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Abstract

We describe and analyze a new digital signature scheme. The new
scheme is quite efficient, does not require the the signer to maintain any
state, and can be proven secure against adaptive chosen message attack
under a reasonable intractability assumption, the so-called Strong RSA
Assumption. Moreover, a hash function can be incorporated into the
scheme in such a way that it is also secure in the random oracle model
under the standard RSA Assumption.

1 Introduction

We describe new, efficient digital signature schemes whose security is based
on the Strong RSA Assumption.

By security, we mean security against an adaptive chosen message attack,
as defined in [9]. To prove that our new schemes are secure, we need to make
the Strong RSA Assumption (SRA), recently introduced by [2]. We also need
a collision-resistant hash function.!

Our new schemes are interesting in that they are state-free, unlike other
provably secure schemes [9, 7, 6]. Of course, we achieve this at the expense
using of a potentially stronger assumption than is made in [9, 7, 6].

1We could get by using a target collision-resistant hash function by adapting the ideas
from [4].



We stress that in discussing proofs of security, we are not making use of
the “random oracle” model of computation [3], but rather, we are working
in the “real world” of computation. Indeed, the standard “hash and invert”
RSA signature is provably secure in the random oracle model under the
standard RSA Assumption.

We also make the further observation that another hash function can be
incorporated into our new schemes in such a way that they are also secure
in the random oracle model under the standard RSA Assumption. In this
sense, our schemes can be made to be at least as secure as a standard RSA
signature.

The SRA is the assumption that the following problem is hard to solve.
Given a randomly chosen RSA modulus n and a random z € Z;, find r > 1
and y € Z;, such that y" = z. Note that this differs from the ordinary RSA
Assumption (RA), in that for RA, the exponent r is chosen independently
of z, whereas for SRA, r may be chosen in a way that depends on z. The
SRA is a potentially stronger assumption than the RA, but at the present
time, the only known method for breaking either RA or SRA is to solve the
integer factorization problem.

Independently, Gennaro, Halevi, and Rabin [8] have also recently discov-
ered efficient, state-free signature schemes based on the SRA. Our schemes
are actually quite different from theirs, and we think that all of these differ-
ent schemes are of interest from both a theoretical and practical perspective,
because they are the only truly practical and state-free schemes available
that admit a proof of security under a natural intractability assumption.
Moreover, our scheme is potentially more efficient for the following reason.
The paper [8] contains several signature schemes, but the only fully proved
scheme requires a “trapdoor” or “chameleon” collision-resistant hash func-
tion with the following very special property: its output is a prime num-
ber. Implementing such a hash function is both awkward and potentially
computationally expensive. Indeed, depending on the security parameters
and implementation details, evaluating this hash function can dominate the
running time of the signing algorithm. Our scheme sidesteps this problem
altogether. While the signing algorithm still has to generate a prime num-
ber, it has a great deal of flexibility in how this is done, yielding a much
more efficient algorithm. Basically, our signing algorithm just needs to gen-
erate any prime number of appropriate length (e.g., 161-bits) subject only
to the requirement that the probability of generating the same prime twice
is small.

Our new schemes can be seen as variations of the scheme of Cramer and
Damgard [6], which itself can be seen as an adaptation of the identification



scheme of Guillou and Quisquater [10]. In §2, we present and analyze our
basic scheme. In §3, we present and analyze a variation based on trapdoor
hashing. In §4, we sketch an algorithm for fast prime generation, as required
by the signing algorithm, and discuss how the intractability assumption can
be weakened by using hash functions.

2 The Basic Scheme

In this section we describe the basic scheme, and give a proof of its security.

The scheme is parameterized by two security parameters, k£ and [, where
[l + 1 < k. Reasonable choices might be k = 512 and [ = 160. The scheme
makes use of a collision-resistant hash function H whose output can be
interpreted as a positive integer less than 2!. A reasonable choice for H
might be SHA-1.

For a positive integer n, we let QR,, denote the subgroup of Z;, of squares
(i.e., the quadratic residues modulo n).

Key Generation Two random k-bit primes p and ¢ are chosen, where

p=2p +1and q = 2¢' + 1, with both p’ and ¢’ prime. Let n = pq.
Also chosen are:

e random A,z € QR,;

e a random (! + 1)-bit prime €.
The public key is

(n,h,z,e).
The private key is
(p,q)-

Signature Generation To sign a message m (an arbitrary bit string), a
random (I + 1) bit prime e # €’ is chosen, and a random y' € QR,, is
chosen. The equation

ye — ohH (z")

is solved for v, where 7’ satisfies the equation
(v')°

Note that y can be calculated using the factorization of n in the private
key. The signature is

= g/RH M)

(e,y,9")-



Signature Verification To verify a putative signature (e,y,y’) on a mes-
sage m, it is first checked that e is an odd (I + 1)-bit number different
from ¢'. Second, ' = (y')¢ h~H#(™) is computed. Third, it is checked
that z = yeh—H@@),

Implementation Notes

We remark that the signature verification algorithm does not need to verify
that e is prime.

To speed both verification and signing, the public key might contain h~!
instead of h.

In generating a signature, the only full-length exponentiation that needs
to be performed is in the computation of y. The cost of this can be signifi-
cantly reduced, as follows. First, we can arrange that £ = h® for a random
number a mod p'q’, where a is stored in the secret key. This is acceptable,
because h is with overwhelming probability a generator of QR,,, and thus
the distribution of the public key does not change significantly. Now, if d
is the inverse of e mod p'q’, then y = h®, where b = da + dH (') mod p'q’.
So the computation of y involves exponentiation with the fized base h to
the power b. Using pre-computation techniques [13], we can substantially
reduce the number of modular multiplications using a table of pre-computed
numbers.

Of course, in all of the above, one utilizes the Chinese Remainder The-
orem as well to speed the exponentiations.

We also note that the primes generated by the signer do not have to be
random primes. The only requirement is that the probability of generating
the same prime twice is negligible.

Using these implementation ideas, together with a fast prime generator
like the one described in §4, it would appear that the cost of signing is
almost the same as that of basic RSA. Verification, however, will still be
slower, involving basically two 160-bit exponentiations.

Proof of Security

Now we proceed to prove the security of the above scheme.

Theorem 1 The above signature scheme is secure against adaptive cho-
sen message attack, assuming the SRA and assuming that H is collision-
resistant.



To prove this theorem, let us consider a forging algorithm that makes ¢
signing queries and then produces a forgery. For 1 < ¢ < t, let m; be the
ith message signed, let (e;, s, y:) be the i signature, and let =, be defined as
T = (yz’-)e'h_H(mi). Let (e,y,vy’) be the forgery on message m (so m # m;
for all 1 <i < t). Also, let 2’ = (y/)¢ L H(m),

We distinguish between three types of forgeries:
Type I For some 1 <j <t, e=e;and 2’ = 7).
Type II For some 1 < j <t, e=¢; and 2’ # .
Type III For all 1 <i <t, e # e;.

Assuming that the probability of generating two equal e; values is neg-
ligible, a forgery has a unique type.

If there is a forger that succeeds with non-negligible probability, then
there exists either Type I forger, a Type II forger, or a Type III forger,
one of which succeeds with non-negligible probability. We show that any of
these forgers can be turned into an algorithm breaking the SRA. In fact, a
forger of Types I or II can be used to break the RA, and the proof of this
is quite similar to proofs in [6]. We only need the SRA in case the forger is
Type III.

Type I Forger

Suppose we have a Type I forger that succeeds with non-negligible proba-
bility. We want to show how to use this forger to break the RA. That is,
we are given n, a random z € Z7, and a random (I + 1)-bit prime r, and we
want to compute z1/7.

We describe a simulator that interacts with the forger. We choose ran-
dom (I + 1)-bit primes e1,...,e;, and we create a public key as follows. We
set

h=21Le
We next choose w € Z; at random and set

z =w?llie,

Finally, we set e/ = r.

Now, to sign message m;, the simulator chooses y; € QR,, at random,
and computes z; = (yg)e'h_H (mi)  Next, the simulator solves the equation
y§ = zhH () for i, which is can easily do, since it knows the e;th roots of
z and h.



It is easy to see that the simulator perfectly simulates the forger’s view.
Now suppose the forger creates a Type I forgery (e,y,y’) on a message
m. So for some 1 < j <1, e = ¢; and 2’ = z/. This yields two equations

(yl)e’ _ mth(m);
(y;)e — :L,IhH(m]‘).

Since we are assuming H is collision-resistant, we may assume that H(m) #
H(mj). Thus, dividing these two equations, we can calculate v € Z7 and
an integer ¢ Z0 (mod €') such that

’Uel — po = zQaHiei_

Moreover, since ged(2a[]; e;,€') = 1 and €' = r, we can easily compute an
rth root of z. This is done via a standard procedure, which we will need
to use several times, and we recall it for completeness. If we have v" = 2%,
where ged(r,b) = 1, then we compute &' such that bb' = 1 + rk. It follows

that (0¥ 27%)" = 2.

Type II Forger

As in the Type I case, we are given n, z € Z; and r, and we want to find
an rth root of z.

We may assume that the value j in the definition of a Type II forgery is
fixed. If not, we can guess it.

Again, we describe a simulator. We create a public key as follows. For
1 <4 <t, with ¢ # j, we choose e; to be a random (I + 1)-bit prime. We set
e; = r. We also select ¢’ to be a random (I + 1)-bit prime. We set

’ .
h = 2% Hi# ‘i,

We choose w € Zy at random, and set

2[Ligi &

yj=w

We choose u € Z;} at random, and set

We compute



Next, we describe how to sign message m,;. First, suppose i # j. We
choose y; € QR,, at random, and compute as z; = (yg)e'h_H (mi)  Then, since
we know the e;th roots of z and h, we can easily compute the corresponding
value y;.

Second, suppose i = j. Since we know the e'th roots of A and w;-, we
can compute the correct value y;-. The correct value of y; has already been
determined.

That completes the description of the simulator. It is easy to see that
the simulator perfectly simulates the forger’s view.

Now suppose the forger creates a Type II forgery (e,y,%’) on a message
m, where e = e; and 7’ # ;. Then we have

ye CEhH(wl);
y; = zhH).,

Then by an argument similar to that in the Type I case, we can divide
these two equations, and calculate an rth root of z.

Type III Forger

Given a Type III forger, we show how to break the SRA. That is, given n
and z € Zy, compute r > 1 and an rth root of z.
The simulator runs as follows. We choose random (I + 1)-bit primes
e.e1,...,e;. We set
h =72 Il

Now we choose a random a € {1,...,n?}, and set x = h°.

Now, by construction, QR,, is a cyclic group of order p'q’. We can assume
that h generates QR,,, since this happens with overwhelming probability.

Now let a = bp'q’ + ¢, where 0 < ¢ < p'q’. Because a was chosen at
random from a suitably large interval, the distribution of ¢ is statistically
indistinguishable the uniform distribution on {0, ..., p'q’—1}. Moreover, the
conditional distribution of b given c is statistically indistinguishable from the
uniform distribution on {0,...,[n%/p'q'|}. That is, c and b are essentially
independent.

Because the distribution of ¢ is essentially uniform, z is essentially dis-
tributed like a random element of QR,,. Since we know all the relevant roots
of z and h, we can easily sign all messages.



Now suppose the forger creates a Type III forgery, (e,y,y’'). Then we

have
ye — th(z’) — zm’

where
m =2¢[[ e - (a + H(z")).
7

Let d = ged(e,m). Now, using the same procedure as was used in the Type
I and Type II cases, we can compute an (e/ gcd(e, m))-th root of z, which is
nontrivial provided e/m. So it suffices to show that efm with non-negligible
probability. Let 7 be a prime dividing e. Now, rf2¢' []; e; by construction.
So it suffices to show that rf(a + H(z')) with non-negligible probability.
Let a = bp'q’ + ¢ as above. Now, r may depend on ¢, but we observed
above that ¢ and b are essentially independent. And since by construction
rfp'q’, it follows that r | (a + H(z')) with probability very close to 1/r, as
we are evaluating a linear polynomial in b at a random point. Thus, with
non-negligible probability, rf(a + H(z')).

3 Trapdoor Hash Scheme

Consider the basic signature scheme presented above, and consider a sig-
nature (e,7,7') on a message m. Let 2/ = (y/)¢ h~H#(™)_  Then we have
Y=z pHE')

One can view the value H(z') as a kind of “trapdoor hash,” also called
a “chameleon hash” (see [12] for detailed discussion, references, and further
applications). One can also base a trapdoor hash on the Discrete Logarithm
Assumption in a standard way, as follows. Let g1,92 be two random gen-
erators for a group G of order s, where s is an (I + 1)-bit prime. To hash
a message m, we compute the hash value a = H (g} gQH (m)), where H is an
ordinary, collision-resistant hash function, and ¢ is chosen at random mod s.
In addition to the hash value «, we also output the side information ¢. The
trapdoor in this scheme is the g; logarithm of go. A simulator that knows
the trapdoor can construct a hash value a without knowing m, and then
later, given m, can construct and the appropriate side information ¢.

We now describe a signature scheme based on this.

Key Generation Two random k-bit primes p and g are chosen, where
p=2p +1and ¢ = 2¢ + 1, with both p’ and ¢’ prime. Let n = pq.
Also chosen are:



e random h,z € QR,;

e a group G of order s, where s is an (I + 1)-bit prime, and two
random generators ¢gi,gs of G.

The public key is
(’I’L, haxaglagQ)a

along with an appropriate description of G (including s). The private
key is
(p, 9)-
Signature Generation To sign a message m (an arbitrary bit string), a

random (! + 1) bit prime e is chosen, and a random ¢ € Z; is chosen.
The equation

Y = ghtie ™)
is solved for y. The signature is
(e,,1).

Signature Verification To verify a putative signature (e, y,t) on a mes-
sage m, it is first checked that e is an odd (I 4 1)-bit number. Second,
it is checked that

_H(qt gH(m)
T = yeh, H(g19, )

Theorem 2 The above signature scheme is secure against adaptive chosen
message attack, assuming the SRA, assuming that H is collision-resistant,
and assuming the Discrete Logarithm Assumption for the group G.

The proof of this theorem is very similar to the proof of Theorem 1. We
leave the details to the reader.

In a variation on this scheme, we give the signing algorithm the trapdoor
to the hash. The advantage of doing this can be appreciated if one makes
a distinction between the “off line” and “on line” cost of signing. If the
signer has the trap door, then in fact the “on line” cost is essentially a
single multiplication mod s—all of the other work in creating the signature
can be done before the message m is actually received.



4 Remarks on Prime Generation

In our signature scheme, the signer must generate a random (I + 1) bit
prime with each signature. As we remarked already, these primes need
not be chosen from the uniform distribution (I + 1)-bit primes. The only
requirement is that the probability of generating two equal primes should
be negligible. Thus, we have quite a bit of flexibility in how we generate
these primes. This is perhaps important, because if one is not careful, the
cost of prime generation can easily be the dominant cost of signing. This is
especially so if one wants a completely rigorous algorithm with a sufficiently
small error probability.

For example, suppose one uses the Miller-Rabin test [16] to test for
primality. Suppose I = 160. Further, suppose we want an error rate of
279 which will allow us to make 232 signatures with an overall error rate of
2764 Now suppose we choose random 161-bit numbers until we have found
a number that passes a number of trial divisions and a single Miller-Rabin
test Along the way, we will make a small handful of Miller-Rabin tests that
reject some composite numbers that pass the trial division test. Then we
will need to perform about 47 additional Miller-Rabin tests to achieve the
desired error rate. Working with a 1024-bit RSA modulus, empirical tests
suggest that the cost of all these Miller-Rabin tests is much more than the
cost of all the other steps in the signing algorithm. Moreover, the best results
we know of [11] on the error rate of the Miller-Rabin test do not improve
this situation much.

A Fast Prime Generation Algorithm

Here we sketch a very efficient algorithm for generating primes as required
by the signing algorithm. Again, assume [ = 160. So we need to generate a
161-bit prime. To do this, we first generate a random prime P in the range
(252,253). Because P is small enough, the primality of P can be quickly
verified using one of a number of procedures described in Bleichenbacher’s
thesis [5, Chapter 3], which are correct for primes up to 10'¢ > 253, For
example, one of Bleichenbacher’s results, as reported in [14], states that the
Miller-Rabin test for the bases 2,3,5,7,11,13 and 23 is a correct primality
test for numbers in this range. Next, we repeatedly choose integers R in the
interval ((2'60 —1)/8P, (2!6! —1)/8P) until e = 8RP +1 is prime. Lemma 2
in [14] provides an extremely efficient probabilistic algorithm for generating
a certificate of primality for numbers of this form, requiring essentially just a
single exponentiation on average to certify a prime; our choice of parameters

10



ensures that 4P > €'/3, as required by that lemma.

Lemma 1 With this procedure, the expected number of trials until P is
prime is at most 64. Assuming the Generalized Riemann Hypothesis, the
following holds. For any fized P, the number of trials until S8RP + 1 is
prime s at most 128. The probability that two independent runs of this
procedure output the same prime is at most 27141,

To prove this we use some explicit estimates from [1]. First, by Theorem
8.8.1 in [1], we have the number of primes P in the given range is more than
246 The first claim in the lemma follows trivially.

For the second and third claims, we use Theorem 8.8.18 in [1], which gives
a very sharp estimate on the number of primes in an arithmetic progression,
assuming the Generalized Riemann Hypothesis. Using a simple calculation,
this theorem implies that for any fixed P, there are at least 2% primes of
the form 8RP + 1 in the range (2'6°,216!). The second claim in the lemma
is now follows easily.

Now for the third claim. Let e; = 8P;R; + 1 for ¢ = 1,2 be two primes
generated by independent executions of the algorithm. We have

Prle; = eg] < Prle; = ea|P1 = Po| Pr[P = Py + Prle; = eo|P1 # P2] (1)

By the previous observations, the first term in (1) is bounded by 27% .
2746 = 2714 Now fix P, # P,. The second term in (1) is bounded by
the probability that the following two events occur: P, | Ry and R; =
(R2/P1)P,. By a simple calculation, the first event occurs with probability
at most 27%* and the second with probability at most 27?8, As these events
are independent, we get a bound of 27142 for the second term in (1). This
implies the lemma.

We do not claim that this is the best way to generate 161-bit primes,
or even particularly original, but it seems like a reasonable one, and it is
certainly much more efficient than the cost of iterating the Miller-Rabin test.
In [15] a similar approach to generating certified primes is presented, but
their analysis is insufficient for our purposes, as it is only asymptotic—we
need explicit bounds, and thus have to appeal to the Generalized Riemann
Hypothesis. Moreover, their approach would anyway give a higher collision
probability.

Since the technique suggested here provides a certificate of primality
that is small and easily verified, one could augment the signature scheme
by adding this certificate to the signature and having the verifier check it.

11



This can only improve security, allowing us to weaken the SRA so that the
adversary’s exponent has to be a certified prime of the proper form, and not
just an arbitrary integer.

Using a Hash Function

We can weaken the intractability assumption even further. Suppose that
in the above algorithm for generating a prime, we require that the random
numbers P and R are outputs of a cryptographic hash function. The signing
algorithm can feed random bits into such a hash function, and if the hash
function is nearly uniform, the same properties that are proved above will
still hold.

The hash function inputs that yield P and R (respectively) are included
as part of the signature, and the verifier checks that these values are correct.
By doing this, we greatly constrain the adversary’s attack strategy, allow-
ing us to weaken the SRA so that the adversary’s exponent is a certified
prime of this very special form. This intuitively seems like a much harder
problem, and indeed, this intuition is somewhat justified by the fact that
is is straightforward to prove in the random oracle model that the resulting
signature scheme is secure under a standard RSA assumption.
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