H and (R, M, e;) be as in the previous sections.

Scheme 8

Distribution phase. Let s € E be the secret exponent. The dealer
shares s as in scheme 4.

Evaluation phase. Let A = BUC be the set of players who want
to evaluate the secret function at some input m € H such that
B, the honest players, and C, the corrupted players, fulfil (5.1).
Every player ¢ € A computes and broadcasts R; = mY. The first
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column of R; is the actual partial function evaluation c;. Let RZ
be what player 1 claims to be R;. Analogue to scheme 4 every
player computes for all i € A D; = {j € A|™R! # ("R})"} and
D={ie A|D, ¢T}.

The function evaluation ¢ = m?

can now be computed as in
scheme 4 using the partial function evaluations ¢; with + € D.

Proposition 6.6 The set D computed in the fault detection phase of scheme
8 contains all the honest players but no corrupted player who gave a wrong
partial function evaluation c;.

Note that MiRt = Mi(mUi) = mMi¥ = mMU" = (MiRz-)t. So the proof of
this proposition goes analogue to the proof of proposition 5.1. The crucial
point here is that if R; differs in the first column from R;, then MJRf = (M"R;-)t
holds at most for an unauthorized set of players j. This follows straight from

Lemma 6.7 Let S and T be equal dimensional matrices with entries in H™
and different first rows s and t. Then Mi§ = MiT holds at most for an
unauthorized set of players j.

Proof. Let MpS = MoT for a set D € T, i. e. e, is of the form e; = Mhvp.
Therefore, if the fraction stands for component-wise division, then

615’ (M}')VD)tS VDb<MDS>

S t MDS t
- = — = n —_= P :VD :VD(]_>:]_
t T (Mpvp)T  Vvp{(MoT) MpT

where (1) stands for the l-matrix and 1 for the l-vector. But this is a
contradiction to s # t.

O
Analogue to the case with no active adversaries, scheme 8 can be modified to
a scheme which is statistical zero-knowledge and perfect minimal-knowledge,
assumed that the number of players is constant.
Therefore, we finally have

Theorem 10 If for a constant number of players the access structure T' is
computed by an extended span program over some extension ring of Z, then
there exists an efficient, statistical zero-knowledge, perfect minimal-knowledge
and verifiable RSA function sharing scheme for T.
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If we use the verifiable secret sharing scheme 5 instead of scheme 4 to share
the secret exponent in scheme 8 and add two sub protocols, the first one
verifying that the modulus n was chosen properly and the second that the
secret s really is the inverse of the public key (modulo ¢(n)), then we even get
a verifiable RSA function sharing scheme. The correctness of the modulus
and the secret key could be verified in the following way. The dealer publishes
a large number of modulus, the players choose one at random and the dealer
shows that all the others were chosen properly by revealing the corresponding
prime numbers. After this and after the players convinced themselves that
the shares really define some secret, they can sign some messages chosen at
random and verify the signatures with the public key. This guarantees that
a faulty dealer will be detected with great probability.



Chapter 7

Conclusion

After proving that for every efficient finite R-module E, where R is a com-
mutative ring with 1, and for every threshold #, there exists an efficient,
perfect and homomorphic (¢,7)-threshold scheme, we introduced extended
span programs, a generalization of the span programs defined by Karchmer
and Wigderson in [14], and showed how extended span programs give rise
for secret sharing schemes over modules for general access structures. We
proved that if in the ring R linear equation systems can be solved, which is,
for instance, the case for the familiar rings Z, Z,,, Z[X] and Z[X]/< f(X) >,
then for every access structure which is computed by an efficient extended
span program there exists also an efficient, perfect and homomorphic secret
sharing scheme over E. Further, we showed how this scheme can be made
verifiable, 1. e. secure against a faulty dealer and faulty players. Hence, we
showed that the three improvements to the Shamir-scheme we mentioned in
the introduction, namely

e general access structures,
e security against active adversaries and

e more general secret-space, namely modules instead of fields,

which every one on its own has already been achieved, can be unified in
one scheme. As an application, we presented a statistical zero-knowledge
and minimal-knowledge verifiable RSA-function sharing scheme. A question

38
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we have not answered is the following. If we allow an active adversary an
exponentially small success probability, can we weaken the lower bound for
the honest players? Amnother open problem is how far the efficiency of the
schemes presented can be improved. We also showed how such an extended
span program can be constructed, given a monotone circuit consisting of
threshold gates that recognizes the access structure, such that the size of the
span program is about the size of the circuit. A question that occurs herewith
is for which methods to describe an access structure there exists (and can
be computed) an extended span program of the size of the description of the
corresponding span program.
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Appendix A

Linear Equation Systems over
Rings

In the chapters 4 and 5 we assumed that in the commutative ring R with 1
a linear equation system Ax = b can be solved efficiently, at least if there
exists a solution. We will now have a closer look at this problem and show
that such an equation system can be solved for instance in the rings Z, Z,,

Z[X] and Z[X]/< f(X) >.

First, we have to specify what exactly we mean by solving an equation
system. For our purpose it would be enough to demand that one solution
can be computed. Nevertheless, we say that in the commutative ring R with
1 linear equation systems Ax = b with A € R%*® and b € R? can be solved, if
there exists an algorithm that takes A and b as input and, in the case there
exists a solution, computes vectors Xg, vy, ..., V, such that x solves Ax = b
if and only if x € {xg+ A\ Vi 4+ XV, | A,..., A € R}. If there exists no
solution to the equation system, the algorithm must be able to detect this.
We do not worry too much about efficiency.

Before we investigate in what kind of rings linear equation systems Ax = b
can be solved, we prove

Proposition A.1 Iflinear equation systems can be solved in the ring R, then
they can also be solved in the rings R[X]| and R/a for all finitely generated
ideals a in R.

60
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Proof. Let Ax = b be a linear equation system over R[X]. By comparing
the terms with the same power of X, we get a linear equation system over R
which 1s equivalent to Ax = b. Now consider the equation system Ax = b
(mod a) with A € R™** b € R and a = <),...,\y, > C R. Then the
equation system Ax = b  (mod a) can be solved by computing X, y1,...,¥m
with AX =b+ Ay, +... 4+ Anym. But this is a linear equation system over
R and therefore can be solved.

O
We first show that linear equation systems can be solved if (and only if)
linear equations (a,x) = b can be solved, in the same sense.

Proposition A.2 If there exists an algorithm that solves linear equations
(a,x) = b, a € R°, then there also exists an algorithm that solves linear
equation systems Ax = b, A € R¥*°,

Proof. By induction on d, the number of rows of A, we show that Ax = b
can be solved if there exists at least one solution. There is nothing to prove
for d = 1. So let now d > 1. Further, let a and b be the first row of
A and the first coordinate of b and A" and b’ the collection of the other
d — 1 rows and coordinates, respectively, 1. e. A = (:,) and b = (g,). By
assumption, a vector xo € R® and a matrix V € R“*" can be computed
such that x = xg + Vy, y € R", are exactly the solutions of (a,x) = b,
the first row of the equation system. Note that this first row must have a
solution as the whole system has one. The solution x also fulfils the other
rows if and only if b’ = A'x = A'(xg + Vy) = A'xg + A'Vy, i. e. if (and
only if) y solves the equation system A'Vy = b’ — A'x,. Recursively, we can
compute a vector yg € R" and a matrix W € R"™**, such that y =y, + Wz,
z € R?, are the solutions of A’Vy = b’ — A'x(. It now follows that the vectors
X =X+ Vy =%+ V(yo+ Wz) = (x0 + Vyo) + VWz, z € R, are the
solutions of Ax = b.
It is clear that if Ax = b has no solution, then this is detected.

O
An Euclidean domain is an integral domain R which has the following two
properties.

JN:R\ {0} - N: N(ab) < N(a)Va,be R
Va,be R,b#03q,r e R:a=bg+r, r=0o0r N(r) < N(b)



APPENDIX A. LINEAR EQUATION SYSTEMS OVER RINGS 62

It 1s known that an Euclidean domain is a principal ideal domain and that
the extended Euclidean algorithm can be used to compute, for given a,b € R,
elements s,t € R such that sa + tb = ged(a,b). By applying the Euclidean
algorithm n — 1 times it is even possible, for given ay,...,a, € R, to com-
pute si,...,s, € R such that sja; + -+ + spa, = ged(ay, ..., a,), 1. e. to
compute one solution of a linear equation (a,x) = b where b is a multiple
of ged(ay,...,a,). We will in the following show that all solutions can be
computed. First, we look at homogene equations.

Proposition A.3 Let R be an Euclidean domain. Then homogene, linear
equations (a,x) = 0, a € R°, can be solved.

Proof. We may wlog assume that no coordinate of a = (ay,...,a.) is zero
and that ged(ag,...,a.) = 1. The case ¢ = 1 is trivial. Let now e¢ > 1.
Set d = ged(ay, ... a.) and vy = (‘Z), where the vi fulfils (a’,v]) = —da,
for ' = (ag,...,a.). Vi can be computed with the extended Euclidean
algorithm. Further, for ¢ = 2,...;e — 1, let v; = (‘?5) where v, ..., Vv._| €
R, recursively computed, span the solution space of (a’,x’) = 0. It is
clear that vy,---,ve_; are solutions of (a,x) = 0, we will now show that
they span the whole solution space V. Let V be spanned by the vectors
Wi, Wa,.... It is easy to see that for + = 1,2,... the first coordinate of w;,
say w;, must be a multiple of d. Therefore, %t is an integer and the vectors

’d
Vi, Wy _w_lvlaw2_ L

w2

Vi,... also span V. But w; — %v, is of the form

d d d
w; — SV, = (‘31’-) where W/ solves (a’,x’) = 0 and therefore w; — “ivy can
be written as a linear combination of the vy, ..., v._;, which proves that the
vectors vy,...,V._; span the whole solution space V.
O

Proposition A.4 Let R be an Fuclidean domain. Then linear equations
(a,x) =b, a € R, can be solved.

Proof. We may wlog assume that no coordinate of a i1s zero. There exists
a solution if and only if b 1s a multiple of the greatest common divisor of
the coordinates of a. Therefore a solution Xq of (a,x) = b can be computed
using the extended Euclidean algorithm. The solution space 1s now given by
Xo + A\Vy + -+ + A1 Ve_; where the vectors vy, -+, v._; € R®, computed
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according to the previous proposition, span the solution space of the homo-
gene equation (a,x) = 0.

O
;From this and from proposition A.1 it follows

Corollary A.5 In the rings Z, Z,, Z|X]| and Z[X]/< f(X) > linear equation

systems can be solved.

The problem is that if we solve a linear equation system Ax = b over R = Z
using the method described in the proof of proposition A.2; then the numbers
involved might grow exponentially.

A more efficient method would be the following, using the L* algorithm to
compute the kernel of a matrix with integer entries [7, p. 98]. Note that
Ax = b is equivalent to (b, A) (ff) =0, 7o = —1. Using the L? algorithm,
we get a matrix V' such that Ker(b,A) = {Vy |y € Z°}. If we further
compute yg and W such that {y, + Wz |z € Z*'} is the solution space of
(v,y) = —1, where v is the first row of V, then {Vy,+ VWz|z € Z°'} is
the solution space of (b, A) (”;0) =0, z9=1.

In this context, it would be interesting to find out if the L* algorithm also
works for other rings, for instance for other Euclidean domains.
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