
Round-Efficient Byzantine Agreement and Multi-Party
Computation with Asynchronous Fallback

Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang⋆

{gdeligios,hirt}@inf.ethz.ch, ETH Zürich
cliuzhan@andrew.cmu.edu, Carnegie Mellon University

Abstract. Protocols for Byzantine agreement (BA) and secure multi-party computation (MPC)
can be classified according to the underlying communication model. The two most commonly con-
sidered models are the synchronous one and the asynchronous one. Synchronous protocols typically
lose their security guarantees as soon as the network violates the synchrony assumptions. Asyn-
chronous protocols remain secure regardless of the network conditions, but achieve weaker security
guarantees even when the network is synchronous.
Recent works by Blum, Katz and Loss [TCC’19], and Blum, Liu-Zhang and Loss [CRYPTO’20]
introduced BA and MPC protocols achieving security guarantees in both settings: security up to ts

corruptions in a synchronous network, and up to ta corruptions in an asynchronous network, under
the provably optimal threshold trade-offs ta ≤ ts and ta + 2ts < n. However, current solutions
incur a high synchronous round complexity when compared to state-of-the-art purely synchronous
protocols. When the network is synchronous, the round complexity of BA protocols is linear in the
number of parties, and the round complexity of MPC protocols also depends linearly on the depth
of the circuit to evaluate.
In this work, we provide round-efficient constructions for both primitives with optimal resilience:
fixed-round and expected constant-round BA protocols, and an MPC protocol whose round com-
plexity is independent of the circuit depth.

1 Introduction

1.1 Motivation

Byzantine agreement (BA) and secure multi-party computation (MPC) are two fundamental
and widely explored problems in distributed computing and cryptography.

The general problem of MPC allows a set of n parties to correctly carry out an arbitrary
computation, without revealing anything about their inputs that could not be inferred from
the computed output [45, 46]. Such guarantees must hold even when a subset of the parties are
corrupted and actively deviate from the protocol specification. BA can be seen as an instance
of MPC, in which the function to evaluate guarantees agreement on a common output [42, 44]
and privacy is not a requirement. Protocols for BA are often used as building blocks within
larger constructions, including crucially in MPC protocols, and have received renewed attention
in the context of blockchain protocols (starting with [38]).

There are two prominent communication models in the literature when it comes to the design
of such primitives. In the synchronous model, parties have synchronized clocks and messages
are assumed to be delivered within some (publicly known) delay ∆. Protocols in this setting
achieve very strong security guarantees: under standard setup assumptions, BA [22, 30] and
MPC [4, 5, 7, 15, 18, 19, 21, 25, 26, 28, 43] are achievable even when up to t < n/2 parties are
corrupted. However, the security of synchronous protocols is often completely compromised as
soon as the synchrony assumptions are violated (for example, if even one message is delayed
by more than ∆ due to unpredictable network delays). This is particularly undesirable in real-
world applications, where even the most stable networks, such as the Internet, occasionally
experience congestion or failures. In the asynchronous model, no timing assumptions are needed,
and messages can be arbitrarily delayed. Protocols designed in this model are robust even
in unpredictable real-world networks, but the security guarantees that can be achieved are

⋆ This work was partially carried out while the author was at ETH Zürich.

significantly weaker. For example, protocols in this realm can only tolerate up to t < n/3
corruptions [8, 14, 24].

As a consequence, when deploying protocols in real-world scenarios, one has to decide be-
tween employing synchronous protocols —risking catastrophic failures in the case of unforeseen
network delays —or settling for the weaker security guarantees of asynchronous protocols.

1.2 Contributions

A recent line of work [9, 11] provides BA and MPC protocols that are secure up to ts < n/2
corruptions when the network is synchronous, and ta ≤ ts corruptions when the network is
asynchronous, for the optimal trade-off ta + 2ts < n.

Such protocols strive to achieve the best of both models, but current solutions are far from
being efficient, especially when it comes to running time; in this paper, we focus on minimizing
round complexity when the network is synchronous. This is of primary importance in typical
scenarios, where the network is stable and synchronous most of the time, but may suffer from
unexpected congestion.

Current BA and MPC protocols in this realm [9, 11] require a linear number of rounds in
the number of parties. Moreover, known MPC protocols [11] also have linear round complexity
in the depth of the circuit to evaluate.

This is in contrast to the efficiency of state-of-the-art purely synchronous protocols: fixed-
round BA protocols (Monte-Carlo type) require only O(κ) rounds, and BA protocols with
probabilistic termination (Las-Vegas type) require an expected constant number of rounds.
Furthermore, current MPC protocols only require a constant number of broadcast rounds.1 We
therefore ask the following natural question.

Do there exist BA and MPC protocols that are 1) round-efficient and secure for up to
ts < n/2 corruptions in a synchronous network, and 2) secure up to ta < n/3 corruptions
in an asynchronous network?

We answer this question affirmatively by providing the following results.
Round-Efficient Synchronous BA with Asynchronous Fallback. We obtain the first BA
protocols in this realm that are round efficient when the network is synchronous and with the
optimal trade-off ta + 2ts < n, by providing fixed-round and expected constant-round construc-
tions. In doing so, we completely characterize the feasibility of a primitive that we believe to
be of independent interest: a round-efficient BA that is secure in a synchronous network for up
to ts-corruptions, and retains some weak validity guarantee even in an asynchronous network
up to ta-corruptions. We show that its optimal tradeoff is 2ta + ts < n and ts < n/2. As a side
result, we also provide a simpler construction of the primitive for the trade-off ta + 2ts < n. We
then use this primitive as a fundamental building block to design further round-efficient prim-
itives: broadcast protocols with similar guarantees, and also synchronous BA/MPC protocols
with asynchronous fallback.
Round-Efficient Synchronous MPC with Asynchronous Fallback. We obtain the first
synchronous MPC protocol with asynchronous fallback with optimal guarantees (i.e. ta+2ts < n
and (n−ts)-output quality as in [11]) that requires a constant number of all-to-all broadcast/BA
invocations. In particular, the round complexity is independent of the depth of the circuit. When
instantiating the broadcast/BA protocols with our constructions (in their fixed-round version),
we achieve a total round complexity of O(κ).2 For this, we adapt techniques based on garbled
circuits [46, 5, 20] to our setting.

1 This is when requiring full security. When striving for weaker security guarantees, such as security with abort,
there are solutions that run in a constant number of rounds (e.g. [3]).

2 Achieving such MPC constructions in the expected constant-round realm requires composing protocols with
probabilistic termination in a round-preserving fashion. We leave this interesting line of research for future
work. See [32, 16] for interesting discussions and challenges in this setting.

2

1.3 Related Work

Protocols achieving security guarantees in both synchronous and asynchronous networks have
only begun to be studied in relatively recent works. Closest to ours are works by Blum et al.
[9, 11], which consider the problem of BA and MPC achieving security guarantees in both
communication models. Our work improves upon the round efficiency of these protocols. In the
same setting, the work in [10] considers the problem of state-machine replication (SMR).

The work in [27] introduces a variant of the purely synchronous model, which allows for
network partitions, motivated by eclipse attacks. In this model, the adversary is allowed to
disconnect a certain fraction of parties from the rest of the network in each round. BA and
MPC protocols tolerating the optimal corruption threshold in this model are also provided. In
[2], similar results are achieved for SMR. These results are crucially different from ours, as they
rely on the fact that synchrony is maintained in part of the network. In contrast, our protocols
give guarantees even if the network is fully asynchronous.

Other works that provide hybrid security guarantees include BA achieving guarantees in
synchronous or partially synchronous networks [36], or guarantees against active corruptions in
a synchronous network and fail-stop in an asynchronous network [33].

A different line of work [39, 40, 35, 34] has recently investigated protocols that achieve re-
sponsiveness. These protocols operate under a synchronous network, and provide the additional
guarantee that parties obtain output as fast as the network delay allows. Note that these works
do not provide any security guarantees when the network is not synchronous.

2 Model

We consider a set of n parties P = {P1, . . . , Pn}. We denote by κ the security parameter.

2.1 Communication and Adversarial Models

We consider a complete network of authenticated channels. Our protocols strive to be secure in
the two main communication models in the literature: the synchronous and the asynchronous
models.

In the synchronous model, parties have access to synchronized clocks, and all messages
are delivered within a known delay 0 ≤ ∆ ∈ R. In this setting, protocols can be conveniently
described as proceeding in rounds: parties begin the protocol simultaneously, and the r-th round
identifies the time interval [(r − 1)∆, r∆) for all integers r ≥ 1. If a party receives a message
within this time interval, we say they receive a message in round r. When a party sends a
message in round r, it means they send it at time (r − 1)∆. Within each round, the adversary
can schedule the delivery of messages arbitrarily. In particular, we consider a rushing adversary
that generates the messages of corrupted parties after seeing all messages sent by honest parties.

In the asynchronous model, parties do not have access to synchronized clocks, and the
adversary can schedule the delivery of messages arbitrarily. However, the adversary cannot
drop messages, meaning that all messages are eventually delivered.

We consider a static adversary that can corrupt parties in an arbitrary manner at the
beginning of the protocol.3

2.2 Cryptographic Primitives

Public-Key Infrastructure. We assume that parties have access to a public-key infrastruc-
ture. This means parties agree on a set of public keys (pk1, . . . , pkn) and party Pi holds the
secret key ski associated with pki.

3 However, note that our protocols for BA are adaptively secure.

3

Definition 1. A (digital) signature scheme is a triple of algorithms (Sgn, Vfy, Kgn) such that:

– given the security parameter κ, the key generation algorithm Kgn outputs a public/secret key
pair (pk, sk) ∈ PK × SK;

– given a secret key sk ∈ SK and a message m ∈ {0, 1}∗, the signing algorithm Sgn outputs
S ∋ σ := Sgn(m, sk);

– given a message m ∈ {0, 1}∗, a public key pk ∈ PK, and a signature σ ∈ S, the verifying
algorithm Vfy outputs Vfy(m, σ, pk) ∈ {0, 1};

– Vfy(m, σ, pk) = 1 if and only if σ = Sgn(m, sk) where (pk, sk) is a key pair output by Kgn.

We require the signature scheme to be unforgeable against chosen message attacks.
Coin-Flip. Parties have access to a Coin-Flip functionality, parametrized by t, that allow mu-
tually distrustful parties to generate a common uniformly random bit.

Let k be a non-negative integer. Upon receiving message k from at least t + 1 distinct parties, sample coink

uniformly at random from {0, 1} and send message (k, coink) to all parties.

Functionality F t
CoinFlip

Such a functionality can be realized in the asynchronous model (e.g. [14, 1, 41]) under general
assumptions up to t < n/3 corruptions, or even 1-round using unique threshold signatures in
the random oracle model (e.g. [12]) up to t < n/2 corruptions.

3 Definitions

The definitions we give are somewhat non-standard, out of necessity to allow for different abort
behaviors depending on the network condition (synchronous/asynchronous), which is unknown
to the parties at the start of the protocol. If an honest party outputs symbol ⊤, this means
they detected (during the execution) that the network is asynchronous. Whenever desirable,
our definitions are equivalent to the standard notions.

3.1 Agreement Primitives

Byzantine agreement (BA) allows a set of parties (each holding an input) to agree on a common
value, even when a subset of parties has arbitrary behavior.
Definition 2. (Byzantine agreement) Let Π be a protocol executed by parties P1, . . . , Pn where
each party Pj holds input vj ∈ {0, 1} and terminates upon generating an output fj ∈ {0, 1, ⊤}.
We say protocol Π achieves

– (t-validity) if whenever up to t parties are corrupted: if there is v such that each honest
party holds input vj = v, then every honest party outputs fj = v.

– (t-weak validity) if whenever up to t parties are corrupted: if there is v such that each
honest party holds input vj = v, then every honest party outputs fj ∈ {v, ⊤}.

– (t-consistency) if whenever up to t parties are corrupted: there is v ∈ {0, 1, ⊤} such that
each honest party outputs fj = v.

– (t-liveness) if whenever up to t parties are corrupted: no honest party outputs fj = ⊤.

Together, the t-consistency and t-liveness properties imply the more widely adopted consistency
notion. If a protocol Π achieves t-validity, t-consistency, and t-liveness, we say it achieves t-
security (or that it is t-secure).

Weak consensus (WC) is a primitive that achieves a weaker form of agreement compared to
BA: it guarantees agreement among all the parties that output a bit, but parties are allowed to
output a special symbol ⊥.

4

Definition 3. (Weak consensus) Let Π be a protocol executed by parties P1, . . . , Pn where each
party Pj holds input vj ∈ {0, 1} and terminates upon generating an output fj ∈ {0, 1, ⊥, ⊤}. We
say protocol Π achieves

– (t-validity) if whenever up to t parties are corrupted: if there is v such that each honest
party holds input vj = v, then each honest party outputs fj = v.

– (t-weak validity) if whenever up to t parties are corrupted: if there is v such that each
honest party holds input vj = v, then all honest parties output fj ∈ {v, ⊤}.

– (t-weak consistency) if whenever up to t parties are corrupted: if an honest party outputs
fj = v ∈ {0, 1}, no honest party outputs fj = 1 − v.

– (t-liveness) if whenever up to t parties are corrupted: no honest party outputs fj = ⊤.

3.2 Broadcast Primitives

Broadcast (BC, sometimes called Byzantine broadcast) allows a designated party, called the
sender, to consistently send a message to multiple parties in the presence of active adversarial
behavior.

Definition 4. (Broadcast) Let Π be a protocol executed by parties P1, . . . , Pn where a designated
party P ∗ holds input v∗ ∈ {0, 1} and each party Pj terminates upon generating an output
fj ∈ {0, 1, ⊤}. We say protocol Π achieves

– (t-validity) if whenever up to t parties are corrupted: if the sender P ∗ is honest, then each
honest party outputs fj = v∗.

– (t-weak-validity) if whenever up to t parties are corrupted: if the sender P ∗ is honest, then
each honest party outputs fj ∈ {v∗, ⊤}.

– (t-consistency) if whenever up to t parties are corrupted: there is v ∈ {0, 1, ⊤} such that
each honest party outputs fj = v.

Gradecast (GBC) is a primitive that is similar to broadcast, but achieves a weaker form of
consistency guarantees.

Definition 5. (Gradecast) Let Π be a protocol executed by parties P1, . . . , Pn where a designated
sender P ∗ holds input v∗ ∈ {0, 1} and each party Pj terminates upon generating an output value
and a grade (fj , gj) ∈ {0, 1, ⊥} × {0, 1, 2}. We say protocol Π achieves

– (t-graded validity) if whenever up to t parties are corrupted: if P ∗ is honest, then all honest
parties output (v∗, 2).

– (t-graded consistency) if whenever up to t parties are corrupted:
a. there is a v ∈ {0, 1} such that all honest parties output either (v, 2), (v, 1) or (⊥, 0).
b. if some honest party outputs (v, 2) for any v ∈ {0, 1}, no honest party outputs (⊥, 0).

– (t-weak-graded validity) if whenever up to t parties are corrupted in an execution of Π:
if P ∗ is honest, then each honest party outputs either (v∗, 2), (v∗, 1) or (⊥, 0).

3.3 Multi-party Computation

A protocol for multi-party computation (MPC) allows a set of n mutually distrustful parties
(each holding an input vi) to correctly compute a function g(v1, . . . , vn) without revealing any-
thing about their inputs that could not be inferred from the output. The security of MPC
is usually described in the UC framework [13]. At a high-level, a protocol is secure if it is
“indistinguishable” from an ideal functionality with the desired properties.

We recall the ideal functionality for MPC with full security (where parties are guaranteed to
obtain the correct output), and with L-output quality (the number of inputs taken into account
for the computation), as introduced in [11].

5

Let P be the set of parties and let f : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗ be the function to be evaluated. For each
Pi ∈ P set xi = yi := ⊥. Set S := P.
1: On input (input, v) from party Pi ∈ P, set xi := v and output (input, Pi) to the adversary.
2: On input (output-set, S′) from the (ideal) adversary, where S′ ⊆ P, and #S′ = L, set S := S′ and

xi := ⊥ for all Pi /∈ S′.
3: Once all honest parties in S have provided input, set each yi = f(x1, . . . , xn).
4: On input (get-output) from party Pi, output (output, yi, sid) to party Pi.

Functionality F sec,L
MPC

A weaker notion of security is also of interest. In MPC with unanimous output, the ideal world
adversary can choose whether all honest parties receive the correct output or they all receive
symbol ⊤. We denote ideal functionality describing this security notion by Fuout,L

MPC .
Definition 6. An MPC protocol Π achieves t-full security (respectively t-unanimous output)
with L-output quality if it UC-realizes functionality F sec,L

MPC (respectively Fuout,L
MPC), whenever up

to t parties are corrupted in an execution of Π.

4 Round-Efficient Byzantine Agreement with Asynchronous Weak Validity

We study the feasibility and efficiency of BA protocols that are ts-secure when the network is
synchronous, and at the same time achieve ta-weak validity when the network is asynchronous.
This primitive is of independent interest, as it is used to construct BA protocols with asyn-
chronous fallback (see Section 5). Moreover, it turns out to be fundamental in the design of
further distributed protocols, for example to obtain constant-round synchronous broadcast pro-
tocols with asynchronous weak validity (see Section G), which in turn are used to construct
synchronous MPC protocols with asynchronous fallback [11].

In this section, we completely characterize the threshold conditions under which such a
primitive exists, and provide different round-efficient constructions (fixed-round and with prob-
abilistic termination).

First, in Section 4.2, we show a fixed-round BA protocol that runs in O(κ) rounds when the
network is synchronous. Then, in Section F, we show a version running in expected constant-
rounds when the network is synchronous.4

While the optimal achievable trade-off (see [9]) of a BA protocol with full asynchronous
fallback security is ta + 2ts < n and ta ≤ ts (which together imply ts < n/2), we show that
there is room for improvement when only requiring asynchronous weak-validity. In this case, we
prove the optimal threshold trade-off to be 2ta + ts < n and ts < n/2.

4.1 Weak Consensus with Asynchronous Weak Validity

The main tool in our BA constructions is a round-based weak consensus protocol that is secure
in a synchronous network (up to ts-corruptions), and achieves weak validity even if the network
is asynchronous (up to ta-corruptions).

In traditional weak-consensus, parties are allowed to output a symbol ⊥, signaling they
are unsure about what bit to output. We also allow parties to output symbol ⊤, which also
signals a lack of information necessary to reach agreement, but only due to the network being
asynchronous. Distinguishing between these two outcomes is essential, but not trivial. The
reason is that, when designing round-based protocols, if the network is asynchronous one cannot
take advantage of eventual delivery of messages, since parties only wait for a fixed amount of
time ∆ per round. Therefore, when an expected message is not delivered within a round, parties
cannot decide if 1) the network is synchronous and the sender is corrupted, or 2) the network
is asynchronous and the message was delayed by the adversary.

4 When the network is asynchronous, the adversary can delay messages for any arbitrary (but finite) amount of
time, and so the protocols may run for longer.

6

We address this problem by making use of a gradecast (GBC) protocol that achieves graded
validity and graded consistency when the network is synchronous, and weak-graded validity
when the network is asynchronous (see Section B).

By requiring each party to gradecast their input, we can have parties take a non-⊤ decision
only if they receive at least n − ts values with grade 2. Indeed, if the network is synchronous,
honest parties output grade 2 in all executions with honest senders. Therefore, less than n − ts

outputs with grade 2 guarantee that the network is asynchronous and it is safe to output ⊤.
In case at least n − ts values with grade 2 are received, the output determination ensures

the required guarantees: party Pi outputs v if 1) they received (v, 2) from n − ts gradecasts, or
2) they received (v, 2) from at least n − ts − ta gradecasts and (1 − v, ·) from up to ta; in any
other case they output ⊥.

In particular, if the network is asynchronous and there are up to ta corruptions, weak validity
is achieved: any party that does not output ⊤ has received at least n − ts values with grade
2, and n − ts − ta > ta of those values correspond to the inputs of honest parties. Moreover,
when the network is synchronous and up to ts parties are corrupted, there cannot be honest
parties Pi and Pj that output different bits v and 1 − v, respectively. This is because 1) if Pi

receives (1 − v, ·) up to ta times, then Pj cannot receive (1 − v, 2) more than ta times, and 2) if
Pi receives (v, 2) at least n − ts times, then Pj receives (v, ·) at least n − ts > ta times.

We formally describe the protocol below. Let Πt
GBC be a gradecast protocol running in s

rounds. The n executions of Πt
GBC are to be run in parallel to preserve round-efficiency. Security

is proven in Section C.

We describe the protocol from the point of view of party Pj holding input vj . We denote by Π
max{ta,ts}
GBC (j)

an execution of protocol Π
max{ta,ts}
GBC in which party Pj acts as the sender.

Inizialization step. Set bj := ⊤. For b ∈ {0, 1} set Sb
j := ∅, Ub

j := ∅.
Rounds 1 to s.

1: for 1 ≤ i ≤ n do
2: wij := (bij , gij) := Π

max{ta,ts}
GBC (i);

3: if wij = (0, 2) then S0
j := S0

j ∪ {bij};
4: end if
5: if wij = (1, 2) then S1

j := S1
j ∪ {bij};

6: end if
7: if wij = (0, 1) then U0

j := U0
j ∪ {bij};

8: end if
9: if wij = (1, 1) then U1

j := U1
j ∪ {bij};

10: end if
11: end for
Output determination.

1: if #(S0
j ⊔ S1

j) ≥ n − ts then
2: if there is b ∈ {0, 1} such that #Sb

j ≥ n − ts then
3: bj ; = b;
4: else if there is b ∈ {0, 1} such that #Sb

j ≥ n − ts − ta and #(S1−b
j ⊔ U1−v

j) ≤ ta then
5: bj := b;
6: else bj := ⊥;
7: end if
8: end if
9: output bj and terminate;

Protocol Πta,ts
WC

(
Π

max{ta,ts}
GBC

)

Lemma 1. Assume protocol Π
max{ta,ts}
GBC achieves the following security guarantees.

– When run over a synchronous network: (max{ts, ta})-graded validity and (max{ts, ta})-
graded consistency.

7

– When run over an asynchronous network: (max{ts, ta})-weak graded validity.

Then, if 2ta + ts < n and ts < n/2, protocol Πta,ts

WC

(
Π

max{ta,ts}
GBC

)
achieves the following security

guarantees.

– When run over a synchronous network: ts-liveness, ts-validity, ts-weak consistency.
– When run over an asynchronous network: ta-weak validity.

When assuming a worse tradeoff ta + 2ts < n and ts ≤ ta (which is optimal to achieve BA
with full asynchronous fallback) one can obtain a simpler and more efficient weak consensus
protocol with asynchronous weak validity (see Section D for a construction and security proof).

4.2 Fixed-Round Synchronous BA with Asynchronous Weak Validity

We now present a fixed-round synchronous Byzantine agreement protocol with asynchronous
weak validity. If the network is synchronous and there are up to ts corruptions, agreement is
reached with overwhelming probability after O(κ) rounds. Moreover, even when the network is
asynchronous and there are up to ta corruptions, the protocol achieves weak validity.

Following the traditional Feldman-Micali paradigm [23], parties run a sequence of iterations.
Each iteration consists of a weak consensus protocol Πta,ts

WC followed by an invocation to the coin-
flip functionality F ts

CoinFlip, where: 1) parties that obtain a bit as output of Πta,ts

WC keep this value
for the next iteration, 2) parties that obtained ⊥ adopt the value of the coin, and 3) parties
that obtained ⊤ keep their initial value of the iteration.

Notice that, if the network is synchronous, the output of an honest party in the execution of
Πta,ts

WC is binary or ⊥. Since weak consensus guarantees that honest parties do not output con-
tradicting bits, and the coin value is uniform and independent of the output of weak consensus,
agreement is reached with probability 1/2 per iteration.5

Moreover, if the network is asynchronous, weak validity is achieved. The reason is that in
each iteration, if all honest parties start with the same value v, then weak validity of Πta,ts

WC
ensures that they all output v or ⊤, and the coin value is ignored. Therefore, they keep v as the
value for the next iteration.

We formally describe the protocol below. Security is proven in Section E.

We describe the protocol from the point-of-view of party Pj holding input vj .

Initialization step: Set bj := vj .

1: for k = 1 to κ do
2: bj := Πta,ts

WC (bj)
3: (k, coink) := F ts

CoinFlip(k)
4: if bj = ⊥ then
5: bj := coink

6: else if bj = ⊤ then
7: bj := vj

8: end if
9: end for

10: Output bj

Protocol Πta,ts
SBA

(
Πta,ts

WC , F ts
CoinFlip

)

Lemma 2. Assume protocol Πta,ts

WC achieves the following security guarantees.

– When run over a synchronous network: ts-liveness, ts-validity, and ts-weak consistency.
5 For simplicity, we describe our protocols and proofs assuming an ideal coin flip that outputs a common uniform

random bit to all honest parties in one round (e.g. [12]). If a q-weak coin flip is used instead, where honest
parties agree with probability q, the round complexity increases by a factor of O(1/q).

8

– When run over an asynchronous network: ta-weak validity.

Then, protocol Πta,ts

SBA

(
Πta,ts

WC , F ts
CoinFlip

)
achieves the following security guarantees with over-

whelming probability.

– When run over a synchronous network: ts-security. Moreover, the protocol runs in O(κ)
rounds and achieves simultaneous termination.

– When run over an asynchronous network: ta-weak validity.

4.3 Optimality of Synchronous BA with Asynchronous Weak Validity

In this section we prove the optimality of our constructions with respect to corruption thresholds.
More specifically, we show that the tradeoff assumption 2ta + ts < n is not only sufficient, but
also necessary to obtain BA protocols that are secure up to ts corruptions in a synchronous
network, and achieve weak validity up to ta corruptions in an asynchronous network.

Lemma 3. Assume 2ta + ts ≥ n. There does not exist an n-party Byzantine agreement protocol
that is both

– ts-secure when run over a synchronous network;
– ta-weakly valid when run over a synchronous network

Proof. Assume there exists a protocol Π achieving all the above security guarantees. Partition
the party set P into sets Sa, Sb and K where #Sa = #Sb = ta and #K = ts.

– Scenario 1. The network is synchronous. Parties in Sa participate in Π with input 0. Parties
in Sb participate in Π with input 1. Parties in K are corrupted by the adversary and simply
abort.

– Scenario 2. All messages from parties in K are dropped (delayed for longer than the
round time) by the adversary. Parties in Sa participate in Π with input 0. Parties in Sb are
corrupted by the adversary, but participate in Π as if they were honest with input 1. Parties
in K partecipate in the protocol with input 0.

– Scenario 3. All messages from parties in K are dropped (delayed for time δ > ∆) by the
adversary. Parties in Sb participate in Π with input 1. Parties in Sa are corrupted by the
adversary and participate in Π as if they were honest with input 0. Parties in K participate
in the protocol using input 1.

In scenario 1, parties in Sa and Sb output the same value b1 ∈ {0, 1} by ts-consistency and
ts-liveness of Π. In scenario 2, parties in Sa output 0 or ⊤ by ta-weak validity of Π. In scenario
3, parties in Sb output 1 or ⊤ by ta-weak validity of Π. Since the views of parties in Sa in
scenarios 1 and 2 are indistinguishable, and the views of parties in Sb in scenarios 1 and 3 are
indistinguishable, then in scenario 2 (respectively 3) no party in Sa (respectively Sb) outputs
⊤. However, this means that 0 = b1 = 1, which is a contradiction (here, we assumed parties are
deterministic, but the same argument can be adapted to probabilistic parties and their output
distributions). ⊓⊔

5 Synchronous BA with Asynchronous Fallback

In order to achieve a BA protocol that is ts-secure when the network is synchronous, and ta-
secure when the network is asynchronous, we use the compiler Πta,ts

HBA introduced by Blum et al.
[9]. The compiler assumes 1) a ts-secure synchronous BA protocol Π1 that is ta-weakly valid
even when run over an asynchronous network, and 2) a ta-secure asynchronous BA protocol
Π2 that achieves validity and terminates for a higher corruption threshold ts ≥ ta when the
network is synchronous. The idea is to run, in sequence, the synchronous BA protocol followed
by the asynchronous one. The output from the first protocol is used as input to the second.

9

Intuitively, when the network is synchronous, security is provided by the synchronous proto-
col, and preserved by ts-validity with termination of the asynchronous one. On the other hand,
when the network experiences delays, security is provided by the asynchronous protocol, while
ta-weak validity of the round-based protocol ensures an adversary cannot break pre-agreement
among honest parties.

We describe the protocol from the point of view of party Pj holding input vj .
1: bj := Π1(vj);
2: if bj = ⊤ then
3: bj := vj ;
4: end if
5: bj := Π2(bj);
6: output bj ;

Protocol Πta,ts
HBA (Π1, Π2)

Lemma 4 ([9], Theorem 3). Assume protocol Π1 achieves the following security guarantees.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-weak validity.

Furthermore, assume protocol Π2 achieves the following security guarantees.

– When run over a synchronous network: ts-validity with termination.
– When run over an asynchronous network: ta-security.

Then, if ta ≤ ts and ta + 2ts < n, protocol Πta,ts

HBA (Π1, Π2) achieves the following security
guarantees.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-security.

By using our round-efficient synchronous BA protocols as the Π1 component of the compiler
(the fixed-round version in Section 4.2, or the expected constant-round version in Section F),
and the asynchronous protocols with increased validity from [9] as the second component Π2,6
we obtain the following corollaries.

Corollary 1. Let ta ≤ ts and ta + 2ts < n. There exists a protocol that achieves the following
security guarantees with overwhelming probability.

– When run over a synchronous network: ts-security. Moreover, it runs in O(κ) rounds and
achieves simultaneous termination.

– When run over an asynchronous network: ta-security.

Corollary 2. Let ta ≤ ts and ta + 2ts < n. There exists a protocol that achieves the following
security guarantees with overwhelming probability.

– When run over a synchronous network: ts-security. Moreover, it runs in expected constant
number of rounds.

– When run over an asynchronous network: ta-security.
6 The asynchronous protocol described there has probabilistic termination and runs in an expected constant

number of rounds when the network is synchronous. It is straightforward to achieve a variant of the protocol
that runs in O(κ) rounds when the network is synchronous, following Section 4.2, by substituting the weak
consensus protocol with the increased-validity graded consensus protocol from [9].

10

6 Round-Efficient MPC with Asynchronous Fallback

Blum et al. [11] obtain the first MPC protocol that is ts-secure in a synchronous network, and
ta-secure with (n−ts)-output quality in an asynchronous network (these guarantees are provably
optimal).

Their protocol requires black-box access to 1) a Byzantine agreement primitive that is ts-
secure in a synchronous network and ta-secure in an asynchronous network, and 2) a broadcast
primitive that is ts-secure in a synchronous network and ta-weakly valid in an asynchronous
network. Their constructions for these primitives (borrowed from [9]) both require O(n) rounds.
Moreover, their protocol evaluates the circuit in a gate-by-gate fashion, and therefore requires
O(d) communication rounds, where d denotes the multiplicative depth of the circuit representing
the function to evaluate.

Using our fixed-round BA and broadcast from Section 4.2 and Section G, and adapting
Yao’s garbled circuit techniques [46], we obtain the first MPC protocol in this realm with
optimal security guarantees and that has a total round complexity of O(κ), independent of the
circuit depth. We loosely follow the structure of [17].

6.1 Multi-Party Garbled Circuits

Let g denote the function to evaluate, represented as a boolean circuit circg containing only
NAND gates.7 In general, the circuit-depth d of circg depends on g, and MPC protocols following
the gate-by-gate paradigm typically require O(d) communication rounds. Using garbled circuit
techniques,8 we obtain an MPC protocol with round complexity independent of d.

The high-level idea is to use MPC to evaluate a function fGRBL that produces a garbled
version of circg, which parties can then evaluate locally. As we will discuss, the function fGRBL
can be represented as a circuit whose depth is independent of g.

Roughly speaking, fGRBL outputs an encrypted version of circg, in which all entries of each
function table are encrypted using secret keys associated with the corresponding input values. A
party holding two input values to a gate, together with the corresponding keys, can decrypt the
corresponding entry of the function table and obtain the output of the gate (and the correspond-
ing key). To preserve privacy, the values travelling on each wire are masked by XORing them
with random bits. If a party is entitled to learn an output, they are given the corresponding
random mask.

The function fGRBL can be represented by a constant-depth circuit. The reason is that once
the secret masks and keys for each wire have been generated, the garbled function tables of circg

can be computed in parallel.
Distributed Encryption. There is a complication with the approach we described. To com-
pute encryptions of the function table entries within the MPC, parties need white-box access to
an encryption scheme. This is undesirable in itself, but matters are worsened by the fact that
the circuit-representations of even the most efficient block-ciphers are fairly large (∼ 6400 AND
gates for AES-128),9 making this approach unfeasible.

To overcome this problem, we use a distributed encryption technique due to Damgård and
Ishai [20]. Let m denote a plaintext. Instead of computing Enck(m) within the multi-party
computation, m is shared among the parties by means of a secret-sharing scheme (see Section A,
Definition 8). Party Pi receives a share [m]i and a secret key Ki as output of the computation,
and locally computes ci = EncKi([mi]). Each party then sends their encrypted shares to all
parties. Upon receiving a sufficient number of encrypted shares, a party in possession of the

7 This is without loss of generality, since any arithmetic circuit can be transformed into a boolean one, and the
set {NAND} is functionally complete.

8 Yao first introduced garbled circuits in talks related to his paper [46], but they do not explicitly appear in the
paper. For a formal treatment, cf. [6].

9 Personal communication with Yehuda Lindell.

11

necessary keys can decrypt them and reconstruct the secret (for example, if Pj is entitled to know
the secret, they receive the keys as output from the multi-party computation). This approach
extends to the dual-key setting (see Definition 7, Section A), and only requires black-box access
to the encryption scheme.

Information Checking Protocol. Moving encryption outside the MPC comes at the price
of secret-sharing the plaintexts to preserve privacy. In our setting, the secrets are the entries of
each function table of circg, together with the key associated with the output value. Since we
work (at least when the network is synchronous) with an honest majority, authentication of the
shares is necessary to prevent corrupted parties to tamper with the reconstruction phase. This
can be achieved by requiring the dealer (in our setting, fGRBL) to sign the shares using digital
signatures, but computing signatures within the MPC of fGRBL is also inefficient.

Instead, one can use the Information Checking Protocol by Rabin and Ben-Or [43]. It works
over a finite field Fq. For a secret s, the dealer samples uniformly random elements (b, y), and
computes c = s + by. Party Pi is given (s, y): the authentication vector. Another party Pj (to
whom Pi wishes to forward s at a later time), is given (b, c): the check vector. Upon receiving
the couple (s, y) from Pi, party Pj can check that c = s + by. If Pi is corrupted and wants to
send s′ ̸= s to Pj , party Pi has to guess the unique y′ solving c = s′b + y′, which they can only
do with probability 1/(q − 1), as the field element c − s′b is distributed according to b.

The resulting function fGRBL is formally described below. The wires of circg are denoted by
lower-case greek letters (α, β, γ, . . .), and the gates with lower case english letters (a, b, c, . . .).
The input bi of party Pi is a vector containing a boolean encoding of their input to g as well as
extra inputs needed to generate randomness.

Input. For each input wire ω of circg, let bω denote the corresponding input bit.

Random values. For each wire γ of circg generate 2 vectors of n random sub-keys K0
γ :=

(
K0,1

γ , . . . , K0,n
γ

)
,

K1
γ :=

(
K1,1

γ , . . . , K1,n
γ

)
and a uniform random mask mγ ∈ {0, 1}. For each gate a, for all couples (Pi, Pj) of

parties, and for all (x, y) ∈ {0, 1}2, generate uniformly random Fq elements bxy,ij
a , yxy,ij

a .
Set Bij

a :=
(
b00,ij

a , b01,ij
a , b10,ij

a , b11,ij
a

)
and Yij

a :=
(
y00,ij

a , y01,ij
a , y10,ij

a , y11,ij
a

)
.

Input wires. For each input wire ω of circg compute zω := bω ⊕ mω.

Garbled function tables. For each gate a with input wires α, β and output wire γ do:

1. for all (x, y) ∈ {0, 1}2 compute zxy
γ := ((x ⊕ mα)NAND(y ⊕ mβ)) ⊕ mγ ;

2. set txy
a :=

(
zxy

γ , K
z

xy
γ

γ

)
and Ta :=

{
t00
a , t01

a , t10
a , t11

a

}
;

3. compute a (ts + 1)-sharing of Ta (i.e. of each entry). Let [txy
a]i denote the i-th shares, and let [Ta]i denote

the vector
(
[t00

a]i, [t01
a]i, [t10

a]i, [t11
a]i
)
;

4. compute cxy,ij
a := [txy

a]i + bxy,ij
a yxy,ij

a . Set Cij
a :=

(
c00,ij

a , c01,ij
a , c10,ij

a , c11,ij
a

)
.

Public Outputs. For each input wire ω the masked input zω and the key Kzω
ω =

(
Kzω,1

ω , . . . , Kzω,n
ω

)
.

Private Outputs. For each wire γ, party Pj receives sub-keys
(
K0,j

γ , K1,j
γ

)
. For each gate a, party Pj re-

ceives, for each other party Pi, the authentication vectors
(
[Ta]j ,Yji

a

)
and the check vectors

(
Bij

a ,Cij
a

)
. For

each output wire δ, if Pj is to learn that output, they receive mask mδ.

Function fGRBL(circg; b1, . . . , bn)

In the next section, we describe the MPC protocol we will use to compute fGRBL.

12

6.2 MPC with Linear Round Complexity in d and κ and Asynchronous Fallback

To achieve security in both synchronous and asynchronous networks, we want to compute fGRBL
using the compiler from [11]. We recall the construction and its security guarantees below.

We describe the protocol from the point of view of party Pj holding input bj .
1: vj := Π1(bj);
2: if vj ̸= ⊥ then output vj and terminate;
3: end if
4: yj := Π2(bj);
5: output yj and terminate;

Protocol Πts,ta
HMPC (Π1, Π2)

Lemma 5 ([11], Theorem 2). Assume protocol Π1 achieves the following security guarantees.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-unanimous output, ta-weak termination and

(n − ts)-output quality.

Furthermore, assume protocol Π2 achieves the following security guarantees.

– When run over an asynchronous network: ta-security with (n − ta)-output quality.

Then, assuming ta ≤ ts and ta + 2ts < n, protocol Πts,ta

HMPC (Π1, Π2) achieves the following
security guarantees.

1. When run over a synchronous network: ts-security.
2. When run over an asynchronous network: ta-security and (n − ts)-output quality.

We provide sub-protocols Π1, Π2 with the security guarantees required by Lemma 5, and
that in addition 1) securely evaluate boolean circuits, and 2) require O(d) communication rounds.

We take Π1 to be the synchronous protocol Πta,ts

SMPC of [11, Section 4.5], which requires O(d)
rounds; it is the only known synchronous protocol to date providing the necessary security
guarantees.

However, we cannot use Πts,ta

SMPC in a black-box manner, since it evaluates arithmetic circuits
defined over “large” fields (#Fq > n), while in our construction it is natural to represent the
boolean function fGRBL as a boolean circuit. One solution is to embed the boolean circuit into a
larger field through the inclusion map i : F2 → Fq and to represent NAND gates with arithmetic
gates computing a(x, y) := 1 − xy (it is straightforward to verify that i ◦ a = a ◦ i).

To keep actively corrupted parties from giving inputs in Fq\{0, 1}, a checking mechanism has
to be put into place. The high level idea of Πts,ta

SMPC is that the inputs of each party are encrypted
using an additively-homomorphic threshold encryption scheme. To ensure correctness, after
broadcasting their encrypted inputs, parties must prove (in ZK) knowledge for the corresponding
plaintext. In addition, we require parties to prove in ZK that the plaintext lies in {0, 1}.

The protocol then follows the gate-by-gate paradigm, with additional interaction required
to evaluate multiplication gates. After the circuit is evaluated, parties reconstruct the outputs
using threshold decryption. A security proof can be obtained as for [11, Theorem 1] with minor
changes.

We take Π2 to be the modified version (by Coretti et al. [17]) of protocol πBKR by Ben-Or
et al. [8], which evaluates boolean circuits and requires O(d) rounds. Security is proven in [17,
Lemma 2].

Lemma 5, with these choices of Π1 and Π2, yields the following corollary.

Corollary 3. Assume ta ≤ ts and ta+2ts < n. There exists a protocol Πts,ta

HMPC evaluating boolean
circuits and requiring O(d) communication rounds achieving the following security guarantees.

13

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-security and (n − ts)-output quality.

Our modification of Protocol Πta,ta

SMPC [11], used as Π1 in compiler Πta,ts

HMPC, requires black-box
access to:

(i) a Byzantine agreement sub-protocol that is ts-secure when run over a synchronous network,
and ta-secure when run over an asynchronous network;

(ii) a broadcast sub-protocol that is ts-secure when run over a synchronous network, and ta-
weakly valid when run over an asynchronous network.

At the time of [11], the only known protocols with these guarantees required O(n) rounds,10

resulting in O(n) round-complexity of the MPC protocol.
In Section G, we present a broadcast protocol Πta,ts

SBC

(
Πta,ts

SBA

)
running in a fixed number of

rounds that is weakly valid in asynchronous networks. Our solution is inspired by a synchronous
construction that obtains BC from BA, but requires some modifications to achieve security
guarantees in asynchronous networks.

Combining this with results from previous sections, we obtain an MPC protocol running in
O(κ) rounds with respect to n. More specifically,

– Lemma 1 (or Lemma 9), Lemma 2, and Lemma 4, guarantee protocol Πta,ts

HBA

(
Πta,ts

SBA , Πta,ts

ABA

)
from Section 5 (which runs in O(κ) rounds with respect to the number of parties n) achieves
the security guarantees (i);

– Lemma 1, (or Lemma 9), Lemma 2, and Lemma 14, guarantee protocol Πta,ts

SBC

(
Πta,ts

SBA

)
from

Section G (that also runs in O(κ) rounds with respect to the number of parties n) achieves
the security guarantees (ii).

Combining this with Corollary 3, we obtain the following corollary.

Corollary 4. Assume ta ≤ ts and ta + 2ts < n. There exists a MPC protocol with the following
properties.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-security and (n − ts)-output quality.
– If the network is synchronous, runs in O(κ) rounds.
– Runs in O(d) rounds.

Recall that the security guarantees of Corollary 4 are optimal ([11, Theorems 3, 4]).

6.3 Protocol Description

We now present our fully constant-round MPC protocol that is 1) ts-secure if the network is
synchronous, and 2) ta-secure with (n − ts)-output quality if the network is asynchronous. The
construction, that we already discussed, consists of three steps.

– (Parties jointly) use an MPC protocol with the properties of Corollary 4 to compute function
fGRBL.

– (Each party) encrypts the authenticated shares of the entries of each gate of circg received as
output of fGRBL (the keys are also part of the output). They send the resulting ciphertexts
to all parties.

– (Each party) evaluates the circuit locally: given two (masked) inputs to a gate and the
corresponding keys, they decrypt the received shares of the corresponding entry of the gate,
recovering the (masked) output value and the corresponding key. They do this until all gates
are evaluated. Finally, they unmask the accessible outputs.

10 Respectively, the BA protocol and the adaptation of Dolev-Strong broadcast from [9].

14

A phase indicator ϕ guarantees that, if the network is asynchronous, parties do not ter-
minate before sending the encryptions of their shares to other parties. Security is discussed in
Section H.

We describe the protocol from the point of view of party Pj holding input bj . For each gate a of circg set
evaluateda := false. Set ϕj := 0.

Step 1. Run Πts,ta
HMPC (circfGRBL ; circg; bj), receiving as output:

– for each wire γ of circg, the sub-keys
(
K0,j

γ , K1,j
γ

)
;

– for each gate a of circg and party Pj , the authentication vectors
(
[Ta]j ,Yji

a

)
and the check vectors

(
Bij

a ,Cij
a

)
;

– for each input wire ω of circg, the masked input value zω and the corresponding key Kzω
ω .

– for each output wire δ of circg, if Pj is entitled to learn that output, the mask mδ.

Step 2. For each gate a of circg with input wires α, β and output wire γ, do:

– for each (x, y) ∈ {0, 1}2, encrypt the authenticated share of the corresponding entry of Ta, namely cxy,j
a :=

Enc
K

x,j
α ,K

y,j
β

(
[txy

a]j , yxy,ji
a

)
;

– send Cj
a :=

(
c00,j

a , c01,j
a , c10,j

a , c11,j
a

)
to all parties.

Then, set ϕj := 1.

Step 3. If ϕj = 1, whenever a ciphertext is received, for each gate a of circg with input wires α, β and
output wire γ, if the masked input values zα, zβ and the corresponding key (vectors) Kzα

α , K
zβ

β are known, do:

– For ciphertext Ci
a, set

(
[tzαzβ

a]i, y
zαzβ ,ij
a

)
:= Dec

K
zα,i
α ,K

zβ ,i

β

(
c

zαzβ ,i
a

)
. If the decryption is successful and

if czαzβ ,ij
a = [tzαzβ

a]i + b
zαzβ ,ij
a y

zαzβ ,ij
a , then the i-th shares of zγ and K

zγ
γ are recovered.

– If at least ts + 1 shares have been recovered, reconstruct zγ and K
zγ
γ and set evaluateda := true.

When all gates are evaluated, compute bω := zω ⊕ mω for all accessible output wires ω. Output bits bω and
terminate.

Protocol Πts
CR-HMPC

(
Πts,ta

HMPC
)

Lemma 6. Suppose ta ≤ ts and ta + 2ts < n, and assume protocol Πts,ta

HMPC achieves the secu-
rity guarantees of Corollary 4. Then, protocol Πts,ta

CR-HMPC

(
Πts,ta

HMPC

)
achieves the same security

guarantees, and requires a number of rounds independent of the circuit depth of the function to
be evaluated, when the network is synchronous.

References

[1] Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. An almost-surely terminating polynomial protocol
forasynchronous byzantine agreement with optimal resilience. In Rida A. Bazzi and Boaz Patt-Shamir,
editors, 27th ACM PODC, pages 405–414. ACM, August 2008.

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync HotStuff: Simple and
practical synchronous state machine replication. Cryptology ePrint Archive, Report 2019/270, 2019. https:
//eprint.iacr.org/2019/270.

[3] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two round information-
theoretic MPC with malicious security. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part II, volume 11477 of LNCS, pages 532–561. Springer, Heidelberg, May 2019.

[4] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in constant number of
rounds of interaction. In Piotr Rudnicki, editor, 8th ACM PODC, pages 201–209. ACM, August 1989.

[5] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[6] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Proceedings of
the 2012 ACM conference on Computer and communications security, pages 784–796, 2012.

[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May
1988.

15

https://eprint.iacr.org/2019/270
https://eprint.iacr.org/2019/270

[8] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal resilience
(extended abstract). In Jim Anderson and Sam Toueg, editors, 13th ACM PODC, pages 183–192. ACM,
August 1994.

[9] Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asynchronous fallback
guarantees. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages
131–150. Springer, Heidelberg, December 2019.

[10] Erica Blum, Jonathan Katz, and Julian Loss. Network-agnostic state machine replication. Cryptology
ePrint Archive, Report 2020/142, 2020. https://eprint.iacr.org/2020/142.

[11] Erica Blum, Chen-Da Liu Zhang, and Julian Loss. Always have a backup plan: Fully secure synchronous
MPC with asynchronous fallback. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 707–731. Springer, Heidelberg, August 2020.

[12] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Journal of Cryptology, 18(3):219–246, July 2005.

[13] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001.

[14] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In 25th ACM
STOC, pages 42–51. ACM Press, May 1993.

[15] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (abstract)
(informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, page 462. Springer,
Heidelberg, August 1988.

[16] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and composability
of cryptographic protocols. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 240–269. Springer, Heidelberg, August 2016.

[17] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous multi-party
computation based on one-way functions. In Proceedings, Part II, of the 22nd International Conference on
Advances in Cryptology — ASIACRYPT 2016 - Volume 10032, page 998–1021, Berlin, Heidelberg, 2016.
Springer-Verlag.

[18] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient multiparty
computations secure against an adaptive adversary. In Jacques Stern, editor, EUROCRYPT’99, volume
1592 of LNCS, pages 311–326. Springer, Heidelberg, May 1999.

[19] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure multi-party computation from any
linear secret-sharing scheme. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
316–334. Springer, Heidelberg, May 2000.

[20] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom
generator. In Annual International Cryptology Conference, pages 378–394. Springer, 2005.

[21] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
247–264. Springer, Heidelberg, August 2003.

[22] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM Journal
on Computing, 12(4):656–666, 1983.

[23] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In 20th ACM STOC, pages
148–161. ACM Press, May 1988.

[24] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[25] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in unconditional multi-
party computation (extended abstract). In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 121–136. Springer, Heidelberg, August 1998.

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem
for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press,
May 1987.

[27] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 499–529.
Springer, Heidelberg, August 2019.

[28] Martin Hirt and Ueli M. Maurer. Robustness for free in unconditional multi-party computation. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 101–118. Springer, Heidelberg, August 2001.

[29] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous multi-party compu-
tation with optimal resilience (extended abstract). In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 322–340. Springer, Heidelberg, May 2005.

[30] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462. Springer, Heidelberg, August
2006.

[31] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In
Annual International Cryptology Conference, pages 445–462. Springer, 2006.

16

https://eprint.iacr.org/2020/142

[32] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of protocols without simulta-
neous termination. In Aleta Ricciardi, editor, 21st ACM PODC, pages 203–212. ACM, July 2002.

[33] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolić. Xft: Practical fault
tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems Design and Implementation,
pages 485–500, 2016.

[34] Chen-Da Liu-Zhang, Julian Loss, Ueli Maurer, Tal Moran, and Daniel Tschudi. MPC with synchronous
security and asynchronous responsiveness. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 92–119. Springer, Heidelberg, December 2020.

[35] Julian Loss and Tal Moran. Combining asynchronous and synchronous byzantine agreement: The best of
both worlds. Cryptology ePrint Archive, Report 2018/235, 2018. https://eprint.iacr.org/2018/235.

[36] Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pages 1041–1053, 2019.

[37] Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Papadimitriou, editor, ITCS
2017, volume 4266, pages 6:1–6:1, 67, January 2017. LIPIcs.

[38] Satoshi Nakamoto. A peer-to-peer electronic cash system. 2008.
[39] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In LIPIcs-

Leibniz International Proceedings in Informatics, volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[40] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 3–33.
Springer, Heidelberg, April / May 2018.

[41] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Simple and efficient asynchronous byzantine
agreement with optimal resilience. In Srikanta Tirthapura and Lorenzo Alvisi, editors, 28th ACM PODC,
pages 92–101. ACM, August 2009.

[42] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults. Journal
of the ACM (JACM), 27(2):228–234, 1980.

[43] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 73–85, 1989.

[44] Robert Shostak, Marshall Pease, and L Lamport. The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401, 1982.

[45] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages
160–164. IEEE Computer Society Press, November 1982.

[46] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986.

17

https://eprint.iacr.org/2018/235

Appendix

A Additional Definitions

Symmetric-Key Encryption. We recall the definition of a symmetric encryption scheme.

Definition 7. A symmetric encryption scheme is a triple of algorithms (Enc, Dec, Kgn) such
that:
– the key generation algorithm Kgn outputs a secret key K ∈ K;
– given a secret key K ∈ K and a plaintext m ∈ {0, 1}∗, the encryption algorithm Enc outputs

a ciphertext C ∋ c := EncK(m);
– given a ciphertext c ∈ C and a secret key K ∈ K, the decryption algorithm Dec outputs

DecK(c) ∈ {0, 1}∗;
– DecK (EncK(m)) = m for all m ∈ {0, 1}∗ and K ∈ K.

In a dual key encryption scheme, two keys K1, K2 are needed to encrypt and decrypt. The
semantics are otherwise unchanged.

Secret-Sharing. A secret-sharing scheme allows a dealer D to distribute a secret s among a set
P of n parties, so that only certain qualified subsets of parties can reconstruct the secret. Other
subsets should obtain no information about the secret. A secret-sharing scheme is specified by
its access structure Γ ⊆ 2P : the collection of the qualified subsets of parties.
Definition 8. A secret-sharing scheme for access structure Γ is a pair (Share, Reconstruct) of
protocols with the following properties.

– After Share (s), there is a unique value s′ that can be reconstructed, and s′ = s if the dealer
is honest. Furthermore, any subset of parties S ∈ Γ can execute Reconstruct to reconstruct
s.

– After Share (s), any subset of parties S /∈ Γ obtains no information about s.

We are interested in t-out-of-n secret-sharing schemes, that is, secret sharing schemes where
Γ := {S ∈ 2P : #S ≥ t}.

B Gradecast with Asynchronous Weak Validity

We present, using slightly different notation, a 4-round gradecast protocol by Katz et al. [31]
and explicitly show that their construction achieves t-weak graded validity (q.v. Definition 5)
for all t < n/2 when the network is asynchronous.

Unless specified, we describe the protocol from the point of view of party Pj .

Round 1 - Sender P ∗. Send (v∗, Sgn(v∗, sk∗)) to all parties.

Round 1. Let (vj , σj) be the first message received from P ∗. If Vfy(vj , σj , pk∗) = 1, forward (vj , σj) to
all parties in Round 2. In all other cases, set vj := ⊥ (and do not send any message in Round 2).

Round 2. Let (vij , σij) be the first message received from Pi. If there is i ∈ {1, . . . , n} such that vij ̸= vj , set
vj := ⊥. If vj ̸= ⊥, send message (vj , Sgn(vj , skj)) to all parties in Round 3.

Round 3. Upon receiving at least t + 1 valid messages (b, σjk) (i.e. such that Vfy(b, σjk , pkjk
) = 1) from

distinct parties on the same bit b, set Σ := {σj1 , . . . , σjt+1 }, send (b, Σ) to all parties in Round 4, and output
(b, 2).

Round 4. If no output has been generated, upon receiving a message (b′, Σ′) such that Σ′ is a (t + 1)-

Protocol Πt
GBC

18

certificate for b′, output (b′, 1). If no output has been generated and no certificate is received, output (⊥, 0).
Terminate.

Lemma 7. Assume the network is synchronous. If an honest Pj sends message (v, Sgn(v, skj))
in Round 3, no honest Pi (i ̸= j) sends message (1 − v, Sgn(1 − v, ski)) in Round 3.

Proof. We prove the lemma by contradiction. Below, all bits are to be intended as validly signed.
Assume honest parties Pj and Pi send bits v and 1 − v respectively in Round 3. Observe that
an honest party sends a bit in round 3 if and only if this is the bit they received from the
sender P ∗. This means P ∗ sent bit v to Pj and 1 − v to Pi in Round 1. Therefore, Pj and Pi

forward bits v and 1 − v respectively to all honest parties in Round 2. In particular, both Pj

and Pi see conflicting messages in Round 2 and do not send a message in Round 3. This is a
contradiction. ⊓⊔

Lemma 8. Assume t < n/2. Protocol Πt
GBC achieves the following security guarantees.

– When run over a synchronous network: t-graded validity and t-graded consistency.
– When run over an asynchronous network: t-weak graded validity.

Proof. We prove each claim separately.
[graded validity] If the sender P ∗ is honest, in Round 1 honest parties receive (v∗, σ∗ =
Sgn(v∗, sk∗)). Therefore, each honest party checks that Vfy(v∗, σ∗, pk∗) = 1 and forwards (v, σ∗)
to all honest parties in Round 2. Since dishonest parties cannot forge an honest sender’s sig-
nature, no honest party receives contradicting messages in Round 2. Hence, all honest parties
send (v∗, Sgn(v∗, skj)) to all parties in Round 3. In conclusion, in Round 3, each honest party
Pj receives at least n − t > t messages (v∗, Sgn(v∗, ski)) for distinct i ∈ {1, . . . , n}, and they
output (v, 2) (and ignore Round 4).
[graded consistency- b.] Assume an honest party Pj outputs (v, 2). This means they received
t + 1 messages (v, Sgn(v, ski)) for distinct i ∈ {1, . . . , n} in Round 3. Hence, at least one
honest party Pk sent (v, Sgn(v, skk)) in Round 3. By Lemma 7, no honest party Pl sends
(v, Sgn(1 − v, skl)) in Round 3, and each honest party receives at most t < n − t validly signed
bits 1−v in Round 3, so that no honest party outputs (1−v, 2) in Round 3. Let Pi be an honest
party. If Pi does not output (v, 2) in Round 3, since the network is synchronous, they receive a
valid certificate on v (from Pj) in Round 4, and they output (v, 1).
[graded consistency-a.] We already showed that if some honest party outputs (v, 2), then
each honest party outputs either (v, 2) or (v, 1). Suppose an honest party Pj outputs (v, 1) (in
Round 4). This means they received a (t + 1)-valid certificate Σ on v in Round 4. Certificate
Σ contains at least t + 1 valid signatures on v, so that at least one honest party sent the
validly signed bit v at the beginning of Round 3. By Lemma 7, no honest party signs and sends
message 1 − v at the beginning of Round 3. Therefore, each honest party receives at most t
validly signed bits 1 − v in Round 3, and does not output (1 − v, 2). In particular, no honest
party sends a (t + 1)-certificate on 1 − v in Round 4. Since corrupted parties cannot forge more
than t signatures on 1 − v, no valid certificate on 1 − v can be produced by the adversary, and
no honest party receives a (t + 1)-valid certificate on 1 − v in Round 4. Hence, no honest player
outputs (1 − v, 1).
[weak graded validity] If the sender P ∗ is honest and has input v∗, no honest party receives
the validly signed bit 1 − v∗ in Round 1. In particular, no honest party ever signs bit 1 − v
throughout the protocol. Therefore, each honest party receives at most t validly signed bits 1−v
in Round 3, and does not output (1 − v, 2) and send a certificate on 1 − v in Round 4. Since
dishonest parties cannot produce a (t + 1)-certificate for bit 1 − v (they can produce at most
t valid signatures on 1 − v), no honest party receives a (t + 1)-certificate on 1 − v in Round 4:
they do not output (1 − v, 1). ⊓⊔

19

C Proof of Lemma 1

Assume that that at most ts parties are corrupted in an execution of Πta,ts

WC

(
Π

max{ta,ts}
GC

)
over

a synchronous network.

[liveness] synchrony of the network and ts-graded validity of protocol Π
max{ta,ts}
GC guarantee

that each honesty party Pj sets bij := Π
max{ta,ts}
GC (i) = (vi, 2) each time party Pi is honest.

Therefore, #(Sv
j ⊔ S1−v

j) ≥ n − ts, so that Pj sets bj ∈ {0, 1, ⊥} during output determination
and does not output ⊤. This proves ts-liveness.
[validity] Suppose that all honest parties hold the same input v. synchrony of the network
and ts-graded validity of protocol Π

max{ta,ts}
GC guarantee that each honesty party Pj sets bij :=

Π
max{ta,ts}
GC (i) = (v, 2) each time party Pi is honest. Therefore, #Sv

j ≥ n − ts and party Pj

outputs v. It is worth noting that if both #Sv
j ≥ n − ts and #S1−v

j ≥ n − ts, then n ≥
#(Sv

j ⊔ S1−v
j) ≥ 2n − 2ts > n, which is absurd. This proves ts-validity.

[weak consistency] Suppose an honest party Pj outputs v ∈ {0, 1}. There are two possibilities.
The first is that {

#Sv
j ≥ n − ts − ta

#(S1−v
j ⊔ U1−v

j) ≤ ta.
(1)

If Pi is another honest party, then synchrony of the network and ts-graded consistency of
Π

max{ta,ts}
GBC guarantee that #S1−v

i ≤ ta < n − ts − ta ≤ n − ts. If this was not the case, by ts-
graded consistency of Π

max{ta,ts}
GBC we would have #(S1−v

j ⊔U1−v
j) > ta, which is a contradiction.

Therefore, party Pi does not output 1 − v. The second case is that #Sv
j ≥ n − ts. In this case

(reasoning as above), for an honest player Pi{
#(Sv

i ⊔ Uv
i) ≥ n − ts > 2ta ≥ ta

#S1−v
i < n − ts

(2)

so that Pi does not output 1 − v. This proves ts-weak consistency.

Assume that that at most ta parties are corrupted in an execution of Πta,ts

WC

(
Π

max{ta,ts}
GC

)
over an asynchronous network.
[weak validity] Assume all honest parties hold the same input v. Suppose an honest party Pj

does not output ⊤. This means #(Sv
j ⊔ S1−v

j) ≥ n − ts. By ta-weak graded validity of protocol
Π

max{ta,ts}
GC , party Pj sets bij := Π

max{ta,ts}
GC (i) ∈ {v, ⊤} for each honest party Pi. Therefore,

#S1−v
j ≤ ta < n − ts − ta ≤ n − ts (so that party Pj does not output 1 − v),but also{

#Sv
j ≥ n − ts − #S1−v

j ≥ n − ts − ta

#(S1−v
j ⊔ U1−v

j) ≤ ta

(3)

so that party Pj outputs v. This proves ta-weak validity and concludes the proof of the lemma.

D A Simpler Weak-Consensus with Asynchronous Weak Validity for
ta + 2ts < n and ta ≤ ts

We show a simple 3-round construction for a weak consensus protocol that is 1) ts-secure in a
synchronous network, and 2) ta-weakly valid in an asynchronous network, under the stronger
assumptions that ta + 2ts < n, ta ≤ ts (these assumptions are optimal for BA with full asyn-
chronous fallback [9]). The public key infrastructure available allows parties to forward cryp-
tographic evidence (in the form of digital signatures) that they received a given message from

20

other parties by appropriately combining this evidence to generate what we refer to as cer-
tificates (see e.g. [29]). An ℓ-certificate on a bit b is simply a concatenation of at least ℓ valid
signatures on b from distinct parties.

We describe the protocol from the point of view of party Pj holding input vj .

Initialization step. Set bj := ⊤, Sj := ∅.
Round 1. Send message (vj , Sgn(vj , skj)) to all parties. Upon receiving (the first) message mij = (vij , σij)
from party Pi, if Vfy(vij , σij , pki) = 1, set Sj := Sj ∪ {mij}.

Round 2. If #Sj ≥ n−ts, set bj = ⊥. If there is b ∈ {0, 1} such that #Sb
j := {(v, σ) ∈ Sj : v = b} ≥ n−ts−ta,

set bj := b and send Sb
j to all parties.

Round 3. If bj ∈ {0, 1}, upon receiving an (n − ts − ta)-certificate on 1 − bj from any party Pi, set bj = ⊥.

Output. Output bj ;

Protocol Πta,ts
WC

Lemma 9. Assume ta + 2ts < n and ta ≤ ts. Protocol Πta,ts

WC achieves the following security
guarantees.
– When run over a synchronous network: ts-liveness, ts-validity, and ts-weak consistency.
– When run over an asynchronous network: ta-weak validity.

Proof. Assume that at most ts parties are corrupted in an execution of Πta,ts

WC over a synchronous
network.
[liveness] Each honest party Pj sends message (vj , Sgn(vj , pkj)) to all parties at in Round 1.
synchrony of the network guarantees all these messages are delivered within the round. It follows
that, in Round 2, #Sj ≥ n − ts for each honest party Pj , so that Pj sets bj = ⊥. This proves
ts-liveness, as bj is never set to ⊤.
[validity] Assume each honest party holds the same input v ∈ {0, 1}. In Round 1, each honest
Pj sends message (vj , Sgn(vj , pkj)) to all parties. synchrony of the network guarantees that
#Sv

j ≥ n − ts ≥ n − ts − ta for each honest party Pj , so that Pj sets bj = v in Round 2. Notice
that #S1−v

j ≤ ts < n − ts − ta. No honest party signs bit 1 − v at any point in the execution of
the protocol, and the adversary cannot forge signatures on behalf of honest parties. Together
with ts < n − ts − ta, this implies that no (n − ts − ta)-certificate on bit 1 − v can be produced
by corrupted parties, so that no honest party Pj sets bj = ⊥ in Round 3. In conclusion, each
honest party Pj outputs bj = v. This proves ts-validity.
[weak consistency] Assume an honest party Pj outputs v. This means Pj sets bj = v in
Round 2, and sends a (n − ts − ta)-certificate on v to all parties in Round 3. synchrony of
the network guarantees that this certificate is delivered to all honest parties by the end of the
round. In conclusion, no honest party outputs 1 − v. This proves ts-weak consistency.

Assume that that at most ta parties are corrupted in an execution of Πta,ts

WC over an asyn-
chronous network.
[weak validity] Assume each honest party holds the same input v ∈ {0, 1} and assume an
honest party Pj does not output ⊤. This means #Sj ≥ n − ts. Notice that Sj = Sv

j ⊔ S1−v
j . The

adversary cannot forge honest parties’ signatures, which guarantees #S1−v
j ≤ ta; this implies

#Sv
j ≥ #Sj − ta ≥ n − ts − ta, so that Pj sets bj = v in Round 2. The assumption ta ≤ ts

guarantees that ta ≤ ts < n − ts − ta, which means corrupted parties cannot produce an
(n − ts − ta)-certificate on 1 − v. In conclusion, party Pj outputs bj = v in Round 3. This proves
ta-weak validity and concludes the proof of the lemma. ⊓⊔

21

E Proof of Lemma 2

Assume that that at most ts parties are corrupted in an execution of Πta,ts

SBA over a synchronous
network.

[liveness] We claim that each honest party Pj inputs bj ∈ {0, 1} to the execution of Πta,ts

WC in
iteration k (for all k). This holds trivially for k = 1. Suppose it holds for k. synchrony of the
network guarantees that, by ts-liveness of Πta,ts

WC , bj ∈ {0, 1, ⊥} for each honest party Pj after
running weak-consensus in iteration k. Since coink ∈ {0, 1}, then bj ∈ {0, 1} for each honest
party Pj at the end of iteration k, so that Pj inputs bj ∈ {0, 1} to the execution of Πta,ts

WC
in iteration k + 1. The claim follows by induction on k. Therefore, after iteration κ, party Pj

outputs bj ∈ {0, 1}. This proves ts-liveness.

[validity] Assume each honest party Pj holds the same input v ∈ {0, 1}. We claim that each
honest party Pj inputs v to the execution of Πta,ts

WC in iteration k (for all k). This holds trivially
for k = 1. Suppose it holds for k. synchrony of the network guarantees that, by ts-validity of
Πta,ts

WC , bj = v ∈ {0, 1} for each honest party Pj after round the execution of weak-consensus
in iteration k. Therefore, party Pj ignores the value coink and keeps bj = v at the end of the
iteration. In conclusion, party Pj inputs v to the execution of Πta,ts

WC in iteration k+1. The claim
follows by induction on k. Therefore, after iteration κ, party Pj outputs bj = v. This proves
ts-validity.

[consistency] synchrony of the network guarantees that, by ts-weak consistency of Πta,ts

WC , after
the execution of weak consensus in iteration k, there is bk ∈ {0, 1} such that bj = bk or bj = ⊥
for each honest party Pj (for all k). Since coink is a uniformly random bit (independent of bk,
since the adversary only learns the value coink after each honest party has produced output
from weak consensus in iteration k), then P(coink = bk) = 1/2 for all k. Furthermore, synchrony
of the network guarantees that, by ts-validity of Πta,ts

WC , if coink = bk for some k, then bj = bk

at the end of iteration k for each honest party Pj and for all k′ ≥ k (the proof is by induction
on k′ as above, and we omit it).

For each positive integer k, let agreek denote the event that there exists b ∈ {0, 1} such that
bj = b for each honest party Pj at the end of iteration k. We denote by agree0 the event that all
honest parties hold the same input. Furthermore, let abortk denote the event that some honest
party Pj outputs ⊥ from the execution of Πta,ts

WC in iteration k. For each k ≥ 0 we have

P(agreek+1 | agreec
k) = P

(
agreek+1 ∩ (abortk+1 ⊔ abortc

k+1) | agreec
k

)
= P

(
agreek+1 ∩ abortk+1 | agreec

k

)
+ P

(
agreek+1 ∩ abortc

k+1 | agreec
k

)
= P

(
agreek+1 | abortk+1 ∩ agreec

k

)
P
(
abortk+1

)
+ P

(
agreek+1 | abortc

k+1 ∩ agreec
k

)
P
(
abortc

k+1
)

= P
(
coink+1 = bk+1)P(abortk+1

)
+ 1 · P

(
abortc

k+1
)

= 1
2
(
P
(
abortk+1

)
+ P

(
abortc

k+1
))

+ 1
2
P
(
abortc

k+1
)

≥ 1
2

.

(4)

Notice, once again, that the above equality P
(
agreek+1 | abortk+1 ∩ agreec

k

)
= P

(
coink+1 = bk+1)

holds because ts corrupted parties alone cannot learn coink+1 in advance, so that the output of
honest parties in the execution of Πta,ta

WC is independent from the value of coink+1 in iteration

22

k + 1. The observation that agreec
k ⊇ agreec

k+1 allows us to finally estimate

P
(
agreec

κ

)
= P

(
κ⋂

k=1
agreec

k

)

= P

(
agreec

κ

∣∣∣∣∣
κ−1⋂
k=1

agreec
k

)
P

(
κ−1⋂
k=1

agreec
k

)

=
κ∏

k=1
P
(
agreec

k | agreec
k−1

)
≤ 1

2κ
.

(5)

This proves ts-consistency.

Assume that that at most ta parties are corrupted in an execution of Πta,ts

SBA over an asyn-
chronous network.

[weak validity] Assume each honest party Pj holds the same input v ∈ {0, 1}. We claim that
each honest party Pj inputs v to the execution of Πta,ts

WC in iteration k (for all k). The claim
is trivially true for k = 1. Assume it is true for k. By ta-weak validity of protocol Πta,ts

WC , each
honest party Pj outputs either v or ⊤ from Πta,ts

WC in iteration k. Therefore, each honest party
Pj ignores the coin-flip value and sets bj = v at the end of iteration k, and therefore inputs
bj = v to the following execution of Πta,ts

WC in iteration k + 1. The claim follows by induction
on k. In conclusion, each honest party outputs bj = v at the end of iteration κ. This proves
ta-weak validity.

F Expected Constant-Round Synchronous BA with Asynchronous Weak
Validity

In this section, we describe protocol Πta,ts

eSBA: an expected constant-round BA with asynchronous
weak validity. This is achieved by modifying the construction Πta,ts

SBA from Section 4.1.
Assume the network is synchronous. An observation from the fixed-round protocol is that,

if within an iteration any party outputs the same bit b ∈ {0, 1} from both protocol Πta,ts

WC
and functionality F ts

CoinFlip, then all honest parties are in agreement on bit b (i.e. each honest
party will input b to the execution of Πta,ts

WC in the following iteration). Moreover, agreement is
preserved by ts-validity of protocol Πta,ts

WC in all subsequent iterations.
To achieve early termination, the high-level (but not fully accurate) idea is that if in iteration

k party Pj outputs b ∈ {0, 1} from both protocol Πta,ts

WC and functionality F ts
CoinFlip, then Pj

detects that agreement has been reached. Party Pj can then output b and keep running until
the first following iteration (k + C1) in which they obtain output b from functionality F ts

CoinFlip
once again, where Pj is sure that all parties detected agreement. At this point, Pj terminates.

This idea is not fully accurate, because when Pj terminates, there might still be parties that
have not terminated. Therefore, in the following iterations, the security guarantees of Πta,ts

WC and
F ts

CoinFlip may be compromised, as some honest parties are no-longer participating. For example,
it could be that parties do not obtain an output from F ts

CoinFlip anymore.
To solve this, we follow the approach by Micali [37], and alternate invocations to functionality

F ts
CoinFlip with iterations in which the value of the coin is fixed to opposite bits. Each macro-

iteration then consists of 3 mini-iterations, where the random coin, coin fixed to bit 0, and coin
fixed to bit 1 are executed, respectively.

As soon as a party detects agreement, they output this value, but only terminate the second
time the coin coincides with the output value. This happens by the end of the next large
iteration: when an honest party terminates, the coin value matches their output value in one of

23

the mini-iterations. Therefore, each honest party terminates regardless of what the values from
Πta,ts

WC and F ts
CoinFlip are.11

We describe the protocol from the point-of-view of party Pj holding input vj .

Initialization step: Set bj := vj , k := 1, ready-to-terminatej := 0.

1: while 1 do
2: cj := Πta,ts

WC (bj);
3: if ready-to-terminatej = 0 then bj := cj ;
4: end if
5: if k ≡ 1 mod 3 then (k, coink) := F ts

CoinFlip(k);
6: else if k ≡ 2 mod 3 then (k, coink) := (k, 0);
7: else if k ≡ 0 mod 3 then (k, coink) := (k, 1);
8: end if
9: if bj = coink then

10: if ready-to-terminatej = 0 then
11: output bj ;
12: ready-to-terminatej := 1;
13: else
14: terminate;
15: end if
16: end if
17: if bj = ⊥ then bj := coink;
18: else if bj = ⊤ then bj := vj ;
19: end if
20: if k = κ then output bj and terminate;
21: end if
22: k := k + 1;
23: end while

Protocol Πta,ts
eSBA

(
Πta,ts

WC , F ts
CoinFlip

)

Lemma 10. Assume protocol Πta,ts

WC achieves the following security guarantees.

– When run over a synchronous network: ts-liveness, ts-validity, and ts-weak consistency.
– When run over an asynchronous network: ta-weak validity.

Then, protocol Πta,ts

eSBA

(
Πta,ts

WC , F ts
CoinFlip

)
achieves the following security guarantees with over-

whelming probability.

– When run over a synchronous network: ts-security. Moreover, the protocol runs in O(1)
rounds in expectation.

– When run over an asynchronous network: ta-weak validity.

We divide the proof in a sequence of lemmas. We first argue about termination. The first lemma
shows that, if an honest party generates output in iteration k, then all honest parties terminate
soon after.

Lemma 11. If the network is synchronous, and at most ts parties are corrupted in an execution
of protocol Πta,ts

eSBA

(
Πta,ts

WC , F ts
CoinFlip

)
, then the following hold.

1. If some honest party generates output in iteration k, all honest parties terminate at the latest
in iteration k + 6.

2. If some honest party generates output in iteration k and k ≡ 1 mod 3, all honest parties
terminate at the latest in iteration k + 5.

11 Here, we need that parties know when Πta,ts
WC and the protocol realizing F ts

CoinFlip terminate when the network
is synchronous. This is the case, as these protocols terminate after a fixed constant number of rounds.

24

3. If all honest parties generate output in iteration k, all honest parties terminate at the latest
in iteration k + 3.

Proof. We prove the claims separately.

1. If k ≥ κ−6 the claim holds trivially. Assume that some honest party Pj outputs v in iteration
k < κ−6 (and therefore sets ready-to-terminatej := 1). If bj is their output from the execution
of protocol Πta,ts

WC in iteration k, then bj = v = coink. synchrony of the network and ts-weak
consistency of protocol Πta,ts

WC guarantee that each honest party Pi outputs bi ∈ {v, ⊥}
from the execution of protocol Πta,ts

WC in iteration k. Parties that output bi = v then set
bi := bi = v, while parties that output ⊥ then set bi := coink = v. Therefore, synchrony of
the network and ts-validity of protocol Πta,ts

WC guarantee that all honest parties input and
output the agreed upon value v to the execution of protocol Πta,ts

WC in each iteration k′ ≥ k.
Observe that coink′ = v twice again before iteration k + 6. The first time this happens, since
ready-to-terminatej = 1, party Pj (and possibly other honest parties) terminates and each
remaining honest party Pi generates output and sets ready-to-terminatei := 1. The second
time, each remaining honest party Pi terminates (since ready-to-terminatei = 1).

2. Same as above, but since k ≡ 1 mod 3 then coink′ hits the agreed upon value v twice before
iteration k + 5.

3. Same as above, but since each honest party Pj now sets ready-to-terminatej := 1 in iteration
k, the first time coink′ hits the agreed upon value v (this happens at the latest for k′ = k+3),
all honest parties terminate.

⊓⊔

We now compute the expected running time of the protocol. Let T be a random vari-
able, taking values in N ∪ {∞}, denoting the number of iterations in an execution of protocol
Πta,ts

eSBA

(
Πta,ts

WC , F ts
CoinFlip

)
. We denote by T = ∞ the event that the execution of the protocol does

not terminate (i.e. at least one honest party does not terminate). The expression T ≤ k is to
be understood as “each honest party terminates in iteration k at the latest”.

Lemma 12. If the network is synchronous, and at most ts parties are corrupted in an execution
of protocol Πta,ts

eSBA

(
Πta,ts

WC , F ts
CoinFlip

)
, then E[T] ≤ 12.

Proof. Let k ≡ 1 mod 3 and suppose that at least one honest party is still running upon
entering iteration k (the event T ≥ k). Consider the following two cases.

1. Denote by Nk the event that in the execution of protocol Πta,ts

WC in iteration k all honest
parties output ⊥ (this means no honest party has yet generated output). If Nk happens,
then each honest party Pj sets bj := coink = b ∈ {0, 1}. Agreement on b among honest
parties is preserved in each subsequent iteration by synchrony of the network and ts-validity
of protocol Πta,ts

eSBA. Therefore, in the first following iteration k′ in which coink′ = b (this
happens at the latest in iteration k′ = k + 2), all honest parties output b. By Lemma 11(3)
all honest parties terminate at the latest in iteration k + 5.

2. Denote by Sk the event that in the execution of protocol Πta,ts

WC in iteration k some honest
party Pj outputs v ̸= ⊥. If Sk happens, then the probability that coink = v is 1/2. The
reason is that, since k ≡ 1 mod 3, the value of coink is decided invoking functionality
F ts

CoinFlip. Because ts corrupted parties learn the output of F ts
CoinFlip only after the execution

of protocol Πta,ts

WC has terminated, the output v of party Pj in the execution of the protocol
Πta,ts

WC is independent from the value coink. If v = coink, then party Pj outputs v in iteration
k, and by Lemma 11(2) all honest parties terminate at the latest in iteration k + 5.

25

Clearly Sk = N c
k , so that P(Sk ⊔ Nk) = 1. The arguments above show that, for all k ≥ 1 such

that k ≡ 1 mod 3,

P(T ≤ k + 5 | Sk ∩ (T ≥ k)) = 1
2

;

P(T ≤ k + 5 | Nk ∩ (T ≥ k)) = 1.
(6)

Using these equalities, we can estimate P(T ≤ k + 5 | T ≥ k) as follows.

P(T ≤ k + 5 | T ≥ k) = P(T ≤ k + 5 | Sk ∩ (T ≥ k))P(Sk | T ≥ k)
+ P(T ≤ k + 5 | Nk ∩ (T ≥ k))P(Nk | T ≥ k)

= 1
2
P(Sk | T ≥ k) + P(Nk | T ≥ k)

= 1
P(T ≥ k)

(1
2
P((T ≥ k) ∩ Sk) + P((T ≥ k) ∩ Nk)

)
= 1

P(T ≥ k)

(1
2

+ 1
2
P((T ≥ k) ∩ Nk)

)
≥ 1

2
.

(7)

Armed with this estimate, we can finally show

P
(
T ≤ k + 5) = P

(
(T ≤ k + 5) ∩ ((T < k) ⊔ (T ≥ k))

)
= P

(
(T ≤ k + 5) ∩ (T < k)) ⊔ ((T ≤ k + 5) ∩ (T ≥ k))

)
= P((T ≤ k + 5) ∩ (T < k)) + P((T ≤ k + 5) ∩ (T ≥ k))
= P(T ≤ k − 1) + P(T ≥ k)P(T ≤ k + 5 | T ≥ k)

≥ P(T ≤ k − 1) + 1
2
P(T ≥ k)

= 1
2

+ 1
2
P(T ≤ k − 1).

(8)

In other words, for all k ≥ 0 such that if k ≡ 0 mod 3 we have P(T > k + 6) ≤ 1
2P(T > k).

Since k ≡ k+6 ≡ 0 mod 3, from this one inductively finds P(T > 6t) ≤ 1
2t for all t ≥ 1. Finally,

we can estimate

E[T] =
∞∑

t=0
P(T > t)

≤ 6
∞∑

t=0

1
2t

= 12.

(9)

⊓⊔

In our setting, the presence of timeout κ is necessary to ensure termination when the network
is asynchronous (indeed, in the absence of a timeout, the adversary could keep all honest parties
from terminating by simply delaying messages). Above, we showed that when the network is
synchronous the timeout is reached with negligible probability, so that if κ is large enough
we can assume parties never reach the timeout. We conclude by proving security of protocol
Πta,ts

eSBA

(
Πta,ts

WC , F ts
CoinFlip

)
.

Lemma 13. Protocol Πta,ts

eSBA

(
Πta,ts

WC , F ts
CoinFlip

)
achieves the following security guarantees with

overwhelming probability.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-weak validity.

26

Proof. Below, by iteration we mean one of the mini-iterations (or, in other words, one iteration of
the while cycle). Assume that at most ts parties are corrupted and the network is synchronous.
[liveness] It follows immediately from synchrony of the network and ts-liveness of protocol
Πta,ts

WC .
[validity] Assume all honest parties hold the same input v. synchrony of the network and ts-
validity of protocol Πta,ts

WC guarantee that, during the first iteration (k = 1), each honest party
Pj sets bj := Πta,ts

WC (v) = v. Therefore, in the first following iteration in which coink = v (this
happens for k ≤ 3) party Pj outputs v. This proves ts-validity.
[consistency] Assume some honest party Pj outputs v in iteration k. This means coink = bj = v.
synchrony of the network and ts-weak consistency of protocol Πta,ts

WC guarantee that bi ∈ {bj , ⊥}
for each honest party Pi in iteration k. Therefore, each honest party Pi sets bi ∈ {bj , coink} = {v}
in iteration k. Hence, in the first following iteration k + C such that coink+C = v (this happens
for C ≤ 3), if party Pi has not yet produced output, they output v. This proves ts-consistency.

Assume now that at most ta parties are corrupted and the network is asynchronous.
[weak validity] Assume all honest parties hold the same input v. Suppose an honest party Pj

outputs b ̸= ⊤ in iteration k. This means b is the output of the execution of protocol Πta,ts

WC in
iteration k. Then b = v by ta-weak validity of protocol Πta,ts

WC . This proves ta-weak validity and
concludes the proof of the lemma.

G Synchronous Broadcast with Asynchronous Weak Validity

We now explain how to obtain a broadcast protocol that is ts-secure in a synchronous network
and ta-weakly valid in an asynchronous network, starting from a BA with the same guarantees.
In addition to the rounds required by the BA, our construction runs only 2 rounds. In particular,
given a fixed-round BA, it yields a fixed-round broadcast protocol. The opposite construction
(BA from broadcast) is shown in [9]. Together, these result completely resolve the question of
equivalence of BA and broadcast with asynchronous weak validity.

The idea, well known in the synchronous model, is for the sender P ∗ to send their input
to all parties in the first round; parties then run a Byzantine agreement protocol on the values
they received to ensure consistency. However, this construction cannot be directly translated to
our setting: if an honest party Pj does not receive a message from the sender P ∗ within the first
round, then P ∗ could be corrupted, or the adversary might have delayed the message. In the
former scenario, an easy patch would be to input a default value to the BA protocol, but this
solution does not allow to achieve weak validity in the latter scenario. On the other hand, not
inputting any message to the Byzantine agreement protocol fails to provide consistency if the
network is synchronous.

We solve this problem by having parties run two BAs: one to agree on whether the sender
behaved honestly, and one to agree on a received value. These executions can be carried out in
parallel for improved round efficiency.

Let Πta,ts

SBA be a synchronous Byzantine agreement protocol (for example, our protocol with
asynchronous weak validity from Section 4.2) which runs in s rounds.

We describe the protocol from the point of view of party Pj .

Initialization step. Set bj := ⊤, received-inputj := 0.

Round 1 (Sender). Send message (v∗, Sgn(v∗, sk∗)) to all parties.

Protocol Πta,ts
SBC

(
Πta,ts

SBA
)

27

Round 1. Upon receiving a message (vj , σj) from P ∗, if Vfy(vj , σj , pk∗) = 1, set received-inputj := 1, bj := vj ,
and forward message (vj , σj) to all parties in Round 2.

Round 2. If received-inputj = 0 and bj = ⊤, upon receiving (v′
j , σ′

j) from any party, if Vfy(v′
j , σ′

j , pk∗) = 1 set
bj := v′

j .

Round 3 to 3 + s. Set received-inputj := Πta,ts
SBA (received-inputj). If bj ̸= ⊤, let bj := Πta,ts

SBA (bj), other-
wise participate in protocol Πta,ts

SBA but do not send a message whenever supposed to share input.

Output determination. If received-inputj = 1, output bj . Otherwise, output ⊤.

Lemma 14. Assume protocol Πta,ts

SBA achieves the following security guarantees.

– When run over a synchronous network: ts-validity and ts-consistency.
– When run over an asynchronous network: ta-weak validity.

Then, protocol Πta,ts

SBC

(
Πta,ts

SBA

)
achieves the following security guarantees.

– When run over a synchronous network: ts-validity and ts-consistency.
– When run over an asynchronous network: ta-weak validity.

Proof. Assume that that at most ts parties are corrupted in an execution of Πta,ts

SBC

(
Πta,ts

SBA

)
over

a synchronous network.

[validity] If the sender P ∗ is honest, they send (v∗, Sgn(v∗, pk∗)) to all parties in round 1.
synchrony of the network guarantees these messages are delivered within the round, so that
each honest party Pj sets received-inputj := 1 and bj := v∗ in round 1. By ts-validity of Πta,ts

SBA ,
each honest party sets received-inputj := Πta,ts

SBA (received-inputj = 1) = 1 and bj := Πta,ts

SBA (bj =
v∗) = v∗ in round 3 + s, and outputs bj = v∗ from Πta,ts

SBC

(
Πta,ts

SBA

)
. This proves ts-validity.

[consistency] Assume an honest party Pj outputs v ̸= ⊤. This means received-inputj equals 1
in round 3 + s. Then, ts-consistency of Πta,ts

SBC guarantees that received-inputi = 1 in round 3 + s

for each honest party Pi. Furthermore, ts-validity of Πta,ts

SBC guarantees that at least one honest
party Pk inputs received-inputk = 1 to Πta,ts

SBC in round 3. This means party Pk received a validly
signed message from the sender in round 1, and forwarded this message to all parties in round
2. synchrony of the network then guarantees bi ̸= ⊤ for each honest party Pi in round 3. Since
each honest party provides a valid input, ts-consistency of Πta,ts

SBC guarantees that bi = bj = v

in round 3 + s for each honest party Pi, so that Pi outputs v from Πta,ts

SBC

(
Πta,ts

SBA

)
. This proves

ts-consistency.

Assume that that at most ta parties are corrupted in an execution of Πta,ts

SBC

(
Πta,ts

SBA

)
over an

asynchronous network.

[weak validity] Assume the sender P ∗ is honest and has input v∗. Up to (and including)
round 3, an honest party Pj sets bj := v ̸= ⊤ only if they receive a message (v, σ) such that
Vfy(v, σ, pk∗) = 1. Since corrupted parties cannot forge an honest sender’s signature, bj ∈
{v∗, ⊤} in round 3 for each honest party Pj . Observe that, if bj = ⊤ in round 3, party Pj does
not send a message whenever they are supposed to share their input in Πta,ts

SBC ; this does not
break ta-weak validity of Πta,ts

SBC , since messages can be arbitrarily delayed by the adversary.
Therefore, ta-weak validity of Πta,ts

SBC guarantees that bj ∈ {v∗, ⊤} in round 3 + s for each honest
party Pj . In conclusion, each honest party Pj outputs either v∗ or ⊤ from Πta,ts

SBC

(
Πta,ts

SBA

)
. This

proves ta-weak validity, and concludes the proof of the lemma. ⊓⊔

28

H Proof of Lemma 6

We sketch the proof. Assume at most ts parties are corrupted and the network is synchronous.
Then, ts-security of Πts,ta

HMPC guarantees that each party receives the same correct output from
the computation of fGRBL in Step 1 (which takes into account the input of all honest parties).
Therefore, each honest party encrypts their (authenticated) shares of each gate of circg and sends
the resulting ciphertexts to all parties. synchrony of the network guarantees that each honest
party receives at least n−ts > ts valid (i.e. such that the information checking protocol succeeds)
and consistent shares for each gate within one extra round. Since dishonest parties cannot forge
authentication vectors, even a rushing adversary cannot compromise the reconstruction of the
function table entries. Together with the masked inputs and the relative keys for each input
wire, as well as the masks for the accessible output wires, the (only) reconstructed function
table entry for each gate allows each honest party Pj to evaluate the garbled version of circg

locally and recover the output. In particular, each honest party terminates.
Now, Assume at most ta parties are corrupted and the network is asynchronous. Then,

ta-security of protocol Πts,ta

HMPC (circfGRBL ; circg; bj) guarantees that each honest party receives
the same output (taking into account the inputs of at least n − ts honest parties) from the
computation of fGRBL in Step 1. Notice that if ϕj = 0 (i.e. if Pj has not yet sent their encrypted
shares), then party Pj does not terminate. Eventual delivery then guarantees that each honest
party receives at least n − ta ≥ n − ts ≥ ts + 1 valid and consistent encrypted shares of each
function table entry of circg. Since dishonest parties cannot forge authentication vectors, each
set of ts + 1 valid shares identifies the same secret. Together with the masked inputs and the
relative keys for each input wire, as well as the masks for the accessible output wires, the
(only) reconstructed function table entry for each gate allows each honest party Pj to evaluate
the garbled version of circg locally and recover the output. In particular, each honest party
terminates.

29

	Round-Efficient Byzantine Agreement and Multi-Party Computation with Asynchronous Fallback
	Introduction
	Motivation
	Contributions
	Related Work

	Model
	Communication and Adversarial Models
	Cryptographic Primitives

	Definitions
	Agreement Primitives
	Broadcast Primitives
	Multi-party Computation

	Round-Efficient Byzantine Agreement with Asynchronous Weak Validity
	Weak Consensus with Asynchronous Weak Validity
	Fixed-Round Synchronous BA with Asynchronous Weak Validity
	Optimality of Synchronous BA with Asynchronous Weak Validity

	Synchronous BA with Asynchronous Fallback
	Round-Efficient MPC with Asynchronous Fallback
	Multi-Party Garbled Circuits
	MPC with Linear Round Complexity in d and and Asynchronous Fallback
	Protocol Description

	Additional Definitions
	Gradecast with Asynchronous Weak Validity
	Proof of Lemma 1
	A Simpler Weak-Consensus with Asynchronous Weak Validity for ta + 2ts<n and tats
	Proof of Lemma 2
	Expected Constant-Round Synchronous BA with Asynchronous Weak Validity
	Synchronous Broadcast with Asynchronous Weak Validity
	Proof of Lemma 6

