
Closing the Efficiency Gap between Synchronous
and Network-Agnostic Consensus⋆

Giovanni Deligios and Mose Mizrahi Erbes

ETH Zurich, Zürich, Switzerland
{gdeligios,mmizrahi}@ethz.ch

Abstract. In the consensus problem, n parties want to agree on a
common value, even if some of them are corrupt and arbitrarily misbehave.
If the parties have a common input m, then they must agree on m.

Protocols solving consensus assume either a synchronous communication
network, where messages are delivered within a known time, or an asyn-
chronous network with arbitrary delays. Asynchronous protocols only
tolerate ta < n/3 corrupt parties. Synchronous ones can tolerate ts < n/2
corruptions with setup, but their security completely breaks down if the
synchrony assumptions are violated.

Network-agnostic consensus protocols, as introduced by Blum, Katz, and
Loss [TCC’19], are secure regardless of network conditions, tolerating
up to ts corruptions with synchrony and ta without, under provably
optimal assumptions ta ≤ ts and 2ts + ta < n. Despite efforts to improve
their efficiency, all known network-agnostic protocols fall short of the
asymptotic complexity of state-of-the-art purely synchronous protocols.

In this work, we introduce a novel technique to compile any synchronous
and any asynchronous consensus protocols into a network-agnostic one.
This process only incurs a small constant number of overhead rounds,
so that the compiled protocol matches the optimal round complexity for
synchronous protocols. Our compiler also preserves under a variety of
assumptions the asymptomatic communication complexity of state-of-the-
art synchronous and asynchronous protocols. Hence, it closes the current
efficiency gap between synchronous and network-agnostic consensus.

As a plus, our protocols support ℓ-bit inputs, and can be extended to
achieve communication complexity O(n2κ+ ℓn) under the assumptions
for which this is known to be possible for purely synchronous protocols.

1 Introduction

1.1 Motivation

Consensus, or byzantine agreement, is a fundamental problem in distributed
computing and cryptography. A consensus protocol enables n parties with inputs
to agree on a common output by communicating via bilateral channels, even when
some parties maliciously deviate from the protocol. Pre-agreement among honest
parties on a common input must be preserved by a consensus protocol.

⋆ This is the full version of a paper appearing in Eurocrypt 2024.

The problem has a decades-long research history [27,13,8,10] and consensus
protocols serve as building blocks for more complex tasks, such as distributed
key generation and multi-party computation. In the last decade, the emergence
of blockchain applications [34,26] sparked renewed interest in the problem, and
the number of consensus protocols implemented and deployed is now higher than
ever. Interestingly, the security of deployed protocols relies on assumptions on the
underlying communication network which are, in practice, not always satisfied,
leading to serious security failures [23].

The two dominant communication abstractions are known as the synchronous
model and the asynchronous model. In the synchronous model, messages are
delivered within some publicly known time ∆ after being sent, and parties have
access to a global clock. This is in contrast to the asynchronous setting, where
messages are delivered with arbitrary (finite) delays decided by an adversary,
and parties’ local clocks need not be synchronized.

Protocol design is significantly simpler in the synchronous model: communication
can proceed in rounds where each party waits for messages from all other parties
before computing their next message. Consensus protocols in this model can with
setup achieve statistical or cryptographic security against less than n

2 malicious
parties, but their security completely breaks down if even a single message is
dropped or delayed.

The unpredictability of the asynchronous model requires a more involved protocol
design, as one cannot differentiate between a corrupt party not sending a message
and an honest party whose message is delayed. Given the minimal assumptions
of this model, the achievable security guarantees are unsurprisingly weaker:
asynchronous consensus protocols can tolerate less than n

3 malicious parties. On
the positive side, in the real world, asynchronous protocols are resilient to very
adverse network conditions.

Starting with [6], a recent line of works tries to marry the better resiliency of
synchronous protocols with the tolerance of asynchronous protocols to adverse
network conditions. The goal is to design network-agnostic protocols in which
parties are unaware of the network conditions at execution time. If synchrony
is satisfied throughout the execution, then the protocol should be secure if up
to a threshold ts of parties misbehave. However, even if some of the synchrony
assumptions are violated during the execution, the protocol should still tolerate
a lower threshold ta of corruptions.

In this setting, consensus (with setup) is possible if and only if ta ≤ ts and
2ts + ta < n [6]. Observe that if the threshold ta is set to 0, one has the optimal
resilience of synchronous consensus protocols. Furthermore, even if the network is
asynchronous, the protocol still achieves security when all parties honestly follow
it. This is not true for purely synchronous protocols, where an adversary who
controls the network can typically disrupt the execution of a protocol by simply
delaying a single message.

Currently, known network-agnostic protocols for consensus and multi-party com-
putation mostly follow some variation of the following approach: 1) Identify a

2

synchronous and an asynchronous protocol for the task at hand, 2) Enhance both
so that the synchronous protocol provides some weak guarantees even when the
network is not synchronous and the asynchronous protocol provides some stronger
guarantees (than it normally would) if synchrony holds, and finally 3) Run some
clever combination of the two enhanced protocols to obtain a network-agnostic
protocol with full security.

Despite proving quite effective, this design approach has two major downsides.
First, if one wishes to replace the synchronous or asynchronous components with
different protocols (because more efficient constructions are discovered, or because
for a specific application the cryptographic primitives or setup assumptions
required are not available), then the enhancement step 2) above must be carried
out from scratch. This step is typically the most technically involved, and even if
successful, new security proofs are required. Second, solving the design challenges
of step 2) typically incurs a large complexity overhead.

These observations naturally lead to the following question:

Is there a complexity-preserving way to combine in a black-box fashion syn-
chronous and asynchronous consensus protocols into a network-agnostic
protocol?

For round complexity, we answer this question affirmatively with a compiler
for network-agnostic consensus which makes only a single black-box use of any
synchronous and asynchronous consensus protocols. The compiler only incurs a
constant overhead in the number of rounds, and it does not run the asynchronous
protocol if the network happens to be synchronous. Hence, we close up to a
constant number of rounds any round complexity gap between purely synchronous
and network-agnostic consensus protocols, including the asymptotic gap that
remained open between [20] and [11].

Our construction is the most efficient known, and it preserves the asymptomatic
communication complexity of the best-known synchronous and asynchronous
protocols when they are used in the compiler. As a plus, it supports long inputs
natively and more efficiently than previous network-agnostic protocols, despite
only invoking consensus protocols for single-bit inputs. For security we rely on
the (provably necessary) trade-off 2ts + ta < n and the existence of unforgeable
signatures, which can be instantiated from any setup necessary for honest majority
synchronous consensus.

There is no known result or heuristic evidence implying that network-agnostic
protocols should be inherently less efficient than purely synchronous protocols
for the same task, assuming network synchrony holds. Recent work [4] shows
that network-agnostic distributed key generation incurs no such loss. Our work
goes in the same direction, and shows that no inherent efficiency loss is incurred
for the network-agnostic security of consensus.

1.2 Technical Overview

Starting Point. A consensus protocol is run among n parties: each party holds
an input m in some alphabet M. A consensus protocol achieves consistency if all

3

honest parties (parties following the prescribed protocol) output the same value.
It achieves validity if whenever all honest parties have the same input m, they
all output m (informally, we say that pre-agreement is preserved).

If a protocol achieves a property, for example consistency, only if the assumptions
of the synchronous model are satisfied, we say that it achieves synchronous
consistency. We say it simply achieves consistency if it achieves consistency
regardless of the assumptions on the network (in particular, in the weakest model
possible, the asynchronous model). Similarly, we say it achieves t-consistency if
consistency holds only if at most t parties deviate from the protocol.

Protocols with synchronous ts-validity and synchronous ts-consistency (that we
denote by SBA) exist for all ts <

n
2 assuming setup [13], while consensus protocols

with ta-validity and ta-consistency even in asynchronous networks (which we
denote by ABA) only exist for ta < n

3 , even with setup [10].

Blum, Katz, and Loss [6] first proposed a way to adapt such SBA and ABA
protocols to obtain a network-agnostic protocol. Assuming 2ts + ta < n (which
they prove to be necessary) they obtain a protocol HBA with the following
properties 1) synchronous ts-validity 2) ta-validity 3) synchronous ts-consistency,
and 4) ta-consistency.

The paradigm they use has been adopted in later works [11,4]. The idea is to
run SBA and ABA in succession. First, the input to HBA is used as input to
SBA, and then the output from SBA as input to ABA. Finally, the output from
ABA is taken to be the output from HBA. However, without modifications, this
simple procedure does not provide the wanted guarantees. The first problem
is that SBA provides no security guarantees whatsoever if the network is not
synchronous. In particular, it does not preserve pre-agreement between honest
parties; so, ta-validity does not hold in the overall protocol HBA. The second
problem is that when the network is synchronous but ts > ta, protocol ABA
provides no security guarantees. This means that synchronous ts-validity and
synchronous ts-consistency do not hold for HBA.

Their solution is clever. Consider the following weaker notion of validity, which
we call fallback validity : if all honest parties have the same input m ∈ M, then
they all output m or abort the protocol. Assume the existence of a protocol SBA∗

which, in addition to the properties of SBA, achieves ta-fallback validity.

Now, run in succession SBA∗ and ABA, but any party who aborts in SBA∗ uses
their original input as input to ABA. Now, even if the network is asynchronous,
pre-agreement on an input m among honest parties is preserved: thanks to ta-
fallback validity, all parties output m from SBA∗ or abort. Either way, they all
input m to ABA, and pre-agreement is preserved by the ta-validity of ABA.

To fix the second problem, assume the existence of a protocol ABA∗ which, in
addition to the properties of ABA achieves synchronous ts-validity,

1 and replace
ABA with ABA∗ in HBA. Observe that, if the network is synchronous, by the

1 The protocol ABA∗ should also have certain termination properties if the network is
synchronous, but such details are not needed to appreciate this technical overview.

4

synchronous ts-consistency of SBA∗, honest parties are always in pre-agreement
before executing ABA∗ (either on the pre-agreed upon input, or on some arbitrary
value if no pre-agreement was present before executing SBA∗). Therefore, the
synchronous ts-validity of ABA∗ suffices for the security of HBA.

Constructing protocols SBA∗ and ABA∗ with the required properties is a signifi-
cant design challenge which fundamentally exploits the assumption 2ts + ta < n.
In [6], Dolev-Strong broadcast [13] and the asynchronous consensus protocol from
[31] are used as starting points. The resulting network-agnostic protocol requires
setup for unique threshold signatures and runs in O(n) rounds when the network
is synchronous. In [11], Deligios and Hirt design a new SBA∗ by modifying the
synchronous protocol from [15]. Again, unique threshold signatures are needed,
but the new protocol runs in a constant (in n) number of rounds when the
network is synchronous, with an error probability O(c−r) in r rounds for some
constant c > 1. At the time, this matched the asymptotic round complexity of
the most efficient purely-synchronous protocols known. However, more recently,
[20] showed an SBA protocol which under appropriate assumptions can achieve
an error probability of O((c ·r)−r) in r rounds for some constant c > 0, which has
long been known to be optimal [24], thus reopening the gap between synchronous
and network-agnostic protocols. This gap remained, until now, open.

Closing the round-efficiency gap. Design-wise, it is clearly sub-optimal
to repeat the process of enhancing SBA with ta-validity and rewriting security
proofs to obtain a corresponding SBA∗ whenever any new synchronous protocol
is published. To make matters worse, certain SBA protocols (including [20]) seem
to be inherently less friendly to such adaptations.

For this reason, we propose a new enhancing technique to obtain a protocol
with the properties required from SBA∗ that invokes any SBA protocol in a
black-box fashion, and only introduces a constant overhead in the number of
rounds required. We stress that this construction can be instantiated with any
SBA protocol, including [20]. We begin by adding ta-fallback validity to a weaker
agreement primitive (a flavor of graded consensus), whose security only relies
on an abstract form of digital signatures (which can also be instantiated with
information theoretic security [38]). Our graded-consensus intuitively provides
the validity guarantees required from SBA∗ when synchrony does not hold, so
that the role of the underlying SBA is reduced to providing full agreement when
the network is synchronous. This allows us to use SBA in a black-box way.

However, plugging the SBA from [20] into our construction for SBA∗ does not
suffice: to achieve network-agnostic security, protocol HBA requires running
both the SBA∗ and the ABA∗ sub-protocols regardless of the network conditions.
Unfortunately, a classical lower bound shows that in r rounds, an asynchronous
consensus protocol can only achieve consistency and validity with error probability
O(c−r) for some constant c > 1 [3]. This means that even running an optimal
ABA∗ protocol when the network is synchronous would increase the error of the
overall protocol from O((c · r)−r) to O(c−r) in r rounds.

5

To fix this, we propose a new way to enhance any ABA protocol to fulfill the
properties of ABA∗ that only requires black-box access to the underlying ABA
protocol. We observe that when the network is synchronous, the SBA∗ protocol
guarantees that honest parties are always in pre-agreement upon entering the
protocol ABA∗. We exploit this by designing a termination procedure that, when
the network is synchronous, is triggered within a small constant number of rounds,
causing ABA∗ to terminate without running the underlying ABA. This means
that the underlying ABA protocol is only run when the network is asynchronous,
which in turn allows us to use it in a black-box way.

Multi-valued inputs. Our protocols actually support inputs from any alphabet
M. When M = {0, 1}, validity guarantees that the common output of honest
parties is the input of at least one honest party. For large input spaces, this
desirable property is unattainable unless t · |M| < n. Instead, it is common to
only require that the common output is either the input of some honest party or
a special symbol ⊥: this property is called intrusion tolerance. Since it requires
no extra work, our consensus protocols guarantee that the common output is
the input of at least δn honest parties whenever 2ts + ta ≤ (1− δ)n and δn is a
positive integer. This is without loss of generality, as the requirement that ta, ts
and n are integers allows us to simply take δn to be n− 2ts − ta.

Overview of our construction. Our novel SBA∗ construction has two com-
ponents: the first is any SBA protocol, and the second is a weaker agreement
primitive we call SGC2 (2-graded consensus), which provides the network-agnostic
security guarantees. We build increasingly strong agreement primitives towards
SGC2. All these primitives achieve the validity and fallback validity properties,
but provide increasingly strong consistency guarantees. SGC2 is sufficiently strong
so that combining it with SBA one finally obtains full security. We then mimic
this approach for our ABA∗ protocol.

Protocol SWC. We begin with SWC (synchronous weak consensus). The protocol
is simple: in the first round parties sends their signed inputs (with some signature
scheme) to everyone. Any party receiving less than n− ts messages is sure that
the network is asynchronous (or they would have received messages from all
honest parties) and it simply aborts the protocol. Otherwise, in the second round,
if a party has received at least ts + δn copies of the same validly signed value m
from different parties, it sets its tentative output to m, combines the signatures
on m into a certificate, and sends the certificate to everyone in an effort to prevent
inconsistencies. Upon seeing a certificate on a value different from its tentative
output, a party changes its output to ⊥. In a synchronous network the protocol
achieves ts-validity and a weaker notion of ts-consistency: there is some m ∈ M
such that each honest party outputs either m or ⊥, because before outputting
some m ∈ M, a party sends a certificate on m to everyone, preventing other
parties from outputting any m′ ∈ M\{m}. Notice that the protocol also achieves
ta-fallback validity: informally, if the network is asynchronous but honest parties
have pre-agreement on m, an honest party who does not abort in the first round

6

has received at least n− ts validly signed messages, and of these, at most ta come
from corrupted parties. Therefore, the assumption 2ts + ta ≤ (1− δ)n guarantees
that at least n− ts − ta ≥ ts + δn of the signed inputs hail from honest parties,
who all sign the input m.

Protocol SProp. The next building block for SGC2 is the protocol SProp (syn-
chronous proposal). In a proposal protocol, honest parties have inputs in some
common set S = {x,⊥} ⊆ M⊥ = M ∪ {⊥}, and they output either x, ⊥, or
the set {x,⊥}. The protocol description and the security properties achieved are
similar to SWC: pre-agreement on an input should be preserved, and it should
not happen that an honest party outputs x while another outputs ⊥. However,
it is allowed that an honest party outputs x or ⊥ while another outputs {x,⊥}.
Indeed, the mapping (x, {x,⊥},⊥) −→ (0,⊥, 1) actually yields a weak-consensus
protocol for binary inputs. The crucial difference which we exploit is that for
proposal, the set S = {x,⊥} doesn’t have to be known a priori: honest parties
with the input ⊥ do not need to know what x is.

Protocols SGC1 and SGC2. Protocols SGC1 and SGC2 are different flavors of a
primitive called graded consensus. They invoke SWC and SProp as sub-protocols.
In graded consensus, each party has an input x ∈ M⊥ and outputs a value
y ∈ M⊥, together with a grade g ∈ (0, k). Intuitively, the grade measures “how
certain” a party is of its output. The grades of honest parties must differ by at
most 1, and if an honest party has a non-zero grade, then all honest parties must
have the same value y (graded consistency). In addition, if the honest parties
are in pre-agreement on a value y, then all honest parties must output y with
the maximum grade g = k (graded validity). The higher k is, the harder it is to
achieve these properties.

Protocol SGC1 has a maximum grade k = 1. First, the parties run an instance
of SWC on their inputs. If their outputs here matches their inputs, they repeat
their inputs to an instance of SProp. Otherwise, they input ⊥ to SProp. Finally,
the mapping (m, {m,⊥},⊥) −→ ((m, 1), (m, 0), (⊥, 0)) is applied to the SProp
outputs. Protocol SWC guarantees that the inputs of honest parties are valid
inputs for SProp, and then SProp provides graded consistency. Indeed, if a party
outputs a value x with grade 1, this means that it output x from SProp, and no
honest party has output ⊥ from SProp. This shows all honest parties output x
with grade 1 or 0. Other properties, including ta-fallback validity, are inherited
from the sub-protocols in a straightforward way.

Protocol SGC2 has a maximum grade k = 2. The protocol is similar to SGC1,
but invokes SGC1 instead of SWC and SWC instead of SProp. The output value
of SGC2 is simply taken to be the output value from SGC1, but an instance
of SWC is run on the output grades from SGC1 in order to increase k from 1
to 2 via the mapping (0,⊥, 1) −→ (0, 1, 2) on the outputs of SWC. The weak
consistency of SWC guarantees that the grades of honest parties differ by at most
by 1, and the validity of SWC guarantees that non-zero SGC2 grades only occur

7

if some honest parties obtained the grade 1 from SGC1, implying agreement on
the output values.2.

Protocol SBA∗. We combine SGC2 together with any fixed-round synchronous
binary consensus protocol SBA to obtain our enhanced synchronous consensus
protocol SBA∗. The construction is simple. First, the parties run SGC2 on their
inputs, and then they run SBA to decide whether agreement has been reached,
inputting 1 to SBA if they have non-zero grades. The parties with the grade 2
just ignore SBA and output their SGC2 output values. From this follows validity
and fallback validity. The remaining parties use SBA for consistency. If SBA
outputs 1, then they output their SGC2 output values; otherwise, they output ⊥.
For synchronous consistency, there are three scenarios to consider. If some party
has the grade 2, then by graded consistency, every party has the grades 2 or 1,
and therefore, by validity, SBA outputs 1, leading to everyone outputting the
common SGC2 output value. If every party has the grade 0, then by validity SBA
outputs 0, and so everyone outputs ⊥. Finally, if some parties have the grade 1
while others the grade 0, then either SBA outputs 1 and everyone outputs the
common SGC2 output value, or SBA outputs 0 and everyone outputs ⊥.

Protocol AProp. Our AProp (asynchronous proposal) protocol is an adaption of
Πts

prop from [6]. For simplicity, here we only consider the case δn = 1; if δn > 1,
some care must be taken to achieve (ts, δn)-intrusion tolerance. As in SProp, the
honest parties have inputs in a set S = {x,⊥} ∈ M⊥. They start by simply
sending their inputs to everyone (AProp does not need signatures). If a party
receives an input v from ts + 1 parties, then it learns that v is the input of an
honest party, and therefore sends the input v to everyone, even if v is not its
own input. If a party Pi receives an input v from n− ts parties, then it adds v
to a set Vi. Upon adding a first value v to Vi, party Pi proposes to everyone that
they should output v, and upon adding a second value to Vi, party Pi outputs
Vi = S. Alternatively, a party will output v upon receiving from n− ts parties
proposals to output v. If everyone has a common input v, then v will be the
unique value everyone will add to Vi; therefore, everyone will propose and output
v. A standard quorum-intersection argument on proposals shows ta-consistency.
The trickiest property is ta-liveness, meaning that all parties obtain output. Since
n− ta > 2ts, there exists an input held by at least ts + 1 parties. Furthermore,
if ts + 1 parties send everyone an input v, then every party Pi sends everyone
the input v and adds v to Vi; thus, there exists an input that every party Pi

adds to Vi. Finally, if some Pi adds v to Vi, then at least n − ts − ta ≥ ts + 1
parties must have sent everyone the input v, meaning that every Pj adds v to Vj .
Therefore, either every party Pi adds both x and ⊥ to Vi and can output {x,⊥},
or there is a unique v which every party Pi adds to Vi, proposes, and outputs.
Protocol AProp is non-terminating; it is designed to be run forever. Termination
is guaranteed by the outer protocol ABA∗.

2 Grades 0 and 1 suffice for SBA∗ with binary inputs. Expanding the grade range is only
necessary for multi-valued inputs, but incurs no asymptotic round or communication
complexity overhead, which is why we do not consider the cases separately.

8

Protocol AWC. The asynchronous weak consensus protocol AWC is the coun-
terpart of SWC. In theory, AProp can be used as a weak-consensus protocol for
binary inputs via the mapping (x, {x,⊥},⊥) −→ (0,⊥, 1). This provides a simple
way to obtain weak consensus on ℓ-bit messages by simply running ℓ parallel
instances of AProp, one instance per bit. Then, any honest party that obtained
⊥ from any instance would output ⊥, and any honest party that obtained bits
from all instances would output the concatenation of the bits. This design would
increase message complexity by a multiplicative ℓ-factor, and the messages would
need (log ℓ)-bit tags that indicate which AProp instance they belong to. To keep
the complexity low, we parallelize the AProp instances in a more refined way, by
batching/combining messages of different instances.

Protocols AGC1 and AGC2. These graded consensus protocols are simple
message-driven adaptations of their synchronous counterparts SGC1 and SGC2.
They invoke AWC and AProp as sub-protocols rather than SWC and SProp.

Protocol ABA∗. Our asynchronous consensus protocol with ts-validity ABA∗

combines AGC2 and any asynchronous binary consensus protocol ABA secure
against ta corruptions. The composition is similar to that in SBA∗, but since we
can no longer rely on having a fixed running time, we need to rethink termination.
We avoid the termination technique of sending certificates on tentative outputs
(as done in some previous work [6,11,4]), and instead opt for an approach similar
to Bracha’s classical protocol from [8]. This keeps the communication complexity
quadratic rather than cubic, and makes ABA∗ a signature-free reduction of
asynchronous multi-valued consensus to binary consensus [33]. To keep the
communication complexity low, we ensure that the honest parties do not send
ABA messages when the network is synchronous. We do so by requiring that
when the network is synchronous, the honest parties know a common input
m ∈ M by some publicly known time rs · ∆, which triggers the termination
rules and guarantees the termination of ABA∗ within a few additional rounds,
by some publicly known time T . Before local time T , honest parties do not send
ABA messages. Hence they terminate without ever sending ABA messages if the
network is synchronous.

Protocol HBA. We obtain HBA by composing SBA∗ and ABA∗ as described
previously. The ta-fallback validity of SBA∗ and the synchronous ts-validity (with
termination) of ABA∗ make the composition sound.

1.3 Contributions

Theorem 1. Let SBA be any synchronous consensus protocol for binary inputs
achieving error probability ϵ in k rounds, and ABA be any asynchronous consensus
protocol for binary inputs. Under the provably optimal assumptions 2ts + ta < n
and ta ≤ ts, there exists a network-agnostic consensus protocol HBA for any
inputs which invokes SBA and ABA in a black-box way and that, when the network
is synchronous, achieves error probability ϵ in k + 13 rounds.

9

SProp SWC

SGC1 SGC2 SBA

SBA∗

ABA AGC2 AGC1

AWC AProp

ABA∗

HBA

Fig. 1. An overview of how sub-protocols are composed for HBA.

Theorem 1 reduces the synchronous round complexity of network-agnostic con-
sensus protocols to the round complexity of purely synchronous consensus proto-
cols, up to a small additive constant. Concretely, HBA can take full advantage
of a round-optimal λ-round SBA with an error probability decreasing super-
exponentially with λ [20], improving over the state-of-the-art [11] (in which the
error decreases exponentially) and finally matching the known lower bound for
purely synchronous protocols [24]. Note that to achieve consensus for honest-
majority when the network is synchronous, some sort of setup is provably necessary
[27]. Our protocol also needs setup. Concretely, it can be instantiated from a
variety of setup assumptions such as threshold signatures, bulletin-PKI or even
correlated randomness for information theoretic pseudo-signatures.

Below, we compare the communication complexity (in terms of bits) of our
construction with that of previous network-agnostic protocols, when we use the
most efficient SBA and ABA protocols at hand. We denote with κ a computational
security parameter and with ε a positive constant. Since [4] only has an ABA∗

component, we pair it with our SBA∗. For fairness, we consider variants of previous
protocols optimized to take full advantage of threshold signatures.

Table 1. Communication complexities of previous network-agnostic consensus protocols
and ours, under assumptions that have been considered for network-agnostic consensus.

Bulletin-PKI
Bulletin-PKI &
2ts ≤ (1− ε)n

Threshold
Signatures

Blum, Katz, Loss [6] — —
O(n4κ)

(Bit Consensus)

Deligios, Hirt,
Liu-Zhang [11]

— —
O(n2κ)

(Bit Consensus)

Bacho, Collins,
Liu-Zhang, Loss [4]

O(n3κ+ ℓn3) O(n3κ+ ℓn3) O(n2κ+ ℓn3)

Our Work O(n3κ+ ℓn2)
O(n2κ+ ℓn2) if

network synchronous,
else O(n3κ+ ℓn2)

O(n2κ+ ℓn2)

Protocols

Assumptions

10

As a starting point, our protocol HBA has the communication complexity
O(n3κ + ℓn2 + CCSBA + CCABA), where CCSBA and CCABA are the communi-
cation complexities of SBA and ABA respectively. The O(n3κ) overhead term
can be reduced to O(n2κ) by assuming a trusted setup for threshold signatures,
or by slightly lowering the allowed corruptions to 2ts ≤ (1− ε)n for a positive
constant ε. Furthermore, if the network is synchronous, then ABA messages are
not sent and the term CCABA is eliminated.

To minimize communication, we instantiate SBA with the protocol from [30] which
in its base form achieves the communication complexity O(n3κ), but can achieve
the complexity O(n2κ) with threshold signatures if they are available, or with
expander graphs if 2ts ≤ (1− ε)n. As for ABA, we instantiate it with the state-
of-the-art cubic protocol from [19],3 or, if setup for unique threshold signatures
is available, with [31] using the coin protocol4 from [9] to achieve quadratic
complexity. When these instantiations are used, the asymptotic communication
complexity of HBA for binary inputs matches that the complexity of its state-of-
the-art5 SBA component if the network is synchronous, and the complexity of its
its state-of-the-art ABA component otherwise.

If bulletin-PKI is available and 2ts ≤ (1− ε)n, then we achieve the complexity
O(n2κ + ℓn2) with expander graphs. We do so with 3-round variants of SWC
and SProp, inspired by the graded consensus protocol in [30]. We present these
variants in the appendix.

When considering ℓ-bit inputs, the O(ℓn2) term is already a strict improvement
over the O(ℓn3) term from [4] and over any straightforward adaptation of known
protocols. Using techniques from the literature on extension protocols together
with some novel ideas, it is possible to bring this all the way down to O(ℓn),
which is the best possible even for purely synchronous protocols [18]. We discuss
network-agnostic consensus extension protocols later in more detail, and we
present our extension protocols in the appendix appendix.

The efficiency improvements are facilitated by our new black-box construction of
HBA which allows us to instantiate the sub-protocols SBA and ABA with the most
efficient known protocols from the literature. We consider this new approach to be
a contribution of independent interest, and hope that analogous constructions will
unlock similar efficiency gains for other network-agnostic distributed tasks.

1.4 Related Work

Network-agnostic protocols were first considered by Blum, Katz and Loss [6]; in
this work, the authors showed the first network-agnostic consensus protocol. The
first network-agnostic full multi-party computation protocol (MPC) was shown in

3 The ABA in [19] is secure statically, or adaptively with a one-time CRS.
4 This coin protocol is secure in the random oracle model.
5 An SBA protocol concurrent with our work uses threshold signatures to achieve
O(nfκ) complexity, where f ≤ ts ≤ (1−ε)n

2
is the actual number of malicious parties

[14]. Our work only considers the worst case f = ts.

11

[7]. There has since been a significant interest in the field. Other network-agnostic
MPC protocols include [2,12]. Network-agnostic approximate agreement has been
investigated in [21,22]. Most related to our work are [11], which contains an
efficient network-agnostic consensus protocol which at the time matched the
round complexity of the best known synchronous protocols, and [4], that deals
with distributed-key-generation but also constructs an ABA∗ counterpart.

The round complexity of consensus protocols has a long research history. Without
setup, consensus among n parties is possible (both in synchronous and asyn-
chronous networks) if less than n/3 parties are corrupted [27,8]. In this setting,
the first synchronous consensus protocol with a number of rounds independent
from n was [15], and the first asynchronous one was [10]. Constant-round proto-
cols, regardless of the network assumptions, cannot be deterministic [16,13], and
they fail with negligible probability. Assuming setup (like a PKI, or correlated
randomness) consensus tolerating up to n/2 corruptions is possible [13]. One
can also obtain constant round constructions in this setting [25]. Until recently,
constant-round consensus protocols in any corruption setting failed with proba-
bility at least c−r in r rounds for some constant c > 1. A long standing lower
bound from [24] shows that, even in synchronous networks and assuming setup,
one cannot hope to reduce the failure probability to less than (c ·r)−r in r rounds.
The first synchronous protocol matching this lower bound is [20], and in this work
we match its optimal round complexity when synchrony holds, while also ensuring
consensus if the network is asynchronous. Our construction must not (and does
not) run an asynchronous consensus protocol if the network is asynchronous, in
order to circumvent another lower bound [3] which shows that error c−r in r
rounds is actually optimal for asynchronous protocols.

2 Preliminaries

2.1 Model

Adversary. We consider n parties P1, P2, . . . , Pn who communicate over a
complete network of point-to-point authenticated channels. We consider an active
threshold adversary bound by the integer thresholds ts and ta such that ta ≤ ts
and 2ta + ts ≤ (1 − δ)n, where δn is a positive integer.6 The adversary may
corrupt up to ts parties in an adaptive fashion (depending on information learned
during the execution) if the network is synchronous and ta parties if the network
is asynchronous, making them deviate arbitrarily from the prescribed protocol
in a coordinated and malicious manner. We call a party who is never corrupted
throughout the execution of a protocol honest.

Network. We consider different network models. If the network is synchronous,
then all messages sent by honest parties must be delivered within a fixed time
bound ∆, known to all honest parties. Subject to this rule, the adversary can

6 Since 2ts + ta < n is required, this assumption is without loss of generality. One can
simply consider δ = (n− 2ts − ta)/n.

12

arbitrarily schedule the delivery of messages. Furthermore, we assume that the
honest parties have synchronized local clocks, which means that they can start
a protocol simultaneously and that their local clocks progress at the same rate.
In this setting, the adversary is allowed to corrupt up to ts parties for a fixed
threshold ts known to all parties. If the network is asynchronous, then the
adversary can arbitrarily schedule the delivery of messages, with the restriction
that messages sent by honest parties must eventually be delivered. Additionally,
honest parties need not have synchronized local clocks. In this setting, the
adversary is allowed to corrupt up to ta parties for a fixed threshold ta known
to all parties. Finally, in the network-agnostic setting, the network may be
synchronous or asynchronous. Honest parties do not know the network condition.
Depending on the network type, the rules for the synchronous setting or the
asynchronous setting are in effect, and the parameters ∆, ts and ta are all known
to all parties. This is the setting in which we analyze our protocols.

Some of our protocols are round-based. The round r should be understood to
be the local time interval between (r − 1)∆ and r∆. In round r, each honest
party sends messages at time (r− 1)∆, listens to messages throughout the round,
and makes decisions depending on received messages at time r∆. The scheduling
powers of the adversary make it rushing, which means that it can choose its
round r messages depending on the honest parties’ round r messages.

In our protocols, something we very commonly direct parties to do is to send a
message m to all parties. We call this “multicasting the message m.”

2.2 Building Blocks

Security Parameter. We denote by κ a security parameter.

Signatures and Bulletin-PKI. For a bulletin-PKI setup, before the execution
of the protocol, each party Pi generates a key pair (ski, vki), where ski is for
signing messages and vki is for verifying them. Party Pi keeps ski private, and
posts vki on a public board. If Pi is corrupted before the execution of a protocol,
then it can freely choose its public vki; e.g. it can duplicate the key vkj of an
honest party Pj . We denote with σ = Sgnski(m) that σ is a signature of length
O(κ) obtained by signing m with ski, and say Vfyvki(m,σ) = 1 if σ is a valid
signature on m with respect to vki. We idealize the signature scheme (consisting
of efficient key generation, signing and verification algorithms) to have perfect
existential unforgeability, so that for any honestly generated key pair (ski, vki), an
adversary can’t forge a signature σ such that Vfyvki(m,σ) = 1 without ski.

Certificates. A certificate is a collection of valid signatures on a message. We
formally define a certificate on a message m ∈ M to be a pair (m,L), where
L is a list (l1, . . . , ln) such that either li = σi and Vfyvki(m,σi) = 1 for some
signature σi, or li = ⊥, where ⊥ is a special value which indicates the absence of
a signature. A k-certificate on m contains at least k signatures on m.

13

Common Coins. Given an instance number k and a corruption threshold t, an
idealized common coin protocol emulates a trusted entity which, upon receiving
the message (coin request, k) from t+ 1 distinct parties, samples the bit coink

uniformly at random and sends the message (k, coink) to all parties.

Unique Threshold Signatures. Appropriate trusted setup makes it possible
for a party to compress any f -certificate (where e.g. f = ts + 1) into a single
threshold signature of length O(κ). This provides complexity savings whenever
the party needs to send a certificate. Uniqueness is the desirable property that
all f -certificates on a message m compress into the same threshold signature.
While not needed for certificate compression, it is essential for the construction
of a common coin protocol against up to t < n

2 corruptions with O(n2) messages
of length O(κ) in the random oracle model (wherein one models a cryptographic
hash function as a random function from its domain to its range) [9].

2.3 Definitions of Primitives and Security Properties

Notions of validity. For multi-valued consensus, one can consider different
notions of validity.

Validity: The most typical notion is that if all honest parties have the same input
m, then all honest parties must output m.

Strong Validity: A stronger notion of validity is that the common output m must
be the input of some honest party. While this is equivalent to regular validity
for binary inputs, it is indeed stronger for multi-valued consensus: if two honest
parties run consensus with the distinct inputs m1 and m2, then only regular
validity permits the common output to be m3 ̸∈ {m1,m2}. Unfortunately, to
achieve strong validity, even in the synchronous setting and for computational
security, one needs t < n

2ℓ
[17]. Intuitively, the problem is that if all honest parties

have different inputs, there is no secure way to choose the input of an honest
party against even a single corruption.

Intrusion Tolerance: An alternative weakening of strong validity is that the
common output should either be the input of some honest party, or a special
output ⊥ outside the domain of inputs. This property has been considered both
explicitly [32,4] and implicitly [18,35,5], and it can be achieved together with
optimal resilience for consensus. One can obtain it trivially by having all parties
output ⊥, but not when (regular) validity is also required.

Protocol Syntax. We primarily concern ourselves with protocols to reach
consensus on ℓ-bit inputs, where ℓ is a publicly known length parameter. Hence,
we define M = {0, 1}ℓ to be the input space, and M⊥ = M∪ {⊥} to be the
input space with a special value ⊥ added to it.

Security Properties. We consider property-based security for our protocols.
Recall that we use the prefix “t-” to mean that a property only holds if at most t
parties can be corrupted, and the prefix “synchronous” to mean that a property

14

only holds if the network is synchronous. For round complexity, we sometimes
also use the prefix “r-round”. With it, we mean that if the network is synchronous
and all honest parties know their inputs by some time k∆, then the guarantees
of the prefixed property are achieved by time (k + r)∆.

With notational conventions out of the way, let us first define some properties
shared by many primitives.

– t-termination: If all honest parties participate in the protocol with input,
and they don’t stop participating until termination, then all honest parties
terminate the protocol with output.

– t-liveness: If all honest parties participate in the protocol with input without
ever stopping, then all honest parties obtain output from the protocol.

– t-robustness: No honest party aborts the protocol.

Our round-based protocols all have fixed numbers of rounds, so that honest
parties who do not abort trivially terminate. Because in this case termination
follows from robustness, we only consider robustness for these protocols. Also, we
do not consider robustness for protocols where honest parties cannot abort.

We define some agreement primitives together with relevant security properties
below. The “fallback validity” properties refer to honest parties who provide
input. This is because our round-based protocols permit honest parties to not
have any input and abort immediately if the network is asynchronous.

Note that our parameterized notion of intrusion tolerance is related to the differ-
ential validity studied in [17]. Against t corruptions, a consensus protocol with
(t, q)-intrusion tolerance automatically has (n− 2q)-differential validity.

Weak Consensus. In a weak consensus protocol, each honest party Pi has
an input mi ∈ M and outputs some yi ∈ M⊥. Below are the relevant proper-
ties:

– (t,q)-intrusion tolerance: Suppose less than q honest parties have the
input m for some m ∈ M. Then no honest party outputs m.

– t-validity: Suppose all honest parties have the same input m ∈ M. Then
honest parties can only output m.

– t-weak consistency: If some honest party outputs some m ∈ M, then
honest parties can only output m or ⊥.

– t-fallback validity: Suppose all honest parties who provide input have the
same input m ∈ M. Then honest parties either abort or output m.

– t-validity with liveness: Suppose all honest parties participate in the
protocol with a common input m ∈ M, and they never stop participating.
Then all honest parties output m.

Proposal. In a proposal protocol, there exists some set S = {x,⊥} ⊆ M⊥ such
that each honest party Pi has an input vi ∈ S, and each honest party Pi outputs
some yi ∈ {x, {x,⊥},⊥}. The relevant properties are the following:

15

– (t,q)-intrusion tolerance: Suppose less than q honest parties have the
input m for some m ∈ M. Then no honest party outputs m or {m,⊥}. Note
that for any proposal protocol, this property with q ≥ 1 implies that honest
parties can only obtain outputs in {x, {x,⊥},⊥}, as required above.

– t-validity: Suppose all honest parties have the same input v ∈ S. Then
honest parties can only output v.

– t-weak consistency: If some honest party outputs x, then no honest party
outputs ⊥.

– t-fallback validity: Suppose all honest parties who provide input have the
same input v ∈ S. Then honest parties either abort or output v.

– t-validity with liveness: Suppose all honest parties participate in the
protocol with a common input v ∈ S, and they never stop participating.
Then all honest parties output v.

k-Graded Consensus. In a k-graded consensus protocol, each honest party Pi

has an input mi ∈ M and outputs a tuple (yi, gi), where gi ∈ {0, 1, . . . , k}. The
relevant properties are the following:

– (t,q)-intrusion tolerance: Suppose less than q honest parties have the
input m for some m ∈ M. Then no honest party Pi obtains yi = m.

– t-graded validity: Suppose all honest parties have the same input m ∈ M.
Then honest parties can only output (m, k).

– t-graded consistency: Suppose honest parties Pi and Pj output (yi, gi)
and (yj , gj). Then, |gi − gj | ≤ 1, and if gi ≥ 1, then yj = yi.

– t-fallback graded validity: If all honest parties who provide input have
the same input m ∈ M, then honest parties either abort or output (m, k).

– t-graded validity with liveness: Suppose all honest parties participate in
the protocol with a common input m ∈ M, and they never stop participating.
Then all honest parties output (m, k).

Consensus. In a consensus protocol, each honest party Pi has an input mi ∈ M
and outputs some yi ∈ M⊥. The relevant properties are the following:

– (t,q)-intrusion tolerance: Suppose less than q honest parties have the
input m for some m ∈ M. Then no honest party outputs m.

– t-validity: Suppose all honest parties have the same input m ∈ M. Then
honest parties can only output m.

– t-consistency: Honest parties do not obtain different outputs in v ∈ M⊥.

– t-fallback validity: Suppose all honest parties who provide input have the
same input m ∈ M. Then honest parties either abort or output m.

– t-validity with termination: Suppose all honest parties participate in the
protocol with a common input m ∈ M, and they never stop participating
until termination. Then all honest parties terminate with the output m.

16

3 Synchronous Consensus with Fallback Validity

In this section, we show how to compile any fixed-round consensus protocol SBA
for binary inputs with synchronous ts-robustness, synchronous ts-validity and
synchronous ts-consistency, into a fixed-round multi-valued consensus protocol
SBA∗ with (ts, δn)-intrusion tolerance, synchronous ts-robustness, synchronous
ts-validity, synchronous ts-consistency and ta-fallback validity.

3.1 Synchronous Weak Consensus (SWC)

We begin with SWC: an adaptation of a protocol from [11], modified to support
multi-valued inputs and have increased intrusion tolerance. The security of the
protocol is captured by the lemma below it. All missing proofs can be found in
the appendix.

Protocol SWC

Input: Party Pi has an input mi ∈ M which it knows at the beginning,
or it may have no input if the network is asynchronous.

Output: Party Pi either aborts or outputs yi ∈ M⊥.

Initialization: If Pi has input, then Pi sets yi = ⊥. Else, Pi aborts.

Round 1: Pi computes σi = Sgnski(mi) and multicasts (mi, σi). At the
end of the round,

– If Pi hasn’t received validly signed messages from n− ts parties, Pi aborts.

– Else, if the messages Pi received are so that Pi can form a (ts+δn)-certificate
on a unique m ∈ M, then Pi sets yi = m.

Round 2: If Pi possesses a (ts+ δn)-certificate on a unique m ∈ M, then
Pi multicasts a (ts + δn)-certificate on m. At the end of the round, if Pi

has seen a (ts + δn)-certificate on some m ̸= yi, then Pi sets yi = ⊥.

Lemma 1 (Security of SWC). If ta ≤ ts and 2ts + ta ≤ (1 − δ)n, then
SWC is a weak consensus protocol with (ts, δn)-intrusion tolerance, synchronous
ts-robustness, synchronous ts-validity, synchronous ts-weak consistency and ta-
fallback validity.

Complexity of SWC: The message complexity is MCSWC = O(n2), and the
communication complexity is CCSWC = O(n3κ+ ℓn2).

3.2 Synchronous Proposal (SProp)

We continue with SProp, which we obtain by modifying SWC to fit the mold
of a proposal protocol. Proposal protocols require there to exist some set S =
{x,⊥} ⊆ M⊥ such that honest parties can only have inputs in S. We assume
such a set S = {x,⊥} exists, and use it in our description of SProp below.

17

Protocol SProp

Input: Party Pi has an input vi ∈ S which it knows at the beginning, or
it may have no input if the network is asynchronous

Output: Party Pi either aborts or outputs yi ∈ {x, {x,⊥},⊥}.

Initialization: If Pi has input, then Pi sets yi = ⊥. Else, Pi aborts.

Round 1: If vi = ⊥, then Pi multicasts ⊥. Else, Pi computes σi =
Sgnski(vi) and multicasts (vi, σi). At the end of the round,

– If Pi hasn’t received valid messages from n− ts parties, then Pi aborts.

– Else, if the messages Pi received are so that Pi can form a (ts+δn)-certificate
on a unique m ∈ M, then Pi sets yi = m.

Round 2: If Pi possesses a (ts+ δn)-certificate on a unique m ∈ M, then
Pi multicasts it. At the end of the round, if Pi had vi = ⊥ but received a
(ts + δn)-certificate on some m ∈ M, then Pi sets yi = {m,⊥}.

Lemma 2 (Security of SProp). If ta ≤ ts and 2ts+ ta ≤ (1− δ)n, then SProp
is a proposal protocol with (ts, δn)-intrusion tolerance, synchronous ts-robustness,
synchronous ts-validity, synchronous ts-weak consistency and ta-fallback validity.

Complexity of SProp: The message and communication complexities of SProp
are also respectively MCSProp = O(n2) and CCSProp = O(n3κ+ ℓn2).

3.3 Synchronous 1-Graded Consensus (SGC1)

Now that we have SWC and SProp, we compose them into SGC1. When instanti-
ated with the protocols SWC and SProp above, SGC1 runs in 4 rounds.

Protocol SGC1

Input: Party Pi has an input mi ∈ M which it knows at the beginning,
or it may have no input if the network is asynchronous.

Output: Party Pi either aborts or outputs (yi, gi), where yi ∈ M⊥ is the
output value and gi ∈ {0, 1} is the output grade.

Phase 1: Pi participates in a common SWC instance with the input mi.
If Pi aborts SWC, Pi aborts the protocol. Else, let vi be Pi’s output.

Phase 2: Pi participates in a common SProp instance with the input vi
if vi = mi, and the input ⊥ otherwise. If Pi aborts SProp, Pi aborts the
protocol. Else, let zi be Pi’s output.

– If zi = m, then Pi outputs (m, 1).

– If zi = {m,⊥}, then Pi outputs (m, 0).

– If zi = ⊥, then Pi outputs (⊥, 0).

18

Lemma 3 (Security of SGC1). Let SWC and SProp respectively be a weak
consensus protocol and a proposal protocol, both with fixed numbers of rounds,
such that they both have synchronous ts-robustness, synchronous ts-validity, syn-
chronous ts-weak consistency and ta-fallback validity. Furthermore, suppose SProp
has (ts, δn)-intrusion tolerance. Then, SGC1 is a 1-graded consensus protocol with
(ts, δn)-intrusion tolerance, synchronous ts-robustness, synchronous ts-graded
validity, synchronous ts-graded consistency and ta-fallback graded validity.

Complexity of SGC1: We have MCSGC1 = MCSWC + MCSProp = O(n2) and
CCSGC1 = CCSWC + CCSProp = O(n3κ+ ℓn2).

3.4 Synchronous 2-Graded Consensus (SGC2)

Using SGC1 as a basis and SWC as a weak consensus protocol for binary inputs,
we construct SGC2. When instantiated with sub-protocols from previous sections,
the protocol runs in 6 rounds when the network is synchronous.

Protocol SGC2

Input: Party Pi has an input mi ∈ M which it knows at the beginning,
or it may have no input if the network is asynchronous.

Output: Party Pi either aborts or outputs (yi, gi), where yi ∈ M⊥ is the
output value and gi ∈ {0, 1, 2} is the output grade.

Phase 1: Pi participates in a common SGC1 instance with the input mi.
If Pi aborts SGC

1, Pi aborts the protocol. Else, let (zi, hi) be Pi’s output.
Pi sets yi = zi.

Phase 2: Pi participates in a common SWC instance with the input hi.
If Pi aborts SWC, then Pi aborts the protocol. Else, let vi be Pi’s output.

– If vi = 0, then Pi sets gi = 0.

– If vi = ⊥, then Pi sets gi = 1.

– If vi = 1, then Pi sets gi = 2.

Lemma 4 (Security of SGC2). Let SGC1 and SWC respectively be a 1-graded
consensus protocol and a weak binary consensus protocol, both with fixed num-
bers of rounds, such that SGC1 has (ts, δn)-intrusion tolerance, synchronous
ts-robustness, synchronous ts-graded validity, synchronous ts-graded consistency
and ta-fallback graded validity, and SWC has synchronous ts-robustness, syn-
chronous ts-validity, synchronous ts-weak consistency and ta-fallback validity.
Then, SGC2 is a 2-graded consensus protocol with (ts, δn)-intrusion tolerance,
synchronous ts-robustness, synchronous ts-graded validity, synchronous ts-graded
consistency and ta-fallback graded validity.

Complexity of SGC2: We have MCSGC2 = MCSGC1 + MCSWC = O(n2) and
CCSGC2 = CCSGC1 + CCSWC = O(n3κ+ ℓn2).

19

3.5 Synchronous Consensus (SBA∗)

Finally, we take any fixed-round binary consensus protocol SBA and combine it
with SGC2 to obtain SBA∗: the synchronous component of HBA. Again, SBA∗ is
a two-phase protocol. The first phase lasts sufficiently long for SGC2 (6 rounds
with our constructions). The number of rounds for the second phase depends on
the specific SBA protocol chosen.

Protocol SBA∗

Input: Party Pi has an input mi ∈ M which it knows at the beginning,
or it may have no input if the network is asynchronous.

Output: Party Pi either aborts or outputs yi ∈ M⊥.

Phase 1: Pi participates in a common SGC2 instance with the input mi.
If Pi aborts SGC

2, Pi aborts the protocol. Else, let (zi, gi) be Pi’s output.

Phase 2: Pi participates in a common SBA instance with the input 1 if
gi ∈ {1, 2} and 0 otherwise. If Pi fails to obtain output from SBA for any
reason, then Pi outputs zi and terminates. Else, let hi be Pi’s output.

– If gi = 2 or hi = 1, then Pi outputs zi.

– Otherwise, Pi outputs ⊥.

Theorem 2 (Security of SBA∗). Let SGC2 and SBA respectively be 2-graded
consensus protocol and a binary consensus protocol, both with fixed numbers of
rounds, such that SGC2 has (ts, δn)-intrusion tolerance, synchronous ts-robustness,
synchronous ts-graded validity, synchronous ts-graded consistency and ta-fallback
graded validity, and SBA has synchronous ts-robustness, synchronous ts-validity
and synchronous ts-consistency. Then, SBA

∗ is a consensus protocol with (ts, δn)-
intrusion tolerance, synchronous ts-robustness, synchronous ts-validity, syn-
chronous ts-consistency and ta-fallback validity.

Complexity of SBA∗: We have MCSBA∗ = MCSGC2 +MCSBA = O(MCSBA + n2)
and CCSBA∗ = CCSGC2 + CCSBA∗ = O(CCSBA + n3κ+ ℓn2). Note that if SBA is
designed to be run synchronously, then it might suffer from increased complexity
when run asynchronously. This is not an issue for any protocol that we cite.

The O(n3κ) term in the complexity is the consequence of certificate multicasting
in SWC and SProp. One straightforward option to reduce this term by a factor
of n is to assume a (ts + δn − 1)-threshold signature setup. Then, individual
parties’ signatures are replaced by signature shares, and (ts + δn)-certificates by
signatures of size O(κ). Another option, only assuming a bulletin-PKI setup, is
to use expander graph based techniques [30]. One imposes an n-vertex expander
graph on the parties, with each party corresponding to a vertex. In SWC and
SProp parties just send the O(n) sized certificates to their (constant sized) set of
neighbors in the graph. This modification breaks weak consistency, which can be

20

regained with the introduction of an additional round. However, with expander
graphs, security requires the slightly stronger assumption 2ts ≤ (1− ε)n for a
constant ε > 0. In the appendix, we present 3-round expander-based variants
of SWC and SProp with which the communication complexity of SBA∗ can be
reduced to O(CCSBA+n2κ+ℓn2) when 2ts ≤ (1−ε)n for a constant ε > 0.

4 Asynchronous Consensus with High Validity

We now leave round-based protocols behind, and switch to message-driven proto-
cols. In this section we take a (possibly non-terminating) consensus protocol ABA
with ta-validity, ta-consistency and ta-liveness, and combine it with our AGC2 pro-
tocol to obtain a protocol ABA∗ with (ts, δn)-intrusion tolerance, ts-validity

7, syn-
chronous ts-validity with termination, ta-consistency and ta-termination.

4.1 Asynchronous Proposal (AProp)

We begin with AProp. The “Conflict Echoing” rule is asymmetrically biased to
make the output ⊥ more likely than x or {x,⊥}. This lets us obtain (ts, δn)-
intrusion tolerance rather than (ts, ⌈ δn

2 ⌉)-intrusion tolerance.

As AProp is a proposal protocol, we assume there exists some set S = {x,⊥} ∈
M⊥ such that honest parties have inputs in S.

Protocol AProp

Input: Party Pi has an input vi ∈ S which it can eventually learn.

Output: Party Pi outputs yi ∈ {x, {x,⊥},⊥}. Pi only outputs once, so Pi

only takes into account its first outputting directive.

Initialization: Pi lets Vi = ∅.

Input Acquisition: When Pi knows vi, Pi multicasts (input, vi).

Conflict Echoing: Upon receiving the message (input, v) for some v ≠ vi
for the first time from some party,

– If v = ⊥ and Pi has received the message (input, v) from exactly ts + 1
parties, Pi multicasts (input,⊥).

– If v ∈ M and Pi has received the message (input, v) from exactly ts + δn
parties, Pi multicasts (input, v).

Value Rule: Upon receiving the message (input, v) for some v from
exactly n− ts parties, Pi adds v to Vi. Then,

– If this rule has been activated for the first time, Pi multicasts (propose, v).

– If this rule has been activated for the second time, Pi outputs Vi.

Certify Rule: Upon receiving the message (propose, v) for some v from
exactly n− ts parties, Pi outputs v.

7 Actually, ta-validity from ABA∗ suffices for HBA.

21

Lemma 5 (Security of AProp). If ta ≤ ts and 2ts+ ta ≤ (1− δ)n, then AProp
is a proposal protocol with (ts, δn)-intrusion tolerance, 2-round ts-validity with
liveness, ta-weak consistency and ta-liveness.

Complexity of AProp: AProp is designed so that honest parties only send input
messages on inputs held by honest parties. As the honest parties have inputs in
S = {x,⊥}, they multicast at most two input messages. Furthermore, by the
design of AProp, honest parties may only multicast a single propose message.
So, honest parties multicast at most three messages (two input messages and
one propose message), and all of these messages are of size O(ℓ). Therefore, the
message complexity is MCAProp = O(n2) and the communication complexity is
CCAProp = O(ℓn2).

4.2 Asynchronous Weak Consensus (AWC)

Now, we present our weak consensus protocol AWC. To improve efficiency, we
parallelize ℓ instances of AWC in a refined way. We batch together input messages
from the “Input Acquisition” rule and propose messages from the “Value Rule.”
The “Conflict Echoing” rule is not amenable to such batching; therefore, any
message sent as a result of the rule affects all instances. Although this introduces
dependency among instances, we still get security for AWC without intrusion
tolerance, which we do not need in any case.

Protocol AWC

Input: Party Pi has an input mi ∈ M which it can eventually learn.

Output: Party Pi outputs yi ∈ M⊥. Pi only outputs once, so Pi only takes
into account its first outputting directive.

Initialization: Pi lets V
1
i , V

2
i , . . . , V

ℓ
i = ∅,∅, . . . ,∅.

Input Acquisition: When Pi knows mi, Pi multicasts (input,mi).

Conflict Echoing: Upon receiving from exactly ts + 1 parties inputs
with the kth bit 1− bki or the message conflict, Pi multicasts conflict.

Value Rule: For each k, upon receiving from exactly n− ts parties inputs
with the kth bit b or the message conflict, Pi adds b to V k

i . Then,

– If each of the sets V 1
i , V

2
i , . . . , V

ℓ
i contain exactly one bit, then Pi crafts

the ℓ-bit message m which as its kth bit has the unique bit in V k
i , and Pi

multicasts (propose,m).

– If V k
i = {0, 1}, then Pi outputs ⊥.

Certify Rule: Upon receiving the message (propose,m) for some m ∈
M from exactly n− ts parties, Pi outputs m.

22

Theorem 3 (Security of AWC). If ta ≤ ts and 2ts + ta < n, then AWC is a
weak consensus protocol with 2-round ts-validity with liveness, ta-weak consistency
and ta-liveness.

Complexity of AWC: Honest parties multicast at most three messages (one
input message, one conflict message and one propose message), and all of these
messages are of size O(ℓ). Therefore, the message complexity is MCAWC = O(n2)
and the communication complexity is CCAWC = O(ℓn2).

4.3 Asynchronous Graded Consensus

Recall that in the previous section, we obtained SGC1 by composing SWC and
SProp, and then obtained SGC2 by composing SGC1 and SWC. These compositions
translate very well to the asynchronous setting: we can easily compose AWC and
AProp to obtain the 1-graded consensus protocol AGC1, and then compose AGC1

and AWC to obtain the 2-graded consensus protocol AGC1.

Since AGC1 and AGC2 are almost identical (although message-driven) copies of
SGC1 and SGC2, here we only state the security guarantees they achieve. The
full protocols AGC1 and AGC2 can be found in the appendix.

Lemma 6 (Security of AGC1). Let AProp and AWC respectively be a proposal
protocol and a weak consensus protocol such that AProp has (ts, δn)-intrusion
tolerance, rp-round ts-validity with liveness, ta-weak consistency and ta-liveness,
and AWC has rw-round ts-validity with liveness, ta-weak consistency and ta-
liveness. Then, AGC1 is a 1-graded consensus protocol with (ts, δn)-intrusion
tolerance, (rw + rp)-round ts-graded validity with liveness, ta-graded consistency
and ta-liveness.

Lemma 7 (Security of AGC2). Let AGC1 and AWC respectively be a 1-graded
consensus protocol and a weak binary consensus protocol such that AGC1 has
(ts, δn)-intrusion tolerance, rg-round ts-graded validity with liveness, ta-graded
consistency and ta-liveness, and AWC has rw-round ts-graded validity with liveness,
ta-weak consistency and ta-liveness. Then, AGC

2 is a 2-graded consensus protocol
with (ts, δn)-intrusion tolerance, (rg + rw)-round ts-graded validity with liveness,
ta-graded consistency and ta-liveness.

Complexity of AGC1 and AGC2: Both composed protocols involve no messages
other than those of their sub-protocols. Thus, we have MCAGC1 = MCAWC +
MCAProp = O(n2), CCAGC1 = CCAWC + CCAProp = O(ℓn2), MCAGC2 = MCAGC1 +
MCAWC = O(n2), and CCAGC2 = CCAGC1 + CCAWC = O(ℓn2).

4.4 Asynchronous Consensus (ABA∗)

To conclude this section, we construct ABA∗ by composing AGC2 and a binary
consensus protocol ABA with just ta-validity, ta-consistency and ta-liveness.

23

The protocol ABA actually does not even need to provide termination, as this
is guaranteed by a separate termination procedure in ABA∗. For maximum
generality, we let rg be the number of rounds in which AGC2 achieves ts-validity
with liveness; the rg-round ts-graded validity with liveness of AGC2 lets us prove
synchronous (rg + 1)-round ts-validity with termination for ABA∗. Note that if
AGC2 is based on our AProp and AWC protocols, then rg = 6.

Protocol ABA∗

Start Round: The parties have an agreed upon “start round” rs.

Input: Party Pi has an input mi ∈ M which it can eventually learn.

Output: Party Pi outputs yi ∈ M⊥.

Initialization: Party Pi starts participating in a common instance of
AGC2 and a common instance of ABA. Before time (rs+ rg +1)∆, Pi runs
ABA passively, not processing the messages it receives.

Input Acquisition: When Pi knows mi, Pi sets it as its input for AGC
2.

Graded Output: Upon outputting (zi, gi) from AGC2,

– If gi = 2, then Pi multicasts (commit, zi) if it hasn’t done so previously.

– If gi ∈ {2, 1}, Pi sets its ABA input to 1. Else, Pi sets its ABA input to 0.

Late Output: Upon outputting (zi, gi) from AGC2 where gi ≠ 2 and
outputting hi from ABA, Pi sets xi to zi if hi = 1, and to ⊥ otherwise.
Then, Pi multicasts (commit, xi) if it hasn’t done so previously.

Commit Processing: Upon receiving (commit, x) for some x ∈ M⊥,

– If Pi has received (commit, x) from exactly ts+1 parties, then Pi multicasts
(commit, x) if it hasn’t done so previously.

– If Pi has received (commit, x) from exactly n−ts parties, then Pi terminates
with the output x if (rs+rg)∆ time has passed, and sets itself up to terminate
with the output x at time (rs + rg)∆ otherwise.

Theorem 4 (Security of ABA∗). Let ta ≤ ts and 2ts + ta ≤ (1 − δ)n, and
suppose honest parties must know their inputs by time rs∆ when the network
is synchronous. Let AGC2 and ABA respectively be a 2-graded consensus pro-
tocol and a binary consensus protocol such that AGC2 has (ts, δn)-intrusion
tolernace, rg-round ts-graded validity with liveness, ta-graded consistency and ta-
liveness, and ABA has ta-validity, ta-consistency and ta-liveness. Then, ABA

∗ is
a consensus protocol with (ts, δn)-intrusion tolerance, ts-validity, ta-consistency,
ta-termination and synchronous (rg + 1)-round ts-validity with termination.

Complexity of ABA∗: One can prove that honest parties commit at most once.
With that in mind, the complexity depends on the network type.

24

– If the network is asynchronous, then we sum up the complexities of AGC2

and ABA together with the complexities arising from the commit messages.
Hence, we get MCAsync

ABA∗ = MCABA +MCAGC2 +O(n2) = O(MCABA + n2) and

CCAsync
ABA∗ = CCABA + CCAGC2 +O(ℓn2) = O(CCABA + ℓn2).

– If the network is synchronous, then the synchronous (rg + 1)-round ts-
validity of ABA∗ ensures that all honest terminate by time (rs + rg + 1)∆

without ever sending ABA messages. Thus, we get the reduced MCSync
ABA∗ =

MCAGC2 +O(n2) = O(n2) and CCSync
ABA∗ = CCAGC2 +O(ℓn2) = O(ℓn2).

5 The Network-Agnostic Protocol (HBA)

Finally, in this section we compose SBA∗ and ABA∗ to construct our network-
agnostic consensus protocol HBA. Intrusion tolerance here is a challenge: SBA∗

allows honest parties to output ⊥, but ABA∗ doesn’t allow them to input ⊥.
Thus, we extend inputs for ABA∗, making them (ℓ+ 1) bits long rather than ℓ
bits long; the first bit is reserved to indicate whether the SBA∗ output is ⊥ or not.
Notationally, we write b ∥m to represent m ∈ M with the bit b prepended.

We present HBA as a two-phase protocol. The first phase begins at time 0 and
lasts sufficiently long for SBA∗; the second phase begins after the first and lasts
indefinitely.

Protocol HBA

Input: Party Pi has an input mi ∈ M which it must know at the beginning
of the protocol if the network is synchronous.

Output: Party Pi outputs yi ∈ M⊥.

Initialization: Pi starts participating in a common instance of ABA∗,
set to achieve consensus on (ℓ+ 1)-bit inputs. Also, Pi sets vi = ⊥.

Phase 1: If Pi knows its input mi, then Pi participates in a common
instance of SBA∗ with the input mi. If Pi doesn’t abort it, let zi be the
output Pi obtains from it. If zi = ⊥, then Pi sets vi = (0, 0, . . . , 0) ∈
{0, 1}ℓ+1. Otherwise, Pi sets vi = 1 ∥ zi.

Phase 2: If vi ̸= ⊥, then Pi sets vi as its input for ABA
∗. Else, Pi sets

1 ∥mi as its ABA
∗ input once Pi knows mi. Upon terminating ABA∗ with

the output xi = (x1
i , x

2
i , . . . , x

ℓ+1
i),

– If x1
i = 0, then Pi outputs ⊥ and terminates.

– If x1
i = 1, then Pi outputs (x

2
i , . . . , x

ℓ+1
i) ∈ M and terminates.

Note that to use the particular ABA∗ protocol presented in Section 4.4, we would
need to set its “start round rs” to be the round count of SBA∗.

Theorem 5 (Security of HBA). Let SBA∗ be an rs-round consensus pro-
tocol with (ts, δn)-intrusion tolerance, synchronous ts-robustness, synchronous

25

ts-validity, synchronous ts-consistency and ta-fallback validity, and let ABA∗ be
a consensus protocol with (ts, δn)-intrusion tolerance, ta-validity, synchronous
ra-round ts-validity with termination, ta-consistency and ta-termination. Then,
HBA is a consensus protocol with (ts, δn)-intrusion tolerance, synchronous ts-
validity, synchronous ts-consistency, synchronous (rs + ra)-round ts-termination,
ta-validity, ta-consistency and ta-termination.

Proof. We use the synchronous ts-robustness of SBA
∗ implicitly.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have some
m ∈ M as input. By the (ts, δn)-intrusion tolerance of SBA∗, honest parties
do not output m from SBA∗. This ensures that only honest parties who
abort SBA∗ and have the input m may provide the input 1 ∥m to ABA∗. As
there can only be less than δn such honest parties, by the (ts, δn)-intrusion
tolerance of ABA∗, honest parties do not output 1 ∥ m from ABA∗. This
implies that honest parties do not output m.

– synchronous properties: Suppose the network is synchronous, and suppose
the adversary can corrupt at most ts parties. Since the network is synchronous,
all honest participate in SBA∗ with input. They all terminate it by time rs,
with some common output z ∈ M⊥ by the synchronous ts-consistency of
SBA∗. Afterwards, all honest parties participate in ABA∗ with the common
input z′, where z′ = (0, 0, . . . , 0) ∈ {0, 1}ℓ+1 if z = ⊥, and z′ = 1 ∥ z
otherwise. By time (rs + ra)∆, the synchronous ra-round ts-validity with
termination of ABA∗ guarantees that they terminate ABA∗ with the common
output z′ and hence terminate HBA with a common output. This gives us
synchronous ts-consistency and synchronous (rs + ra)-round ts-termination.
Additionally, suppose all honest parties have the same input m ∈ M. Then,
the synchronous ts-validity of SBA∗ implies that z = m and hence that
z′ = 1∥m, which means that the honest parties all terminate with the output
m. Thus, we also obtain synchronous ts-validity.

– ta-termination and ta-consistency: All honest parties eventually provide
ABA∗ input, and run it until they terminate it with consistent outputs. Thus,
HBA inherits the ta-termination and the ta-consistency of ABA∗.

– ta-validity: Suppose all honest parties have the same input m ∈ M. By
the ta-fallback validity of SBA∗, any honest party that doesn’t abort SBA∗

outputs m from it. This ensures that all honest parties participate in ABA∗

with the input 1 ∥m. Finally, by the ta-validity and the ta-termination of
ABA∗, all honest parties terminate ABA∗ with the output 1 ∥m and therefore
terminate HBA with the output m.

Complexity of HBA: Note that the extension of ABA∗ inputs to ℓ + 1 bits
doesn’t affect asymptotic complexity.

– If the network is synchronous, then the message complexity is MCSync
HBA =

MCSBA∗ +MCSync
ABA∗ = O(MCSBA + n2), and if the network is asynchronous,

then it is MCAsync
HBA = MCSBA∗ +MCAsync

ABA∗ = O(MCSBA +MCABA + n2).

26

– As discussed in the technical overview, if threshold signatures are available
or if 2ts < (1 − ε)n for a constant ε > 0, then we get CCHBA = O(CCSBA +
CCABA + n2κ+ ℓn2). Else, we get CCHBA = O(CCSBA + CCABA + n3κ+ ℓn2).
Finally, if the network is synchronous, then the term CCABA is eliminated.

– We also concretely state the synchronous round complexity of HBA. Recall
that we build SBA∗ by composing SGC2 (6 rounds) and a fixed-round syn-
chronous consensus protocol SBA (k rounds), so that SBA∗ requires k + 6
rounds. Protocol AGC2 achieves 6-round ts-validity with liveness, and hence
ABA∗ attains synchronous 7-round ts-validity with termination. Combining
the round complexities of SBA∗ and ABA∗, we conclude that HBA terminates
in at most k + 13 rounds when the network is synchronous.

Reducing O(ℓn2) to O(ℓn). For ℓ-bit consensus, the optimal communication
complexity is O(ℓn + . . .) [18]. There is a rich literature extending consensus
protocols to handle ℓ-bit inputs in clever ways to meet this bar [18,37,35,5].

To the best of our knowledge, [35] presents the state-of-the-art adaptively secure
consensus extension protocol.8 The protocol requires the parties to agree on
κ-bit values in an intrusion-tolerant manner. Intrusion tolerance is achieved via
two instances of consensus (one to decide the a κ-bit value, the other to decide
if this value was the input of some honest party), but we observe that this is
superfluous if the underlying consensus protocol is already intrusion-tolerant.
In the appendix, we present an adaptation of the protocol which makes only
one black-box invocation of HBA on κ-bit inputs, and has an overhead of two
rounds when the network is synchronous, O(n2) messages, and O(n2κ + ℓn)
or O(n2κ log n + ℓn) bits of communication depending on the availability of
trusted setup. We follow it with a novel setup-free expander-based extension
protocol which makes full use of (ts, δn)-intrusion tolerance to reduce the overhead
O(n2κ log n+ ℓn) to O(n2κ+ ℓn) when δ = Θ(1).

Note that the O(ℓn2) term in the communication complexity of HBA (as opposed
to the O(ℓn3) in [4]) permits extensions for long inputs with the total complexity
O(n2κ+ℓn) whenever HBA achieves the complexityO(n2κ+ℓn2). Thus, with HBA,
one can match the complexity of state-of-the-art synchronous protocols.

References

1. Alon, N.: Explicit expanders of every degree and size. Combinatorica 41(4), 447–463
(2021). https://doi.org/10.1007/s00493-020-4429-x

2. Appan, A., Chandramouli, A., Choudhury, A.: Perfectly-secure synchronous mpc
with asynchronous fallback guarantees. In: Proceedings of the 2022 ACM Symposium
on Principles of Distributed Computing. pp. 92–102 (2022)

3. Attiya, H., Censor, K.: Lower bounds for randomized consensus under a weak
adversary. In: Bazzi, R.A., Patt-Shamir, B. (eds.) 27th ACM Symposium Annual
on Principles of Distributed Computing. pp. 315–324. Association for Computing
Machinery (Aug 2008). https://doi.org/10.1145/1400751.1400793

8 Adaptively secure sub-quadratic extension is possible in the atomic-send model [5].

27

https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1145/1400751.1400793
https://doi.org/10.1145/1400751.1400793

4. Bacho, R., Collins, D., Liu-Zhang, C.D., Loss, J.: Network-agnostic security comes
(almost) for free in DKG and MPC. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology – CRYPTO 2023, Part I. Lecture Notes in Computer
Science, vol. 14081, pp. 71–106. Springer, Heidelberg (Aug 2023). https://doi.
org/10.1007/978-3-031-38557-5_3

5. Bhangale, A., Liu-Zhang, C.D., Loss, J., Nayak, K.: Efficient adaptively-secure
byzantine agreement for long messages. In: Agrawal, S., Lin, D. (eds.) Advances in
Cryptology – ASIACRYPT 2022, Part I. Lecture Notes in Computer Science, vol.
13791, pp. 504–525. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/
978-3-031-22963-3_17

6. Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous
fallback guarantees. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019: 17th Theory
of Cryptography Conference, Part I. Lecture Notes in Computer Science, vol.
11891, pp. 131–150. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/
978-3-030-36030-6_6

7. Blum, E., Zhang, C.D.L., Loss, J.: Always have a backup plan: Fully secure
synchronous MPC with asynchronous fallback. In: Micciancio, D., Ristenpart,
T. (eds.) Advances in Cryptology – CRYPTO 2020, Part II. Lecture Notes in
Computer Science, vol. 12171, pp. 707–731. Springer, Heidelberg (Aug 2020).
https://doi.org/10.1007/978-3-030-56880-1_25

8. Bracha, G.: Asynchronous byzantine agreement protocols. Information and Com-
putation 75(2), 130–143 (1987). https://doi.org/https://doi.org/10.1016/

0890-5401(87)90054-X

9. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantipole: Practical
asynchronous byzantine agreement using cryptography (extended abstract). In:
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing. p. 123–132. PODC ’00, Association for Computing Machinery, New
York, NY, USA (2000). https://doi.org/10.1145/343477.343531

10. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal
resilience. In: 25th Annual ACM Symposium on Theory of Computing. pp. 42–51.
ACM Press (May 1993). https://doi.org/10.1145/167088.167105

11. Deligios, G., Hirt, M., Liu-Zhang, C.D.: Round-efficient byzantine agreement and
multi-party computation with asynchronous fallback. In: Nissim, K., Waters, B.
(eds.) TCC 2021: 19th Theory of Cryptography Conference, Part I. Lecture Notes
in Computer Science, vol. 13042, pp. 623–653. Springer, Heidelberg (Nov 2021).
https://doi.org/10.1007/978-3-030-90459-3_21

12. Deligios, G., Liu-Zhang, C.D.: Synchronous perfectly secure message transmission
with optimal asynchronous fallback guarantees. Cryptology ePrint Archive, Report
2022/1397 (2022), https://eprint.iacr.org/2022/1397

13. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing 12(4), 656–666 (1983). https://doi.org/10.1137/0212045

14. Elsheimy, F., Tsimos, G., Papamanthou, C.: Deterministic byzantine agreement
with adaptive o(n · f) communication. Cryptology ePrint Archive, Paper 2023/1723
(2023), https://eprint.iacr.org/2023/1723

15. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th
Annual ACM Symposium on Theory of Computing. pp. 148–161. ACM Press (May
1988). https://doi.org/10.1145/62212.62225

16. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

28

https://doi.org/10.1007/978-3-031-38557-5_3
https://doi.org/10.1007/978-3-031-38557-5_3
https://doi.org/10.1007/978-3-031-38557-5_3
https://doi.org/10.1007/978-3-031-38557-5_3
https://doi.org/10.1007/978-3-031-22963-3_17
https://doi.org/10.1007/978-3-031-22963-3_17
https://doi.org/10.1007/978-3-031-22963-3_17
https://doi.org/10.1007/978-3-031-22963-3_17
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-56880-1_25
https://doi.org/10.1007/978-3-030-56880-1_25
https://doi.org/https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/343477.343531
https://doi.org/10.1145/343477.343531
https://doi.org/10.1145/167088.167105
https://doi.org/10.1145/167088.167105
https://doi.org/10.1007/978-3-030-90459-3_21
https://doi.org/10.1007/978-3-030-90459-3_21
https://eprint.iacr.org/2022/1397
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://eprint.iacr.org/2023/1723
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225

17. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential
consensus. In: Borowsky, E., Rajsbaum, S. (eds.) 22nd ACM Symposium Annual
on Principles of Distributed Computing. pp. 211–220. Association for Computing
Machinery (Jul 2003). https://doi.org/10.1145/872035.872066

18. Fitzi, M., Hirt, M.: Optimally efficient multi-valued Byzantine agreement. In:
Ruppert, E., Malkhi, D. (eds.) 25th ACM Symposium Annual on Principles of
Distributed Computing. pp. 163–168. Association for Computing Machinery (Jul
2006). https://doi.org/10.1145/1146381.1146407

19. Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Efficient asynchronous
byzantine agreement without private setups. In: 2022 IEEE 42nd International
Conference on Distributed Computing Systems (ICDCS). pp. 246–257 (2022).
https://doi.org/10.1109/ICDCS54860.2022.00032

20. Ghinea, D., Goyal, V., Liu-Zhang, C.D.: Round-optimal byzantine agreement.
In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EU-
ROCRYPT 2022, Part I. Lecture Notes in Computer Science, vol. 13275, pp.
96–119. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/

978-3-031-06944-4_4
21. Ghinea, D., Liu-Zhang, C.D., Wattenhofer, R.: Optimal synchronous approximate

agreement with asynchronous fallback. In: Proceedings of the 2022 ACM Symposium
on Principles of Distributed Computing. pp. 70–80 (2022)

22. Ghinea, D., Liu-Zhang, C.D., Wattenhofer, R.: Multidimensional approximate
agreement with asynchronous fallback. Cryptology ePrint Archive (2023)

23. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: Jung, J., Holz, T. (eds.) USENIX Security 2015: 24th
USENIX Security Symposium. pp. 129–144. USENIX Association (Aug 2015)

24. Karlin, A., Yao, A.: Probabilistic lower bounds for byzantine agreement. Unpub-
lished document (1986)

25. Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agreement.
In: Dwork, C. (ed.) Advances in Cryptology – CRYPTO 2006. Lecture Notes
in Computer Science, vol. 4117, pp. 445–462. Springer, Heidelberg (Aug 2006).
https://doi.org/10.1007/11818175_27

26. King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-
published paper, August 19(1) (2012)

27. Lamport, L., Shostak, R., Pease, M.: Concurrency: The Works of Leslie Lamport.
Association for Computing Machinery, New York, NY, USA (2019), edited by
Dahlia Malkhi

28. Mehlhorn, K., Sun, H.: Great ideas in theoretical computer science (2013),
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss13/gitcs/

lecture7.pdf
29. Merkle, R.C.: A digital signature based on a conventional encryption function.

In: Pomerance, C. (ed.) Advances in Cryptology – CRYPTO’87. Lecture Notes
in Computer Science, vol. 293, pp. 369–378. Springer, Heidelberg (Aug 1988).
https://doi.org/10.1007/3-540-48184-2_32

30. Momose, A., Ren, L.: Optimal communication complexity of authenticated byzan-
tine agreement. In: Gilbert, S. (ed.) 35th International Symposium on Distributed
Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 209, pp. 32:1–32:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.DISC.2021.32

31. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous binary
byzantine consensus with t < n/3, O(n2) messages, and O(1) expected time. J.
ACM 62(4) (2015). https://doi.org/10.1145/2785953

29

https://doi.org/10.1145/872035.872066
https://doi.org/10.1145/872035.872066
https://doi.org/10.1145/1146381.1146407
https://doi.org/10.1145/1146381.1146407
https://doi.org/10.1109/ICDCS54860.2022.00032
https://doi.org/10.1109/ICDCS54860.2022.00032
https://doi.org/10.1007/978-3-031-06944-4_4
https://doi.org/10.1007/978-3-031-06944-4_4
https://doi.org/10.1007/978-3-031-06944-4_4
https://doi.org/10.1007/978-3-031-06944-4_4
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss13/gitcs/lecture7.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss13/gitcs/lecture7.pdf
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.4230/LIPIcs.DISC.2021.32
https://doi.org/10.4230/LIPIcs.DISC.2021.32
https://doi.org/10.1145/2785953
https://doi.org/10.1145/2785953

32. Mostéfaoui, A., Raynal, M.: Signature-free broadcast-based intrusion tolerance:
Never decide a byzantine value. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
Principles of Distributed Systems. pp. 143–158. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

33. Mostéfaoui, A., Raynal, M.: Signature-free asynchronous byzantine systems: From
multivalued to binary consensus with t < n/3, O(n2) messages, and constant time.
Acta Inf. 54(5), 501–520 (2017). https://doi.org/10.1007/s00236-016-0269-y

34. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized business
review (2008)

35. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension pro-
tocols for byzantine broadcast and agreement. In: Attiya, H. (ed.) 34th Inter-
national Symposium on Distributed Computing (DISC 2020). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 179, pp. 28:1–28:17. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https:

//doi.org/10.4230/LIPIcs.DISC.2020.28

36. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) Topics in Cryptology – CT-RSA 2005. Lecture Notes in Computer Science,
vol. 3376, pp. 275–292. Springer, Heidelberg (Feb 2005). https://doi.org/10.
1007/978-3-540-30574-3_19

37. Patra, A., Rangan, C.P.: Communication optimal multi-valued asynchronous
byzantine agreement with optimal resilience. In: Fehr, S. (ed.) ICITS 11: 5th
International Conference on Information Theoretic Security. Lecture Notes in
Computer Science, vol. 6673, pp. 206–226. Springer, Heidelberg (May 2011).
https://doi.org/10.1007/978-3-642-20728-0_19

38. Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and byzantine
agreement for t ≥ n/3. IBM Research, Armonk, NY, USA (1996)

39. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of
the Society for Industrial and Applied Mathematics 8(2), 300–304 (1960). https:
//doi.org/10.1137/0108018

30

https://doi.org/10.1007/s00236-016-0269-y
https://doi.org/10.1007/s00236-016-0269-y
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-20728-0_19
https://doi.org/10.1007/978-3-642-20728-0_19
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018

Appendix

A Additional Preliminaries

Collision-Resistant Hash Functions: Given a message m, one can compute
the cryptographic hash of m of length O(κ), denoted Hash(m). We say that Hash
is collision-resistant if it is computationally infeasible to find distinct messages m1

andm2 such that Hash(m1) = Hash(m2). The difficulty of finding collisions should
apply not only for the adversary, but for honest parties as well. For example,
the protocol HBAX(δ) is secure assuming the adversary can’t find collisions and
that the honest parties have non-colliding inputs. To be precise, when we use
collision-resistant hash functions in our consensus extension protocols, we prove
security with the idealized assumption that collisions can never be found.

Cryptographic Accumulators: We present a slightly modified version of the
definition by Nayak et al. [35]. Intuitively, the cryptographic accumulation of
a set S is a short value cacc such that for any value v, if and only if v ∈ S,
one can efficiently compute a witness w which together with cacc proves that
v ∈ S. Formally, given n, the accumulation scheme specifies the following efficient
algorithms:

– KGen(1κ) : Given the computational security parameter κ, this algorithm
generates an accumulator key ak that can be used to securely accumulate
sets of size up to n. If the scheme requires a key, then we assume that a
trusted dealer generates and distributes ak. Otherwise, we say ak = ⊥.

– Evalak(S) : This is a deterministic algorithm which outputs the accumulation
cacc of a set S of size up to n.

– Witak(S, v) : Given a set S of size up to n and any v ∈ S, this algorithm
outputs a witness wi which proves that v ∈ S.

– Vfyak(cacc, v, w): Given v, w and an accumulation cacc which equals Evalak(S)
for some set S of size up to n, this algorithm outputs 1 if w proves that
v ∈ S, and it outputs 0 otherwise.

For any set S of size up to n, the following properties must hold:

– Correctness: For all v ∈ S, Vfyak(Evalak(S), v,Witak(S, v)) = 1.

– Collision Resistance: For any v ̸∈ S, it is computationally infeasible to
compute a witness w such that Vfyak(Evalak(S), v, w) = 1.

Two pertinent accumulators are the bilinear accumulator [36], based on bilinear
pairings, and the Merkle tree [29], based on collision-resistant hash functions.
Both have accumulations of size O(κ). The Merkle tree is restricted in that it
can only handle indexed sets of size n (of the form {(1, v1), (2, v2), . . . , (n, vn)}),
though this suffices for us. Meanwhile, the bilinear is more flexible in that it
uses not S but only cacc for the computation of witnesses. For us, the relevant

31

advantage of the bilinear accumulator is that it has O(κ)-sized witnesses; whereas
the Merkle tree has O(κ log n)-sized witnesses. On the other hand, the Merkle
tree (unlike the bilinear accumulator) doesn’t use a key, which enables its use
without trusted setup.

Error Correcting Codes: We use Reed-Solomon error correcting codes [39] in
our extension protocols. Given b ≤ n, we use the code which encodes an input
tuple of b symbols in the Galois Field GF (2a) into a codeword of n symbols in
GF (2a), where 2a − 1 ≥ n. The codeword can later be decoded back into the
input tuple, with resilience against errors and erasures. Concretely, we get the
following two functionalities:

– Encodeb(m): Given the message m of length ℓ = a · b, split it into a tuple
of b symbols (m1, . . . ,mb) in GF (2a), and then use the code to output the
codeword (s1, . . . , sn).

– Decodeb: Given a codeword (s1, . . . , sn), decode it into (m1, . . . ,mb) and
output m. The decoding procedure can tolerate up to c errors and d erasures
in the codeword symbols if n− b ≥ 2c+ d.

We use error correcting codes to reduce communication complexity. The key
observation is that when we use a code to encode a message m of length ℓ = a · b
with b ≥ δn for a positive constant δ, we get a = ℓ

b ≤ ℓ
δn = O(ℓ

n).

When we encode a message m of an arbitrary length ℓ, we need to pad m so that
it reaches a length ℓ′ = a · b, where a ≥ log2(n+ 1). This can require a padding
of one bit per symbol if ℓ is sufficiently large, and O(log n) bits per symbol
otherwise. In our extension protocols, the parties send O(n2) symbols in total,
and hence the communication complexity overhead of padding is O(n2 log n). By
the natural assumption κ = Ω(log n), we simplify this to O(n2κ).

Expanders: Expanders are graphs with good connectivity properties despite
being sparse, with small sets of vertices guaranteed to have large neighborhoods.
We use them, as Momose and Ren did [30], to reduce protocol complexity when
the corruption thresholds are below their optimal values by at least εn for some
positive constant ε. We impose an n-vertex expander graph on the parties, with
each party corresponding to a vertex. Then, the parties send their messages
to their neighbors in the expander instead of multicasting them. Since the
expander has a constant maximum degree dependent only on ε, this shaves a
factor of O(n) from the message and communication complexities. Below, we
formally define expanders, and then prove their existence with a deterministic
construction.

Lemma 8 (Existence of Expanders). Given n, α and β, we call a graph
G = (V,E) an (n, α, β)-expander if |V | = n and for all S ⊆ V with |S| ≥ αn,
the open neighborhood of S contains more than βn vertices. For all 0 < α, β < 1,
there exists some d depending on α and β such that for all n, there exists a
d-regular (n, α, β)-expander.

32

Proof. The theorem can be straightforwardly proven via the probabilistic method.
Momose and Ren present such a proof [30], which we could adapt to show that
for some sufficiently large d depending on α and β, the union of d random perfect
matchings is an (n, α, β)-expander except with probability decaying exponentially
with n. However, we prefer to present a proof that also gives us explicit expander
constructions with which we can deterministically instantiate our protocols.

In the following, we allow graphs to have loops and multi-edges, and we use the
convention that a loop edge (v, v) adds 1 to the degree of the vertex v. Also, we
assume that n is sufficiently large so that αn− 1 > 0; this is the case if n > 1

α .

Let us call a graph G = (V,E) with n vertices a (K,A)-vertex expander if in
G, all sets S ⊆ V of size at most K have open neighborhoods of size at least
A · |S|. If we set K = αn and A ≥ βn

αn−1 , then sets of size ⌊αn⌋ ≤ αn have at

least ⌊αn⌋βn
αn−1 > βn neighbors, and therefore G is an (n, α, β)-expander. Now, we

have the following:

– (Alon, [1]): For every constant degree d ≥ 3, there exists a deterministic
poly(n) algorithm which, for all sufficiently large n ≥ n0(d) with nd even,

outputs a d-regular n-vertex graph G with spectral expansion λ ≤ 2
√
d−1+1
d .

Here, letting λ1 ≥ λ2 ≥ · · · ≥ λn be a descending list of the eigenvalues (with
repetition) of the adjacency matrix of G, the spectral expansion is defined to

be the value max{|λ2|,|λn|}
d [28].

– ([28]): Let G be an n-vertex graph with spectral expansion λ. For all α where
0 < α < 1, G is an (αn, 1

(1−α)λ2+α)-vertex expander.

Combining these results, we get our desired explicit constructions. Let d be an
even integer such that d ≥ 5. We have 2

√
d− 1 + 1 ≤

√
5d, and so, assuming

n ≥ n0(d) for some constant n0(d) that depends only on d, we can in poly(n)
time construct a d-regular n-vertex graph with spectral expansion

√
5/d.

Now, we show that for sufficiently large n, choosing d appropriately depend-
ing on α and β makes the constructed graph G an (n, α, β)-expander. Solving

1
(1−α)λ2+α ≥ βn

αn−1 for λ2 gives us λ2 ≤ α(1−β)n−1
β(1−α)n . To eliminate extraneous solu-

tions we also require that λ2 ≥ 0; this is compatible with the previous inequality

if we assume n ≥ 1
α(1−β) . Hence, assuming n ≥ 1

α(1−β) , if λ
2 ≤ α(1−β)n−1

β(1−α)n , then

G is an (αn,A)-vertex expander with A ≥ βn
αn−1 , which as we discussed previ-

ously makes it an (n, α, β)-expander. Finally, since λ ≤
√

5/d, we can ensure

λ2 ≤ 5
d ≤ α(1−β)n−1

β(1−α)n by setting d ≥ 5β(1−α)n
α(1−β)n−1 . Note that we actually need

n > 1
α(1−β) to avoid division by 0 in the last inequality.

We do not want d to depend on n. Fortunately, if we assume n ≥ 6
α(1−β) , then

we get 6β(1−α)
α(1−β) ≥ 5β(1−α)n

α(1−β)n−1 , and so it suffices to choose d to be the least even

integer such that d ≥ 6β(1−α)
α(1−β) .

To conclude, we also need to consider the case where n is not sufficiently large.
Then, we can simply let G be a complete graph with loops, ensuring that every

33

non-empty set of vertices has the open neighborhood V . The sufficiency threshold
for n depends not only on α and β, but also on d. However, as d itself only
depends on α and β, the threshold ultimately only depends on α and β. Hence,
the proof isn’t adversely impacted.

B Proofs for Section 3

Lemma 1 (Security of SWC). If ta ≤ ts and 2ts + ta ≤ (1 − δ)n, then
SWC is a weak consensus protocol with (ts, δn)-intrusion tolerance, synchronous
ts-robustness, synchronous ts-validity, synchronous ts-weak consistency and ta-
fallback validity.

Proof.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. Less than δn honest parties sign m, which means that
there is never a (ts + δn)-certificate on m. This implies that honest parties
do not output m.

– synchronous ts-robustness: When the network is synchronous and the
adversary is able to corrupt ts parties, no honest party aborts. This is
because there are at least n − ts honest parties who all multicast validly
signed messages in the first round, which all get delivered in time since the
network is synchronous. We implicitly use this property in the proofs of
synchronous ts-validity and synchronous ts-weak consistency.

– synchronous ts-validity: Suppose all honest parties have the same input
m ∈ M. In Round 1, all honest parties multicast signed m messages, leading
to n− ts ≥ ts + δn signed m messages getting multicast. Hence, all honest
parties are able to form (ts + δn)-certificates on m by the end of the first
round. Meanwhile, for any m′ ∈ M \ {m}, no honest party ever signs m′,
so there is never a (ts + δn)-certificate on m′. All of this means that every
honest party Pi sets yi = m at the end of Round 1 and then never changes
yi again.

– synchronous ts-weak consistency: Suppose some honest party Pi outputs
m ∈ M. Then it was able to form a (ts + δn)-certificate on m and only m at
the end of Round 1. Pi multicasts a (ts + δn)-certificate on m in Round 2,
and every honest party Pj sees it and outputs either m or ⊥.

– ta-fallback validity: Suppose all honest parties with input have the same
input m ∈ M. Consider an honest party Pi with input. At the end of Round 1,

• If Pi hasn’t seen validly signed messages from n− ts parties, Pi aborts.

• Suppose Pi has seen validly signed messages from n − ts parties. At
most ta of these come from corrupt parties, so Pi has seen at least
n− ts − ta ≥ ts + δn signed m messages from honest parties. Meanwhile,
for any m′ ∈ M\ {m}, no honest party ever signs m′, so there is never a
(ts + δn)-certificate on m′. All of this means that Pi sets yi = m at the
end of Round 1 and then never changes yi again.

34

Lemma 2 (Security of SProp). If ta ≤ ts and 2ts + ta ≤ (1− δ)n, then SProp
is a proposal protocol with (ts, δn)-intrusion tolerance, synchronous ts-robustness,
synchronous ts-validity, synchronous ts-weak consistency and ta-fallback validity.

Proof.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. Less than δn honest parties sign m, which means that
there is never a (ts + δn)-certificate on m. This implies that honest parties
do not output m or {m,⊥}.

– synchronous ts-robustness: When the network is synchronous and the
adversary is able to corrupt ts parties, no honest party aborts. This is because
there are at least n− ts honest parties who all multicast valid messages in the
first round, which all get delivered in time since the network is synchronous.
We implicitly use this property in the proofs of synchronous ts-validity and
synchronous ts-weak consistency.

– synchronous ts-validity: Suppose all honest parties have the same input
v ∈ S.

• If v = ⊥, then by the (ts, δn)-intrusion tolerance of SProp, all honest
parties output ⊥.

• If v = x, then in Round 1 all honest parties multicast signed x messages,
leading to n− ts ≥ ts + δn signed x messages getting multicast. Hence,
all honest parties are able to form (ts + δn)-certificates on x by the end
of the first round. Meanwhile, for any x′ ∈ M\{x}, no honest party ever
signs x′, so there is never a (ts + δn)-certificate on x′. All of this means
that every honest party Pi sets yi = x at the end of Round 1 and then
never changes yi again.

– synchronous ts-weak consistency: Suppose some honest party Pi outputs
x. Then it was able to form a (ts + δn)-certificate on x and only x at the end
of Round 1. Pi multicasts a (ts + δn)-certificate on x in Round 2, and every
honest party Pj sees it and outputs a non-⊥ value.

– ta-fallback validity: Suppose all honest parties with input have the same
input v ∈ S. If v = ⊥, then by the (ts, δn)-intrusion tolerance of SProp, all
honest parties with input output ⊥ or abort. Now suppose v = x. Consider
an honest party Pi with input. At the end of Round 1,

• If Pi hasn’t seen valid messages from n− ts parties, then Pi aborts.

• Suppose Pi has seen valid messages from n−ts parties. At most ta of these
come from corrupt parties, so Pi has seen at least n− ts − ta ≥ ts + δn
signed x messages from honest parties. Meanwhile, for any x′ ∈ M\ {x},
no honest party ever signs x′, so there is never a (ts + δn)-certificate on
x′. All of this means that Pi sets yi = x at the end of Round 1 and then
never changes yi again.

Lemma 3 (Security of SGC1). Let SWC and SProp respectively be a weak
consensus protocol and a proposal protocol, both with fixed numbers of rounds,

35

such that they both have synchronous ts-robustness, synchronous ts-validity, syn-
chronous ts-weak consistency and ta-fallback validity. Furthermore, suppose SProp
has (ts, δn)-intrusion tolerance. Then, SGC1 is a 1-graded consensus protocol with
(ts, δn)-intrusion tolerance, synchronous ts-robustness, synchronous ts-graded
validity, synchronous ts-graded consistency and ta-fallback graded validity.

Proof. We use the synchronous ts-robustness of SWC and SProp implicitly.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. By design, honest parties do not provide SProp the
input m unless they have the input m for SGC1. Hence, less than δn honest
parties provide SProp the input m, and so by the (ts, δn)-intrusion tolerance
of AProp, no honest party Pi obtains zi = m or zi = {m,⊥}. This implies
that an honest party Pi never obtains yi = m.

– synchronous ts-robustness and synchronous ts-graded consistency:
By the synchronous ts-weak consistency of SWC, there exists some m ∈ M
such that all honest parties output m or ⊥ from SWC. This leads to all honest
parties running SProp with inputs in {m,⊥}. By the synchronous ts-weak
consistency of SProp, one of the following happens:

• All honest parties output m or {m,⊥} from SProp. Then, every honest
party Pi obtains yi = m.

• All honest parties output {m,⊥} or ⊥ from SProp. Then, every honest
party Pi obtains gi = 0.

– synchronous ts-graded validity: Suppose all honest parties have the same
input m ∈ M. By the synchronous ts-validity of SWC, all honest parties
output m from SWC. Then, as all honest parties have the input m for SGC1,
they all use the input m for SProp. And so, by the synchronous ts-validity of
SProp, they all output m from SProp, and thus output (m, 1) from SGC1.

– ta-fallback graded validity: Suppose all honest parties with input have
the same input m ∈ M. By the ta-fallback validity of SWC, all honest parties
with input either abort or output m from SWC. Then, all remaining honest
parties with input use the input m for SProp, and so by the ta-fallback validity
of SProp, they either abort or output m from SProp as well. Therefore, all
honest parties with input either abort or output (m, 1).

Lemma 4 (Security of SGC2). Let SGC1 and SWC respectively be a 1-graded
consensus protocol and a weak binary consensus protocol, both with fixed num-
bers of rounds, such that SGC1 has (ts, δn)-intrusion tolerance, synchronous
ts-robustness, synchronous ts-graded validity, synchronous ts-graded consistency
and ta-fallback graded validity, and SWC has synchronous ts-robustness, syn-
chronous ts-validity, synchronous ts-weak consistency and ta-fallback validity.
Then, SGC2 is a 2-graded consensus protocol with (ts, δn)-intrusion tolerance,
synchronous ts-robustness, synchronous ts-graded validity, synchronous ts-graded
consistency and ta-fallback graded validity.

36

Proof. We use the synchronous ts-robustness of SGC
1 and SWC implicitly.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. By the (ts, δn)-intrusion tolerance of SGC1, no honest
party Pi obtains zi = m. This implies that an honest party Pi never obtains
yi = m.

– synchronous ts-robustness and synchronous ts-graded consistency:
The synchronous ts-graded consistency of SGC1 guarantees that the honest
parties either obtain the output grade 0 from SGC1 or obtain some common
output value m ∈ M⊥ from SGC1.

• If the former happens, then all honest parties use the input 0 for SWC,
and so by the synchronous ts-validity of SWC, output 0 from it. Therefore,
all honest parties obtain the output grade 0.

• If the latter happens, then all honest parties obtain the output value m.
In addition, by the synchronous ts-weak consistency of SWC, there exists
a bit b such that all honest parties obtain outputs in {b,⊥} from SWC.
If b = 0, then all honest parties obtain the output grades 0 or 1, and if
b = 1, then that all honest parties obtain the output grades 1 or 2.

– synchronous ts-graded validity: Suppose all honest parties have the same
input m ∈ M. By the synchronous ts-graded validity of SGC1, all honest
parties output (m, 1) from SGC1. Then, all honest parties use the input 1 for
SWC, and so by the synchronous ts-validity of SWC, they output 1 from it.
Therefore, all honest parties output (m, 2).

– ta-fallback graded validity: Suppose all honest parties with input have the
same input m ∈ M. By the ta-fallback graded validity of SGC1, all honest
parties either abort or output (m, 1) from SGC1. Then, all remaining honest
parties with input use the input 1 for SWC, and so by the ta-fallback validity
of SWC, they either abort or output 1 from it. Therefore, all honest parties
with input either abort or output (m, 2).

Theorem 2 (Security of SBA∗). Let SGC2 and SBA respectively be 2-graded
consensus protocol and a binary consensus protocol, both with fixed numbers of
rounds, such that SGC2 has (ts, δn)-intrusion tolerance, synchronous ts-robustness,
synchronous ts-graded validity, synchronous ts-graded consistency and ta-fallback
graded validity, and SBA has synchronous ts-robustness, synchronous ts-validity
and synchronous ts-consistency. Then, SBA

∗ is a consensus protocol with (ts, δn)-
intrusion tolerance, synchronous ts-robustness, synchronous ts-validity, syn-
chronous ts-consistency and ta-fallback validity.

Proof.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. By the (ts, δn)-intrusion tolerance of SGC2, no honest
party Pi obtains zi = m. This implies that honest parties do not output m.

– synchronous ts-robustness: This follows from synchronous ts-robustness
of SGC2. We implicitly use the synchronous ts-robustness of SBA

∗ and SGC2

in the proofs of synchronous ts-validity and synchronous ts-consistency.

37

– synchronous ts-validity: Suppose all honest parties have the same input
m ∈ M. By the synchronous ts-graded validity of SGC2, all honest parties
output (m, 2) from SGC2. Therefore, all honest parties output m.

– synchronous ts-consistency: Using the synchronous ts-robustness of SBA
implicitly, we have three cases to consider:

• Suppose some honest party Pi outputs (m, 2) from SGC2 for some m ∈
M⊥. By the synchronous ts-graded consistency of SGC2, all honest parties
output (m, 2) or (m, 1) from SGC2. This means that all honest parties use
the input 1 for SBA, and by the synchronous ts-validity of SBA, output
1 from it. At the end, every honest party Pi obtains zi = m and hi = 1
and therefore outputs m.

• Suppose some honest party outputs (m, 1) from SGC2 for some m ∈
M⊥, and no honest party obtains the output grade 2 from SGC2. Then,
the synchronous ts-graded consistency of SGC2 implies that all honest
parties output (m, 1) or (m, 0) from it. Afterwards, by the synchronous
ts-consistency of SBA, either all honest output 1 from SBA or all honest
parties output 0 from SBA. If the former happens, then all honest parties
output m. If the latter happens, then all honest parties output ⊥.

• Suppose all honest parties obtain the output grade 0 from SGC2. Then, all
honest parties use the input 0 for SBA, and by the synchronous ts-validity
of SBA, output 0 from it. At the end, every honest party Pi obtains gi = 0
and hi = 0, so every honest party outputs ⊥.

– ta-fallback validity: Suppose all honest parties with input have the same
input m ∈ M. By the ta-fallback graded validity of SGC2, all honest parties
with input either abort or output (m, 2) from SGC2. Therefore, all honest
parties with input either abort or output m, no matter what output they are
able to obtain from SBA, if any.

C Expander-Based Weak Consensus and Proposal

In this section we present SWC(ε) and SProp(ε), the expander-based variants
of SWC and SProp. These variants are 3-round drop-in replacements of their
namesakes, and they use an (n, ε, 1 − ε)-expander Gε imposed on the parties
to reduce communication complexity from O(n3κ+ ℓn2) to O(n2κ+ ℓn2). The
price they pay for this reduction is that they require 2ts ≤ (1− ε)n for a positive
constant ε rather than just 2ts < n.

C.1 SWC – Expander Variant

In SWC(ε), the parties no longer multicast certificates in the second round, but
instead send them to their neighbors in Gε. The sparsity of Gε reduces the
communication complexity. Although the change removes weak consistency, the
expansion property of Gε ensures that all but less than εn honest parties receive

38

the pertinent certificates they would have received if Gε were complete. This lets
us regain weak consistency via a third voting round, as done in [30].

Protocol SWC(ε)

Input: Party Pi has an input mi ∈ M which it knows at the beginning,
or it may have no input if the network is asynchronous

Output: Party Pi either aborts or outputs yi ∈ M⊥.

Initialization: If Pi has input, then Pi sets yi = ⊥. Else, Pi aborts.

Round 1: Pi computes σi = Sgnski(mi) and multicasts (mi, σi). At the
end of the round,

– If Pi hasn’t received validly signed messages from n− ts parties, Pi aborts.

– Else, if the messages Pi received are so that Pi can form a (ts+δn)-certificate
on a unique m ∈ M, then Pi sets yi = m.

Round 2: If Pi possesses a (ts + δn)-certificate on a unique m ∈ M,
then Pi sends it to its neighbors in Gε. At the end of the round, if Pi has
received a (ts + δn)-certificate on some m ̸= yi from a neighbor in Gε,
then Pi sets yi = ⊥.

Round 3: Pi multicasts yi. At the end of the round, if Pi has received
from more than ts parties messages which differ from yi, Pi sets yi = ⊥.

Lemma 9. If ta ≤ ts, 2ts ≤ (1 − ε)n and 2ts + ta ≤ (1 − δ)n, then SWC(ε)

is a weak consensus protocol with (ts, δn)-intrusion tolerance, synchronous ts-
robustness, synchronous ts-validity, synchronous ts-weak consistency and ta-
fallback validity.

Proof.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. Less than δn honest parties sign m, which means
there is never a (ts + δn)-certificate on m. This implies that honest parties
do not output m.

– synchronous ts-robustness: When the network is synchronous and the
adversary is able to corrupt ts parties, no honest party aborts. This is
because there are at least n − ts honest parties who all multicast validly
signed messages in the first round, which all get delivered in time since the
network is synchronous. We implicitly use this property in the proofs of
synchronous ts-validity and synchronous ts-weak consistency.

– synchronous ts-validity: Suppose all honest parties have the same input
m ∈ M, and let Pi be an honest party. In Round 1, all honest parties
multicast signed m messages, leading to n− ts ≥ ts + δn signed m messages
getting multicast. Hence, Pi is able to form a (ts+δn)-certificate on m by the

39

end of the first round. Meanwhile, for any m′ ∈ M \ {m}, no honest party
ever signs m′, so there is never a (ts + δn)-certificate on m′. All of this means
that Pi sets yi = m and keeps it unchanged until the beginning of Round 3.
Finally, in Round 3, only corrupt parties send any message other than m, so
Pi keeps yi unchanged as it sees at most ts messages that differ from m.

– synchronous ts-weak consistency: We consider two scenarios:

• Suppose that for some m ∈ M, at least εn honest parties Pi have yi = m
at the end of Round 1. In Round 2, all of these parties send (ts + δn)-
certificates on m to their neighbors in Gε. By the expansion property of
Gε, more than n − εn parties are able to receive the certificates, more
than n− εn− ts ≥ ts of which are honest. All of these receiving honest
parties obtain the tentative outputs m or ⊥ at the end of Round 2, and
so they multicast m or ⊥ in the beginning of Round 3. In Round 3, every
honest party Pi who has yi = m′ for some m′ ∈ M\{m} in the beginning
of the round receives from more than ts honest parties the messages m
or ⊥, and therefore sets yi = ⊥. So, we conclude that every honest party
outputs either m or ⊥.

• Suppose that for all m ∈ M, less than εn honest parties have the
tentative output m at the end of Round 1. Then this state of affairs is
preserved until the end of Round 2, as during Round 2 honest parties
may only change their tentative outputs to ⊥. For all m ∈ M, more
than n − εn − ts ≥ ts honest parties multicast messages other than m
in Round 3, so every honest party Pi who has yi = m in the beginning
of the round receives from more than ts honest parties messages other
than m, and therefore sets yi = ⊥. From this, we conclude that all honest
parties output ⊥.

– ta-fallback validity: Suppose all honest parties with input have the same
input m ∈ M. Consider an honest party Pi with input. At the end of Round 1,

• If Pi hasn’t seen validly signed messages from n− ts parties, Pi aborts.

• Suppose Pi has seen validly signed messages from n − ts parties. At
most ta of these come from corrupt parties, so Pi has seen at least
n− ts − ta ≥ ts + δn signed m messages from honest parties. Meanwhile,
for any m′ ∈ M \ {m}, no honest party ever signs m′, so there is never
a (ts + δn)-certificate on m′. All of this means that Pi sets yi = m and
keeps it unchanged until the beginning of Round 3. Finally, in Round
3, only corrupt parties send any message other than m, so Pi keeps yi
unchanged as it sees at most ts messages that differ from m.

Complexity of SWC(ε): The message complexity is MCSWC(ε) = O(n2) due to
the multicasting. In the first round the multicast messages are of length O(ℓ+ κ)
and in the third round the multicast messages are of length O(ℓ), so from these
rounds we get the communication complexity O(n2κ+ ℓn2). In the second round,
each party possibly sends a certificate of size O(ℓ+ nκ) to O(1) neighbors in Gε,
so from this round we get the communication complexity O(n2κ+ ℓn). In total,
we get the communication complexity CCSWC(ε) = O(n2κ+ ℓn2).

40

C.2 SProp – Expander Variant

Again in SProp(ε), the parties send certificates instead of multicasting them, and
weak consistency is regained via a third round. As we did for SProp, we assume
there exists some set S = {x,⊥} ∈ M⊥ such that honest parties can only have

inputs in S, and use it in our description of SProp(ε) below.

Protocol SProp(ε)

Input: Party Pi has an input vi ∈ S which it knows at the beginning, or
it may have no input if the network is asynchronous.

Output: Party Pi either aborts or outputs yi ∈ {x, {x,⊥},⊥}.

Initialization: If Pi has input, then Pi sets yi = ⊥. Else, Pi aborts.

Round 1: If vi = ⊥, then Pi multicasts ⊥. Else, Pi computes σi =
Sgnski(vi) and multicasts (vi, σi). At the end of the round,

– If Pi hasn’t received valid messages from n− ts parties, then Pi aborts.

– Else, if the messages Pi received are so that Pi can form a (ts+δn)-certificate
on a unique m ∈ M, then Pi sets yi = m.

Round 2: If Pi possesses a (ts + δn)-certificate on yi, then Pi sends it
to its neighbors in Gε. At the end of the round, if Pi had yi = ⊥ but
received a (ts + δn)-certificate on some m ∈ M from a neighbor in Gε,
then Pi sets yi = {m,⊥}.

Round 3: Pi multicasts yi. At the end of the round, if Pi has received
from more than ts parties messages which differ from yi, then

– If yi ∈ M, then Pi sets yi = {m,⊥}.

– If yi = {m,⊥} for some m ∈ M, then Pi keeps yi unchanged.

– If yi = ⊥, Pi inspects the messages it received to find some m ∈ M such that
more than ts of the messages are either m or {m,⊥}, and sets yi = {m,⊥}.

Lemma 10. If ta ≤ ts, 2ts ≤ (1− ε)n and 2ts + ta ≤ (1− δ)n, then SProp(ε) is
a proposal protocol with (ts, δn)-intrusion tolerance, synchronous ts-robustness,
synchronous ts-validity, synchronous ts-weak consistency and ta-fallback validity.

Proof.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. Less that δn honest parties sign m, which means
there is never a (ts + δn)-certificate on m. This implies that honest parties
do not switch their tentative outputs to m or {m,⊥} in the first two rounds.
In the third round, no honest party multicasts m or {m,⊥}, so no honest
party receives the messages m or {m,⊥} from more than ts parties. This
implies that honest parties do not switch their outputs to m or {m,⊥} in
the third round either.

41

– synchronous ts-robustness: When the network is synchronous and the
adversary is able to corrupt ts parties, no honest party aborts. This is because
there are at least n− ts honest parties who all multicast valid messages in the
first round, which all get delivered in time since the network is synchronous.
We implicitly use this property in the proofs of synchronous ts-validity and
synchronous ts-weak consistency.

– synchronous ts-validity: Suppose all honest parties have the same input
v ∈ S, and let Pi be an honest party.

• If v = ⊥, then by (ts, δn)-intrusion tolerance, Pi outputs ⊥.

• If v = x, then in Round 1 all honest parties multicast signed x messages,
leading to n− ts ≥ ts + δn signed x messages getting multicast. Hence,
Pi is able to form a (ts+ δn)-certificate on x by the end of the first round.
Meanwhile, for any x′ ∈ M\ {x}, no honest party ever signs x′, so there
is never a (ts + δn)-certificate on x′. All of this means that Pi sets yi = x
and keeps it unchanged until the beginning of Round 3. Finally, in Round
3, only corrupt parties send any message other than x, so Pi keeps yi
unchanged as it sees at most ts messages that differ from x.

– synchronous ts-weak consistency: Firstly, note that we have already
shown in the proof of (ts, δn)-intrusion tolerance that for any x′ ∈ M \ {x},
no (ts + δn)-certificate on x′ ever exists, and no honest party Pi ever sets
yi = x′ or yi = {x′,⊥}. Now, we consider two scenarios.

• Suppose at least εn honest parties have (ts + δn)-certificates on x at
the end of Round 1. In Round 2, all of these parties send (ts + δn)-
certificates on x to their neighbors in Gε. By the expansion property of
Gε, more than n − εn parties are able to receive the certificates, more
than n− εn− ts ≥ ts of which are honest. All of these receiving honest
parties obtain the tentative outputs x or {x,⊥} at the end of Round 2,
and so they multicast x or {x,⊥} in the beginning of Round 3. In Round
3, every honest party Pi who has yi = ⊥ in the beginning of the round
sets yi = {x,⊥} at the end of the round, because during the round, Pi

receives from more than ts honest parties the messages x or {x,⊥}, and
for any x′ ∈ M \ {x}, receives only from corrupt parties (hence from at
most ts parties) the messages x′ or {x′,⊥}. So, we conclude that every
honest party outputs either x or {x,⊥}.

• Suppose less than εn honest parties have (ts + δn)-certificates on x at
the end of Round 1. An honest party Pi never sets yi = x unless it has a
(ts + δn)-certificate on x at the end of Round 1, so less than εn honest
parties have the tentative output x at the end of Round 2. In Round 3,
more than n− εn− ts ≥ ts honest parties multicast messages other than
x, so every honest party Pi with yi = x in the beginning of the round
sets yi to {x,⊥}. From this, we conclude that no honest party outputs x.

– ta-fallback validity: Suppose all honest parties with input have the same
input v ∈ S. If v = ⊥, then by the (ts, δn)-intrusion tolerance of SProp(ε), all

42

honest parties with input output ⊥ or abort. Now suppose v = x. Consider
an honest party Pi with input. At the end of Round 1,

• If Pi hasn’t seen valid messages from n− ts parties, then Pi aborts.

• Suppose Pi has seen valid messages from n−ts parties. At most ta of these
come from corrupt parties, so Pi has seen at least n− ts − ta ≥ ts + δn
signed x messages from honest parties. Meanwhile, for any x′ ∈ M\ {x},
no honest party ever signs x′, so there is never a (ts + δn)-certificate on
x′. All of this means that Pi sets yi = x and keeps it unchanged until
the beginning of Round 3. Finally, in Round 3, only corrupt parties send
any message other than x, so Pi keeps yi unchanged as it sees at most ts
messages that differ from x.

Complexity of SProp(ε): The message and communication complexities of
SProp(ε) are also respectively MCSProp(ε) = O(n2) and CCSProp(ε) = O(n2κ+ ℓn2),

for the same reasons that SWC(ε) attains these complexities.

D Additional Material for Section 4

D.1 Asynchronous Graded Consensus

Protocol AGC1

Input: Party Pi has an input mi ∈ M which it can eventually learn.

Output: Party Pi outputs (yi, gi), where yi ∈ M⊥ is the output value and
gi ∈ {0, 1} is the output grade.

Initialization: Party Pi starts participating in a common instance of
AWC and a common instance of AProp.

Input Acquisition: When Pi knows mi, Pi sets it as its input for AWC.

Prop Rule: Upon outputting xi from AWC, Pi checks if xi = mi. If so,
then Pi sets xi as its AProp input. Otherwise, Pi sets ⊥ its AProp input.

Output Rule: Upon outputting zi from AProp,

– If zi = m, then Pi outputs (m, 1).

– If zi = {m,⊥}, then Pi outputs (m, 0).

– If zi = ⊥, then Pi outputs (⊥, 0).

Lemma 6 (Security of AGC1). Let AProp and AWC respectively be a proposal
protocol and a weak consensus protocol such that AProp has (ts, δn)-intrusion
tolerance, rp-round ts-validity with liveness, ta-weak consistency and ta-liveness,
and AWC has rw-round ts-validity with liveness, ta-weak consistency and ta-
liveness. Then, AGC1 is a 1-graded consensus protocol with (ts, δn)-intrusion

43

tolerance, (rw + rp)-round ts-graded validity with liveness, ta-graded consistency
and ta-liveness.

Proof.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. The “Prop Rule” is designed so that honest parties
do not provide AProp the input m unless they have the input m for AGC1.
Hence, less than δn honest parties provide AProp the input m, and so by the
(ts, δn)-intrusion tolerance of AProp, no honest party Pi obtains zi = m or
zi = {m,⊥}. This implies that an honest party Pi never obtains yi = m.

– (rw + rp)-round ts-graded validity with liveness: Suppose all honest
parties have the same input m ∈ M. By the rw-round ts-validity with liveness
of AWC, all honest parties output m from AWC. Then, as all honest parties
have the input m for AGC1, they all provide AProp the input m. And so,
by the rp-round ts-validity with liveness of AProp, all honest parties output
m from AProp as well. This means that all honest parties output (m, 1).
Furthermore, if the network is synchronous and all honest parties know
their inputs by time k, then all honest parties output m from AWC and
therefore provide AProp the input m by time k + rw∆, and then, all honest
parties output m from AProp and therefore output (m, 1) from AGC1 by time
k + rw∆+ rp∆ = k + (rw + rp)∆.

– ta-liveness and ta-graded consistency: All honest parties eventually
provide input to AWC, and thus, by the ta-weak consistency and ta-liveness of
AWC, obtain outputs in {m,⊥} from it for some m ∈ M. This leads to them
providing inputs in {m,⊥} to AProp. Finally, by the ta-weak consistency and
ta-liveness of AProp, one of the following happens:

• All honest parties output m or {m,⊥} from AProp. In this case, all honest
parties obtain the same output value.

• All honest parties output {m,⊥} or ⊥ from AProp. In this case, all honest
parties obtain the output grade 0.

Protocol AGC2

Input: Party Pi has an input mi which it can eventually learn.

Output: Party Pi outputs (yi, gi), where yi is the output value and gi is
the output grade.

Initialization: Party Pi starts participating in a common instance of
AGC1 and a common instance of AWC.

Input Acquisition: When Pi knows mi, Pi sets it as its input for AGC
1.

1-Grade Rule: Upon outputting (zi, hi) from AGC1, Pi sets hi as its
input for AWC.

44

Output Rule: Upon outputting (zi, hi) from AGC1 and vi from AWC, Pi

sets yi = zi and outputs (yi, gi) after setting gi as follows:

– If vi = 0, then Pi sets gi = 0.

– If vi = ⊥, then Pi sets gi = 1.

– If vi = 1, then Pi sets gi = 2.

Lemma 7 (Security of AGC2). Let AGC1 and AWC respectively be a 1-graded
consensus protocol and a weak binary consensus protocol such that AGC1 has
(ts, δn)-intrusion tolerance, rg-round ts-graded validity with liveness, ta-graded
consistency and ta-liveness, and AWC has rw-round ts-graded validity with liveness,
ta-weak consistency and ta-liveness. Then, AGC

2 is a 2-graded consensus protocol
with (ts, δn)-intrusion tolerance, (rg + rw)-round ts-graded validity with liveness,
ta-graded consistency and ta-liveness.

Proof.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. By the (ts, δn)-intrusion tolerance of AGC1, no honest
party Pi obtains zi = m. This implies that an honest party Pi never obtains
yi = m.

– (rg + rw)-round ts-graded validity with liveness: Suppose all honest
parties have the same input m ∈ M. By the rg-round ts-graded validity
with liveness of AGC1, all honest parties output (m, 1) from AGC1. Then, all
honest parties provide AWC the input 1, and so by the 2-round ts-validity
with liveness of AWC, they output 1 from it. Therefore, all honest parties
output (m, 2). Furthermore, if the network is synchronous and all honest
parties know their inputs by time k, then all honest parties output (m, 1)
from AWC and therefore provide AWC the input 1 by time k+ rg∆, and then,
all honest parties output 1 from AWC and therefore output (m, 2) from AGC2

by time k + rg∆+ rw∆ = k + (rg + rw)∆.

– ta-liveness and ta-graded consistency: All honest parties eventually
provide input to AGC1, and thus, by the ta-liveness of AGC

1, obtain output
from it. By the ta-graded consistency of AGC1, either all honest parties obtain
some common output value y ∈ M⊥ from AGC1, or all honest parties obtain
the output grade 0 from AGC1.

• Suppose all honest parties obtain some common output value y from
AGC1. All honest parties provide input to AWC, and so by the ta-liveness
and ta-weak consistency of AWC, either all honest parties output 1 or ⊥
from it, or all honest parties output ⊥ or 0 from it. If the former happens,
then all honest parties output (y, 2) or (y, 1). If the latter happens, then
all honest parties output (y, 1) or (y, 0).

• Suppose all honest parties obtain the output grade 0 from AGC1. All
honest parties provide AWC the input 0, and so by the ts-graded validity

45

with liveness of AWC, they output 0 from it. This means that all honest
parties obtain the output grade 0.

D.2 Skipped Proofs

Lemma 5 (Security of AProp). If ta ≤ ts and 2ts+ ta ≤ (1− δ)n, then AProp
is a proposal protocol with (ts, δn)-intrusion tolerance, 2-round ts-validity with
liveness, ta-weak consistency and ta-liveness.

Proof.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have some
m ∈ M as input. Less than δn honest parties send the message (input,m)
via the “Input Acquisition” rule. This implies that honest parties do not send
the message (input,m) via the “Conflict Echoing” rule. Suppose otherwise,
for the sake of contradiction. The first time some honest party Pi sends
(input,m) via the “Conflict Echoing” rule, it needs to have received the
message (input,m) from ts+δn parties. Among these ts+δn parties, at least
δn must be honest parties who sent the message via the “Input Acquisition”
rule, which gives us a contradiction. And so, we conclude that less than δn
honest parties send the message (input,m) via any rule. This means that
no honest party receives the message (input,m) from ts + δn parties. As
ts + δn ≤ n− ts, honest parties do not activate the “Value Rule” with the
message (input,m), and so no honest party Pi adds m to Vi or multicasts
(propose,m). Hence, honest parties do not output sets containing m, and
since they receive the message (propose,m) from at most ts < n− ts parties,
they do not output m either.

– V-validity lemma: Suppose for some v ∈ M⊥ that no honest party has
the input v, and suppose the adversary can corrupt at most ts parties. Then
no honest party Pi adds v to Vi, and no honest party Pi outputs v or a set
containing v. The proof of this lemma proceeds similarly to the proof of
(ts, δn)-intrusion tolerance. No honest party sends the message (input, v) via
the “Input Acquisition rule.” This implies that no honest party sends the
message (input, v) via the “Conflict Echoing” rule either. Suppose otherwise,
for the sake of contradiction. The first time some honest party Pi sends
(input, v) via the “Conflict Echoing” rule, it needs to have received the
message (input, v) from ts + 1 parties. Among these ts + 1 parties, at least
one must be an honest party who sent the message via the “Input Acquisition”
rule, which gives us a contradiction. And so, we conclude that no honest party
sends the message (input, v) via any rule. Then, as honest parties receive
the message (input, v) from at most ts < n− ts parties, they do not activate
the “Value Rule” with the message (input, v), and so no honest party Pi

adds v to Vi or multicasts (propose, v). Hence, honest parties do not output
sets containing v, and since they receive the message (propose, v) from at
most ts < n− ts parties, they do not output v either.

46

– 2-round ts-validity with liveness: Suppose all honest parties have the
same input v ∈ S. By the V-validity lemma, honest parties may only output
v; this gives us ts-validity. Meanwhile,

• All honest parties multicast (input, v). This leads to each honest party
Pi receiving the message (input, v) from n − ts parties and therefore
adding v to Vi.

• Whenever an honest party Pi adds v to Vi, it multicasts (propose, v).
This is because Pi would not do so only if it had added some v′ ∈ M⊥\{v}
to Vi earlier, which by the V-validity lemma can’t happen. And so, since
every honest party Pi adds v to Vi and multicasts (propose, v) when it
does so, all honest parties receive the message (propose, v) from n− ts
parties and therefore become able to output v.

Furthermore, if the network is synchronous and all honest parties know
their inputs by time k, then in the reasoning chain above, all honest parties
multicast (input, v) by time k; all honest parties receive all honest party
(input, v) messages and therefore multicast (propose, v) by time k+∆, and
finally, all honest parties receive all honest party (propose, v) messages and
therefore become able to output v by time k + 2∆.

– V-consistency lemma: Suppose the adversary is able to corrupt ta parties.
If some honest party Pi adds some v ∈ M⊥ to Vi, then every honest party Pj

adds v to Vj . To see why, note that if Pi adds v to Vi, it does so because it has
received the message (input, v) from n−ts parties. At least n−ts−ta ≥ ts+δn
of these parties are honest, which means that there are at least ts+ δn honest
parties who multicast (input, v). These multicast messages ensure via the
“Conflict Echoing” rule that all honest parties multicast (input, v), whether
v = ⊥ or not. And so, it is ensured that every honest party Pj receives the
message (input, v) from n− ts parties and therefore adds v to Vj .

– V-adding lemma: Suppose the adversary is able to corrupt ta parties. Then
every honest party Pi adds some v ∈ S to Vi. To see why, let Hx and H⊥ be
the sets of honest parties with the input x and with the input ⊥, respectively.
We have |Hx| + |H⊥| ≥ n − ta, which by n − ta ≥ 2ts + δn means that at
least one of the inequalities |Hx| ≥ ts + δn and |H⊥| > ts must hold.

• If |Hx| ≥ ts+δn, then at least ts+δn honest parties multicast (input, x),
which as we showed in the proof of the V-consistency lemma leads to
every honest party Pi adding x to Vi.

• If |H⊥| > ts, then at least ts + 1 honest parties multicast (input,⊥).
This leads to all honest parties receiving the message (input,⊥) from at
least ts + 1 parties and therefore multicasting (input,⊥). And so, it is
ensured that every honest party Pj receives the message (input,⊥) from
n− ts parties and therefore adds ⊥ to Vj .

– ta-liveness: By the V-validity lemma, no honest party Pi adds anything but
x and ⊥ to Vi. Furthermore, by the V-adding lemma, eventually every honest
party Pi adds some v ∈ S to Vi. We have two cases to consider:

47

• Suppose some honest party Pi adds x to Vi while some honest party
Pj adds ⊥ to Vj . By the V-consistency lemma, every honest party Pk

eventually adds both x and ⊥ to Vk and thus becomes able to output S.

• Suppose there exists some v ∈ S such that no honest party Pi adds v
to Vi. Let v′ be the other value in S. For every honest party Pi, v

′ is
the unique value that Pi adds to Vi, which means that Pi multicasts
(propose, v′). The fact that all honest parties multicast (propose, v′)
ensures that all honest parties receive the message (propose, v) from
n− ts parties and therefore become able to output v′.

– ta-weak consistency: Suppose some honest party Pi outputs x while some
other honest party Pi outputs ⊥. Then at least n− ts parties must have sent
the message (propose, x) to Pi, and at least n− ts parties must have sent
the message (propose,⊥) to Pj . The number of double-proposers, that is,
the number of parties that sent (propose, x) to Pi and (propose,⊥) to Pj ,
must therefore be at least n− 2ts ≥ ta + 1. But this means that there is at
least one double-proposing honest party, which is a contradiction.

Theorem 3 (Security of AWC). If ta ≤ ts and 2ts + ta < n, then AWC is a
weak consensus protocol with 2-round ts-validity with liveness, ta-weak consistency
and ta-liveness.

Proof.

– conflict-validity lemma: Suppose all honest parties have the same input
m = (b1, . . . , bℓ) ∈ M, and suppose the adversary can corrupt at most ts
parties. Then no honest party multicasts conflict. Suppose otherwise, for
the sake of contradiction. The first time some honest party Pi multicasts
conflict, it needs to have received from ts + 1 parties inputs other than m
or the message conflict. Since Pi is assumed to be the first honest party to
send the message conflict, among these ts + 1 parties, at least one must be
an honest party who sent an input other than m. This contradicts the fact
that all honest parties have the input m.

– V-validity lemma: Suppose all honest parties have the same input m ∈ M
where m = (b1, . . . , bℓ), and suppose the adversary can corrupt at most ts
parties. Then for all k, no honest party Pi adds 1−bk to V k

i , and furthermore,
honest parties can only output m. Let k be a bit index and Pi be an honest
party. To see why the lemma is true, note that honest parties do not send
inputs with the kth bit 1− bk, and by the conflict-validity lemma, they do
not send conflict messages either. This means Pi receives inputs with the
kth bit 1− bk or the message conflict from at most ts < n− ts parties and
therefore does not add 1 − bk to V k

i , and that makes bk is the unique bit
which Pi may add to V k

i . Hence, we see that Pi doesn’t output ⊥ or multicast
(propose,m′) for any m′ ∈ M that disagrees with m at any bit. Finally, for
any m′ ∈ M \ {m}, as no honest party multicasts (propose,m′), no honest
party receives the message (propose,m′) from n − ts > ts parties, and so
no honest party outputs m′.

48

– 2-round ts-validity with liveness: Suppose all honest parties have the
same input m = (b1, . . . , bℓ) ∈ M. By the V-validity lemma, honest parties
may only output m; this gives us ts-validity. Meanwhile,

• All honest parties multicast (input,m). For all k, this leads to each
honest party Pi receiving an input with the kth bit bk from n− ts parties
and therefore adding bk to V k

i .

• By the V-validity lemma, for all k, bk is the unique bit which an honest
party Pi can add to V k

i . This, combined with the previous bullet point,
means that every honest party Pi eventually observes V 1

i , V
2
i , . . . V

ℓ
i =

{b1}, {b2}, . . . , {bℓ} and therefore multicasts (propose,m). This leads to
all honest parties receiving the message (propose,m) from n− ts parties
and therefore becoming able to output m.

Furthermore, if the network is synchronous and all honest parties know
their inputs by time k, then in the reasoning chain above, all honest parties
multicast (input,m) by time k; all honest parties receive all honest party
(input,m) messages and therefore multicast (propose,m) by time k +∆,
and finally, all honest parties receive all honest party (propose,m) messages
and therefore become able to output m by time k + 2∆.

– V-consistency lemma: Suppose the adversary is able to corrupt ta parties.
For all k, if some honest party Pi adds the bit b to V k

i , then every honest
party Pj adds b to V k

j . To see why, note that if Pi adds b to V k
i , it does so

because it has received inputs with the kth bit b or the message conflict
from n− ts parties. At least n− ts − ta ≥ ts + 1 of these parties are honest,
which means that there are at least ts+1 honest parties who multicast inputs
with the kth bit b or the message conflict. These multicast messages ensure
that every honest party Pj either multicasts an input with the kth bit b if
it has such an input, or multicasts conflict otherwise. And so, it is ensured
that every honest party Pj receives inputs with the kth bit b or the message
conflict from n− ts parties and therefore adds b to V k

j .

– V-adding lemma: Suppose the adversary is able to corrupt ta parties. Then
for all k, there exists a bit b such that every honest party Pi adds b to V k

i .
To see why, for some arbitrary k, let H0 and H1 be the sets of honest parties
who have inputs with the kth bit 0 and the kth bit 1, respectively. We have
|H0|+ |H1| ≥ n− ta, which by 2ts + ta < n means that at least one of the
inequalities |H0| > ts and |H1| > ts must hold. Without loss of generality,
suppose |H0| > ts. Then at least ts + 1 honest parties multicast inputs with
the kth bit 0, which as we showed in the proof of the V-consistency lemma
leads to every honest party Pi adding 0 to V k

i .

– ta-liveness: We have two cases to consider:

• Suppose there exists some k such that some honest party Pi adds 0 to
V k
i while some other honest party Pj adds 1 to V k

j . By the V-consistency

lemma, every honest party Pq eventually adds both 0 and 1 to V k
q and

therefore becomes able to output ⊥.

49

• Suppose there exists no such k. Then, by the V-adding lemma, for
all k, there exists a unique bit bk such that every honest party Pi

adds bk and not 1 − bk to V k
i . Each honest party Pi therefore even-

tually observes V 1
i , V

2
i , . . . , V

k
i = {b1}, {b2}, . . . , {bℓ} and multicasts

(propose,m), where m = (b1, b2, . . . , bℓ) ∈ M. This leads to all hon-
est parties receiving the message (propose,m) from n− ts parties and
therefore becoming able to output m.

– ta-weak consistency: Suppose that for some distinct m,m′ ∈ M, some
honest party Pi outputs m while some other honest party Pj outputs m′.
Then at least n − ts parties must have sent the message (propose,m) to
Pi, and at least n − ts parties must have sent the message (propose,m′)
to Pj . The number of double-proposers, that is, the number of parties that
sent (propose,m) to Pi and (propose,m′) to Pj , must therefore be at least
n− 2ts ≥ ta + 1. But this means that there is at least one double-proposing
honest party, which is a contradiction.

Theorem 4 (Security of ABA∗). Let ta ≤ ts and 2ts + ta ≤ (1 − δ)n, and
suppose honest parties must know their inputs by time rs∆ when the network
is synchronous. Let AGC2 and ABA respectively be a 2-graded consensus pro-
tocol and a binary consensus protocol such that AGC2 has (ts, δn)-intrusion
tolernace, rg-round ts-graded validity with liveness, ta-graded consistency and ta-
liveness, and ABA has ta-validity, ta-consistency and ta-liveness. Then, ABA

∗ is
a consensus protocol with (ts, δn)-intrusion tolerance, ts-validity, ta-consistency,
ta-termination and synchronous (rg + 1)-round ts-validity with termination.

Proof. For the sake of brevity, we say that an honest party commits to m ∈ M⊥

if it multicasts (commit,m).

– commit safety lemma: Suppose the adversary can corrupt at most ts
parties, and suppose for some x ∈ M⊥ that no honest party commits to x
via the “Graded Output” or the “Late Output” rules. Then no honest party
commits to x via the “Commit Processing” rule either. Suppose otherwise,
for the sake of contradiction. The first time some honest party Pi commits to
x via the “Commit Processing” rule, it needs to have received the message
(commit, x) from ts + 1 parties. Among these ts + 1 parties, at least one
must be an honest party who committed to x via the “Graded Output” or
the “Late Output” rules, which is a contradiction.

– (ts, δn)-intrusion tolerance: Suppose less than δn honest parties have
some m ∈ M as input. By the (ts, δn)-intrusion tolerance of AGC2, no honest
party obtains the output value m from AGC2. This implies that honest parties
do not commit to m via the “Graded Output” or the “Late Output” rules.
By the commit safety lemma, honest parties do not commit to m via the
“Commit Processing” rule either. Finally, as no honest party commits to m,
no honest party receives the message (commit,m) from n− ts > ts parties,
and so no honest party outputs m.

50

– ta-commit unanimity lemma: Suppose the adversary can corrupt at most
ta parties. Then there is a unique m ∈ M⊥ to which honest parties may
commit. Firstly, we show that there is a unique m ∈ M⊥ to which honest
parties may commit via the “Graded Output” or the “Late Commit” rules.
Considering only these rules, we have three cases to consider:

• Suppose some honest parties output (m, 2) from AGC2 for some m ∈ M⊥.
Then, by the ta-graded consistency of AGC2, honest parties can only
output (m, 2) or (m, 1) from AGC2. This means that honest parties can
only provide ABA the input 1, which by the ta-validity of ABA means
that honest parties can only output 1 from ABA. And so, honest parties
can only commit to m, either because they output (m, 2) from AGC2 or
because they output (m, 1) from AGC2 and 1 from ABA.

• Suppose some honest party outputs (m, 1) from AGC2 for some m ∈ M⊥,
and suppose no honest party obtains the output grade 2 from AGC2. Then
no honest party commits to anything via the “Graded Output” rule, and
the ta-graded consistency of AGC2 implies that honest parties can only
output (m, 1) or (m, 0) from AGC2. As for ABA, its ta-consistency means
that there is a common bit b that honest parties can obtain as output
from it. If b = 1, then honest parties can only commit to m via the “Late
Output” rule, and if b = 0, then honest parties can only commit to ⊥
via the “Late Output” rule.

• Suppose no honest party obtains the output grades 2 or 1 from AGC2.
Then no honest party commits to anything via the “Graded Output”
rule, and no honest party provides ABA the input 1. By the ta-validity
of ABA, honest parties can only output 0 from ABA and therefore can
only commit to ⊥ via the “Late Output” rule.

By the above, let m be the unique value in M⊥ to which honest parties may
commit via the “Graded Output” or the “Late Commit” rules. Then for any
m′ ∈ M⊥ \ {m}, the commit safety lemma guarantees that no honest party
commits to m′ via any rule. This makes m the unique value in M⊥ to which
honest parties may commit via any rule.

– commit validity lemma: Suppose the adversary can corrupt at most ts
parties, and suppose there is a unique m ∈ M⊥ to which honest parties
may commit. Then honest parties may only output m. To see why, suppose
an honest party outputs some m′ ∈ M⊥. Then it must have received the
message (commit,m′) from n − ts parties, at least n − 2ts ≥ 1 of which
must be honest. Since honest parties can only commit to m, we conclude
that m′ = m.

– ta-consistency: By the ta-commit unanimity lemma, there is a unique
m ∈ M⊥ to which honest parties may commit. Therefore, by the commit
validity lemma, honest parties can only output m.

– ta-unanimous termination lemma: Suppose the adversary can corrupt
at most ta parties. If some honest party terminates, then all honest parties
terminate. To see why, suppose some honest party Pi terminates. For some

51

m ∈ M⊥, it must have received the message (commit,m) from n−ts parties,
at least n− ts − ta ≥ ts + 1 of which must be honest. Since there are ts + 1
honest parties who commit to m and since ts + 1 ≤ n − ts, every honest
party eventually receives the message (commit,m) from ts + 1 parties while
still running and therefore commits to m via the “Commit Processing” rule,
assuming it hasn’t done so previously. Finally, since all honest parties commit
to m, all honest parties can eventually receive the message (commit,m)
from n− ts parties and therefore terminate.

– ta-termination: If some honest party terminates, then by the ta-unanimous
termination lemma, all honest parties terminate. Thus, it suffices to prove
that some honest party terminates. For the sake of contradiction, suppose
otherwise. All honest parties provide input to AGC2, and thus, by the ta-
liveness of AGC2, obtain output from it. Hence, they provide input to ABA,
any the ta-liveness of ABA, obtain output from it. Now let m ∈ M⊥ be
the unique value to which honest parties may commit, which exists by the
ta-commit unanimity lemma. All honest parties eventually obtain output
from both AGC2 and ABA. Thus, all honest parties eventually commit to m,
leading to them all receiving the message (commit,m) from n− ts parties
and therefore terminating. This contradicts the assumption that no honest
party terminates.

– ts-validity: Suppose all honest parties have the same input m ∈ M. By the
ts-graded validity of AGC2, honest parties can only output (m, 2) from AGC2.
This means that honest parties can’t commit to anything other than m via
the “Graded Output” or the “Late Output” rules. By the commit safety
lemma, m is the unique value in M⊥ to which honest parties may commit.
Therefore, by the commit validity lemma, honest parties can only output m.

– synchronous (rg + 1)-round ts-validity with termination: Suppose the
network is synchronous, and suppose all honest parties have some common
input m ∈ M which they all know by time rs∆, as required by the protocol
description when the network is synchronous. By the ts-validity of ABA∗, m
is the unique value in M⊥ which honest parties may output. Furthermore, as
honest parties can’t terminate before time (rs+rg)∆, the rg-round ts-graded-
validity with liveness of AGC2 guarantees that all honest parties output (m, 2)
from AGC2 and therefore commit to m by time (rs + rg)∆. And so, by time
(rs + rg + 1)∆, all honest parties receive the message (commit,m) from
n− ts parties and therefore terminate.

E Network-Agnostic Extension Protocols

In this section we present our network-agnostic consensus extension protocols
HBAX and HBAX(δ). Both of them extend an underlying intrusion-tolerant
network-agnostic protocol with two additional rounds so that consensus on ℓ-bit
inputs is reached with a communication complexity O(ℓn+ . . .). The protocol
HBAX is an adaptation from [35]; its communication complexity overhead is

52

O(n2κ + ℓn) bits with trusted setup, or O(n2κ log n + ℓn) bits without. The

novel extension protocol HBAX(δ) can use an expander to achieve a complexity
overhead of O(n2κ+ ℓn) bits without trusted setup, but for this it requires for
some δ = Θ(1) that 2ts + ta ≤ (1 − δ)n and that the underlying consensus
protocol has (ts, δn)-intrusion tolerance.

E.1 Extended Agreement (HBAX)

In HBAX, the parties encode their inputs into n symbols s1, . . . , sn with an
error correcting code set to tolerate ts erasures, and then compute cryptographic
accumulations of their indexed codeword symbols. Then, they agree on a common
cryptographic accumulation cacc via an intrusion-tolerant consensus instance.9 If
cacc = ⊥, then the final output is ⊥. Otherwise, each party who had the input
cacc sends each party Pj the pair (sj , wj), where sj is the jth reconstruction
symbol and wj is a witness which proves sj correct with respect to cacc. Upon
receiving (sj , wj), the party Pj multicasts (sj , wj). Eventually, every honest party
Pi multicasts (si, wi), and so every honest party receives n−ts witnessed symbols,
which together suffice for output reconstruction.

Protocol HBAX

Input: Party Pi has an input mi ∈ M which it must know at the beginning
of the protocol if the network is synchronous.

Output: Party Pi outputs yi ∈ M⊥.

– Initialization: Pi starts participating in a common instance of HBA
and lets Ai = ∅. Once Pi knows its input mi,

• Pi computes the codeword (s1, s2, . . . , sn) = Encoden−ts(mi).

• Pi lets S be the indexed set {(1, s1), (2, s2), . . . , (n, sn)} and com-
putes the cryptographical accumulator ci = Accak(S).

• Pi sets ci as its input for HBA.

– Base Output: Upon terminating HBA with the output cacc,

• If cacc = ⊥, then Pi outputs ⊥ and terminates.

• Otherwise, if cacc = ci, then for each party Pj , Pi com-
putes the witness wj = Witak(S, (j, sj)) and sends the message
(personal, sj , wj) to Pj .

– Symbol Casting: Upon terminating HBA with the output cacc ≠ ⊥
and for the first time receiving a message (personal, s, w) such that
Vfyak(cacc, (i, s), w) = 1, Pi multicasts (global, s, w).

9 In [35], the underlying consensus protocol is not assumed to be intrusion-tolerant.
Hence, after the parties agree on cacc, they ensure intrusion tolerance with a separate
binary consensus instance.

53

– Symbol Accepting: Upon receiving from a party Pj a message
(global, sj , wj) where Vfyak(cacc, (j, sj), wj) = 1, Pi adds (j, sj) to Ai.

– Extended Termination: Upon terminating HBA with the output
cacc ≠ ⊥, running the “Base Output” and “Symbol Casting” rules
and observing that |Ai| ≥ n− ts, Pi reconstructs an output m ∈ M
using the accepted indexed symbols in Ai as input for Decoden−ts ,
and then terminates with the output m.

Theorem 6. Let ta ≤ ts, and suppose honest parties must know their inputs at
time 0 when the network is synchronous. Let HBA be a consensus protocol with

– (ts, δn)-intrusion tolerance;

– synchronous ts-validity, synchronous ts-consistency and synchronous rh-round
ts-termination;

– ta-validity, ta-consistency and ta-termination.

Then HBAX is a consensus protocol with

– (ts, δn)-intrusion tolerance;

– synchronous ts-validity, synchronous ts-consistency and synchronous (rh+2)-
round ts-termination;

– ta-validity, ta-consistency and ta-termination.

Proof.

– accumulator lemma: Suppose the adversary can corrupt at most ts parties.
Let Pi be an honest party who has encoded its input mi into the codeword
(s1, s2, . . . , sn) and computed the cryptographic accumulation ci of the in-
dexed set S = {(1, s1), (2, s2), . . . , (n, sn)}. Suppose cacc = ci, where cacc
is the common output of HBA. Then no honest party verifies any indexed
symbol except those in the set S, and no honest party outputs anything
except mi.

• No honest party verifies any indexed symbol except those in the set S,
because for any v ̸∈ S, it is computationally infeasible for there to exist
a witness w such that Vfyak(cacc, v, w) = 1.

• No honest party outputs ⊥, because cacc ̸= ⊥.

• Suppose an honest party Pj outputs. Then it does so via the “Extended
Termination” rule upon observing that Aj contains n−ts verified indexed
symbols. All of these symbols must be elements of S, which means by
the correctness of the error correcting code that Pj correctly reconstructs
mi and outputs mi.

– termination and consistency: All honest parties participate in HBA with
input, and keep on participating until termination. By the termination and
consistency properties of HBA, all honest parties terminate it with some

54

common output cacc. If cacc = ⊥, then all honest parties terminate with
the output ⊥. Suppose cacc ̸= ⊥. By the (ts, δn)-intrusion tolerance of HBA,
cacc = ci for some honest party Pi who has encoded its input mi into the
codeword (s1, s2, . . . , sn) and computed the accumulation ci for the indexed
set S = {(1, s1), (2, s2), . . . , (n, sn)}. The accumulator lemma implies that
honest parties can only output mi; this gives us consistency. To each party
Pj , Pi sends the message (personal, sj , wj). This makes every honest party
Pj able to verify sj and therefore multicast (global, sj , wj). Finally, as every
honest party Pj multicasts (global, sj , wj), all honest parties are able to
collect witnessed indexed symbols from n− ts parties and therefore terminate
with the output mi.

Now, suppose the network is synchronous. The synchronous rh-round ts-
termination of HBA implies that all honest parties terminate it by time rh∆.
Then, one of following happens:

• cacc = ⊥. In this case, all honest parties terminate by time rh∆.

• cacc ̸= ⊥. In this case, by time rh∆, some honest party Pi who has ci =
cacc sends each party Pj the message (personal, sj , wj). Then, by time
(rh + 1)∆, every honest party Pj receives the message (personal, sj , wj)
and therefore multicasts (global, sj , wj). Finally, by time (rh + 2)∆, all
honest parties are able to collect witnessed indexed symbols from n− ts
parties and therefore terminate with the output mi.

– validity: Suppose all honest parties have the same input m ∈ M. All honest
parties encode m into the symbols (s1, s2, . . . , sn), compute the accumulation
cacc for the indexed set S = {(1, s1), (2, s2), . . . , (n, sn)}, participate in HBA
with the input cacc, and keep on participating until termination. By the
termination and validity properties of HBA, all honest parties terminate HBA
with the output cacc. The accumulator lemma ensures that honest parties
can output nothing but m.

– (ts, δn)-intrusion tolerance: Suppose the honest parties don’t output ⊥.
Then they must have obtained a common output cacc ̸= ⊥ from HBA, which
by the (ts, δn)-intrusion tolerance of HBA must have been provided to it as
input by δn honest parties Pa1 , Pa2 , . . . , Paδn

. Let ma1 ,ma2 , . . . ,maδn
be the

respective inputs of these honest parties. By the accumulator lemma, for all
k ∈ {a1, a2, . . . aδn}, honest parties can output nothing but mk. Therefore, if
an honest party outputs some m ∈ M, then m = ma1

= ma2
= · · · = maδn

,
which makes it an input held by at least δn honest parties.

Complexity of HBAX: For the complexity analysis assume 2ts < n, which is
in any case required for synchronous consensus. Let MCHBA(κ) and CCHBA(κ)
respectively be the message and communication complexities of running HBA on
κ-bit messages, and let w be the size of accumulator witnesses. As n− ts = Θ(n),
the error correction symbols s1, s2, . . . , sn each have size O(ℓ

n + log n) = O(ℓ
n +

κ). Each party may send each party a personal symbol and a witness; this
respectively induces the message and communication complexity costs O(n2)

55

and O(n2(ℓ
n + κ + w)) = O(ℓn + n2(κ + w)). In addition, each party may

multicast a global symbol and a witness, again with the previous complexity
costs. Therefore, in total, we obtain the complexitiesMCHBAX = O(MCHBA(κ)+n2)
and CCHBAX = O(CCHBA(κ) + ℓn+ n2(w + κ)).

– If we assume trusted setup, then we can use the bilinear accumulator, and
therefore get w = O(κ). This gives us CCHBAX = O(CCHBA(κ) + ℓn+ n2κ).

– If we don’t assume trusted setup, then we can set ak = ⊥ and use the Merkle
tree. This gives us w = O(κ log n) and therefore CCHBAX = O(CCHBA(κ) +
ℓn+ n2κ log n).

E.2 Extended Agreement – Expander Variant (HBAX(δ))

For HBAX(δ), we assume for some δ = Θ(1) that 2ts + ta ≤ (1 − δ)n and
that the underlying consensus protocol has (ts, δn)-intrusion tolerance. This
allows us to impose an (n, δ, 1− δ

2)-expander Gδ on the parties and achieve the

complexity O(CCHBA(κ)+ℓn+n2κ) without trusted setup. In HBAX(δ) we eschew
symbol verification, and instead use error correction deal with adversary-provided
incorrect symbols. The parties hash their inputs, and then they agree on a
common hash h. If h = ⊥, then the final output is ⊥. Otherwise, honest parties
who have inputs which hash to h (at least δn parties) send their inputs to their
neighbors in Gδ. Consequently, all but less than

δn
2 honest parties acquire inputs

which hash to h. An honest party Pi who acquires an input m which hashes
to h computes (s1, s2, . . . , sn) = Encode⌈δn/2⌉(m) and multicasts si. For proper
reconstruction when the network is synchronous, a party only runs the decoding
procedure after local time (rh + 2)∆, where rh is the synchronous round count
of HBA. This way, if the network is synchronous, a party only reconstructs after
receiving the symbols of all but less than δn

2 honest parties. The correctness of
the protocol crucially relies on the assumption that if h ̸= ⊥, then the execution
does not contain some m ̸= m′ such that Hash(m) = h = Hash(m′).

Protocol HBAX(δ)

Input: Party Pi has an input mi ∈ M which it must know at the beginning
of the protocol if the network is synchronous.

Output: Party Pi outputs yi ∈ M⊥.

– Initialization: Pi starts participating in a common instance of HBA
and lets Ai = ∅. Once Pi knows its input mi, Pi computes hi =
Hash(mi) and sets hi as its input for HBA.

– Base Output: Upon terminating HBA with the output h,

• If h = ⊥, then Pi outputs ⊥ and terminates.

• Otherwise, if h = hi, then Pi sends the message (input,mi) to
its neighbors in Gδ.

56

– Symbol Casting: Upon terminating HBA with the output h ≠ ⊥
and receiving a message (input,m) such that Hash(m) = h from
a neighbor in Gδ for the first time, Pi computes (s1, s2, . . . , sn) =
Encode⌈δn/2⌉(m) and multicasts (symbol, si).

– Symbol Accepting: Upon receiving from a party Pj a message
(symbol, sj), Pi adds (j, sj) to Ai.

– Extended Termination: After running the protocol for (rh + 2)∆
time, if Pi has terminated HBA, run the “Base Output” rule and
observed that |Ai| ≥ n− ts − ⌊ δn

2 ⌋,

• Pi reconstructs an output m ∈ M using the the indexed symbols
in Ai as input for Decode⌈δn/2⌉.

• If Pi hasn’t done so already via the “Symbol Casting” rule,
Pi computes (s1, s2, . . . , sn) = Encode⌈δn/2⌉(m) and multicasts
(symbol, si).

• Pi terminates with the output m.

Theorem 7. Let ta ≤ ts and 2ts + ta ≤ (1 − δ)n, and suppose honest parties
must know their inputs at time 0 when the network is synchronous. Let HBA be
a consensus protocol with

– (ts, δn)-intrusion tolerance;

– synchronous ts-validity, synchronous ts-consistency and synchronous rh-round
ts-termination;

– ta-validity, ta-consistency and ta-termination.

Then, HBAX(δ) is a consensus protocol with

– (ts, δn)-intrusion tolerance;

– synchronous ts-validity, synchronous ts-consistency and synchronous (rh+2)-
round ts-termination;

– ta-validity, ta-consistency and ta-termination.

Proof. In the proof, we denote with h the common output of HBA.

– hash lemma: Suppose h = Hash(mi), where mi is the input of some honest
party Pi. Let (s1, s2, . . . , sn) = Encode⌈δn/2⌉(mi). If an honest party Pj mul-
ticasts (symbol, s′j) via the “Symbol Casting” rule, then s′j = sj . The reason
for this is that Pj multicasts (symbol, s′j) after seeing a message (input,m′)
such that h = Hash(m′) and computing (s′1, s

′
2, . . . , s

′
n) = Encode⌈δn/2⌉(m

′).
Assuming no hash collisions, the fact that Hash(m′) = h = Hash(m) implies
that m′ = m and therefore that s′j = sj .

– synchronous symbol lemma: Suppose the network is synchronous, and
suppose h ̸= ⊥. Then at time (rh + 2)∆, for every honest party Pi, the set

57

Ai contains indexed symbols from all but at most ⌊ δn
2 ⌋ honest parties. To

see why, begin by noting that all honest parties terminate HBA by time rh.
As h ̸= ⊥, by the (ts, δn)-intrusion tolerance of HBA, there exist at least δn
honest parties Pj such that h = hj . All these honest parties send their inputs
to their neighbors in Gδ, which ensures that by time (rh + 1)∆, all but at
most ⌊ δn

2 ⌋ honest parties receive input messages that hash to h and therefore
multicast indexed symbols via the “Symbol Casting” rule. Finally, by time
(rh + 2)∆, all of these multicast indexed symbols are delivered, and so every
honest party Pj is able to insert the indexed symbols of all but at most ⌊ δn

2 ⌋
honest parties to Aj .

– safety lemma: Let Pi be an honest party who has computed hi = Hash(mi),
and suppose h = hi. Let (s1, . . . , sn) = Encode⌈δn/2⌉(mi). The following
holds:

• Honest parties can output nothing but mi.

• If an honest party Pj multicasts (symbol, s′j), then s′j = sj .

For the former bullet point, as h ≠ ⊥, we already know that honest parties
don’t output ⊥ via the “Base Output” rule. For the latter bullet point, we
know by the hash lemma that if an honest party Pj multicasts (symbol, s′j)
via the “Symbol Casting” rule, then s′j = sj . And so, we see that honest
parties may only violate this lemma via the “Extended Termination” rule.
For the sake of contradiction, suppose some honest party Pj violates it for
the first time. Let us say that Aj contains an incorrect symbol from a party
Pk if there is some (k, s′k) ∈ Aj such that s′k ̸= sk, and let us say that Aj is
missing a symbol from a party Pk if there is no tuple (k, s′k) ∈ Aj . As Pj is
assumed to be the first lemma violator, Aj contains no incorrect symbols
from honest parties. And so, for the “Extended Termination” rule, we have
the following two scenarios:

• Suppose the network is asynchronous. Then, the adversary can corrupt at
most ta parties. Pj reconstructsmi with at most ts+⌊ δn

2 ⌋missing symbols,

and with at most ta incorrect symbols. As 2ta + ts + ⌊ δn
2 ⌋ ≤ n− ⌈ δn

2 ⌉,
the reconstruction of mi is correct.

• Suppose the network is synchronous. Then, the adversary can corrupt
at most ts parties. By the synchronous symbol lemma, at time (rh + 2),
Aj can lack at most ⌊ δn

2 ⌋ honest party symbols. Meanwhile, for up to
ts corrupt parties, Aj can be missing symbols, or even worse, contain
incorrect symbols. For reconstruction, the worst case is that all corrupt
party symbols are incorrect. In this case, there are at most ts incorrect
symbols, and at most ⌊ δn

2 ⌋ missing symbols. As 2ts + ⌊ δn
2 ⌋ ≤ n− ⌈ δn

2 ⌉,
the reconstruction of mi is correct.

We see that no matter the network type, Pj reconstructs mi correctly in the
“Extended Termination” rule. And so, no matter the network type, Pj can
only output mi, and Pj can only multicast (symbol, si). This contradicts
the assumption that Pj is a lemma violator.

58

– termination and consistency: All honest parties participate in HBA with
input, and keep on participating until termination. By the termination and
consistency properties of HBA, all honest parties terminate it with some
common output h, by time rh∆ if the network is synchronous. If h = ⊥, then
this directly causes all honest parties to terminate with the output ⊥. Now
suppose h ̸= ⊥. By the (ts, δn)-intrusion tolerance of HBA, there must exist
at least δn honest parties who have provided HBA the input h. Assuming
no hash collisions, this implies that all of these honest parties have some
common input m ∈ M such that h = Hash(m). The safety lemma implies
that honest parties can only output m; this gives us consistency. Now let
(s1, s2, . . . , sn) = Encode⌈δn/2⌉(m). We have the following:

• If the network is synchronous, then by the synchronous symbol lemma,
at time (rh + 2)∆, all honest parties possess indexed symbols from all
but at most ⌊ δn

2 ⌋ honest parties. This means that every honest party is
able to terminate at time (rh + 2)∆, having terminated HBA earlier and
possessing at least n− ts − ⌊ δn

2 ⌋ indexed symbols.

• Suppose the network is asynchronous. At least δn honest parties with the
input m send this input to their neighbors in Gδ, and this enables a set
H of all but at most ⌊ δn

2 ⌋ honest parties to receive m and multicast their
indexed symbols via the “Symbol Casting” rule, unless they multicast
earlier via the “Extended Termination” rule. As |H| ≥ n− ta − ⌊ δn

2 ⌋ ≥
n − ts − ⌊ δn

2 ⌋, every honest party is able to eventually receive at least

n− ts − ⌊ δn
2 ⌋ indexed symbols and therefore terminate.

– validity: Suppose all honest parties have the same input m ∈ M. All
honest parties participate in HBA with the input h = Hash(m), and keep on
participating until termination. By the termination and validity properties of
HBA, all honest parties terminate HBA with the output h. The safety lemma
ensures that honest parties can output nothing but m.

– (ts, δn)-intrusion tolerance: Suppose the common output is not ⊥. Then
the honest parties must have obtained a common output h ̸= ⊥ from HBA,
which by the (ts, δn)-intrusion tolerance of HBA must have been provided
to it as input by at least δn honest parties. Assuming no hash collisions, all
of these honest parties must have had some common input m ∈ M such
that h = Hash(m). By the safety lemma, we get that honest parties can only
output m, an input held by at least δn honest parties.

Complexity of HBAX(δ): Assume δ = Θ(1), which is not required for se-
curity but required for the communication complexity to be as follows. The
communication in HBAX(δ), above that of HBA, consists of the following:

– Via the “Base Output” rule, each party Pi may send the message (input,mi)
to O(1) neighbors in Gδ. As the messages are of size O(ℓ), the message and
communication complexity costs incurred are O(n) and O(ℓn), respectively.

– Via the “Symbol Casting” and the “Extended Termination” rules, each party
Pi may multicast the message (symbol, si). As ⌈ δn

2 ⌉ = Θ(n), this would

59

be a message of size O(ℓ
n + log n) = O(ℓ

n + κ). Therefore, the message and

communication complexity costs incurred are O(n2) and O(n2(ℓ
n + κ)) =

O(ℓn+ n2κ), respectively.

Overall, we get the message complexity MCHBAX(δ) = O(CCHBA(κ) + n2) and the
communication complexity CCHBAX(δ) = O(CCHBA(κ) + n2κ+ ℓn).

60

	Closing the Efficiency Gap between Synchronous and Network-Agnostic Consensus

