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Abstract

We introduce smooth entropy as a measure for the number of almost uniform random bits
that can be extracted from a source by probabilistic algorithms. The extraction process
should be universal in the sense that it does not require the distribution of the source
to be known. Rather, it should work for all sources with a certain structural property,
such as a bound on the maximal probability of any value. The concept of smooth entropy
unifies previous work on privacy amplification and entropy smoothing in pseudorandom
generation. It enables us to systematically investigate the spoiling knowledge proof technique
to obtain lower bounds on smooth entropy and to show new connections to Rényi entropy
of order a > 1.

1 Introduction

We consider entropy smoothing, the conversion of an arbitrary random source to a uniform
distribution. Entropy smoothing differs from traditional random number generation in that
we focus on the smoothing process of a specific source and that other random sources can be
involved in the smoothing process. Moreover, we allow for an arbitrarily small deviation of the
output bits from perfectly uniform random bits that may include a small correlation with the
random sources used for smoothing.

The distinction between random sources is motivated by many applications of this paradigm
in theoretical computer science and in cryptography. The very fact that different parties in-
volved in some scenario have different knowledge introduces this paradigm and separates it from
traditional random number generation. In many of these applications the smoothing algorithm
should not depend on the distribution of the source and must work for all sources with a certain
structural property.

Entropy smoothing is also known as privacy amplification and has been used in such di-
verse areas as unconditionally secure cryptographic protocols [12], quantum cryptography [1],
pseudorandom generation [6, 10], derandomization of algorithms [11], computational learning
theory [8, 9], computing with degenerate, weak random sources [15], and numerous other areas
of complexity theory dealing with probabilistic computations [13]. Some of these applications
will be mentioned in Section 3 after the formalization of smooth entropy.



2 A General Formulation

Consider a random variable X with alphabet X and distribution Px. We want to apply a
smoothing function f : X — Y to X such that Y = f(X) is uniformly distributed over its range
Y. The size of the largest ) such that Y is still sufficiently uniform is a measure for the amount
of smooth entropy inherent in X, relative to the allowed deviation from perfect uniformity. To
quantify this deviation we can use any nonuniformity measure M which is 0 whenever Px is
equal to the uniform distribution Py. Examples are relative entropy D(Px||Py) or L; distance
1Px = Pylli = Xpex [Px(2) — Pu(z)]

The smoothing algorithm should be able to produce arbitrarily uniform outputs from a
fixed input by decreasing output size. A security parameter s controls the trade-off between
the uniformity of the output and the amount of entropy lost in the smoothing process.

We model randomized smoothing algorithms by extending the input of f with an additional
random variable T. T must be independent of X and its value must be included into the
calculation of the output uniformity. However, the size of T is explicitly ignored.

It can be tolerated that the uniformity bound fails with a small probability e that can depend
on the choice of T’ or X or both. In many applications it is only known that the random variable
X has some property that is shared by many others. Therefore smooth entropy is defined over
a family of random variables X with the same alphabet. Smoothing is required to work for all
probability distributions in the family.

Definition 1. Let M be a nonuniformity measure on random variables and let A(s) be a
decreasing non-negative function on the reals. A family X of random variables with alphabet
X has smooth entropy U (X) within A(s) [in terms of M] with probability 1 — € if U(X) is the
maximum of all ¥ such that for any security parameter s > 0, a random variable T and a
function f : X x T — Y exist with |)| = |2¥~*] such that for all X € X with probability at
least 1 — e (over X)) the expected value over T of the nonuniformity M of Y = f(X,T) given T
is at most A(s). Formally,

U(X) = mgx{zp‘vs >0: 3T, f: XxT =Y, |Y =2 :
VX €X : Y = f(X,T),P[M(Y|T) < A(s)] > 1—6}.

The failure probability € can be integrated into the uniformity parameter A(s) for certain
nonuniformity measures such as L; distance or variational distance. The distinction between
nonuniformity measures is not central for the work presented here and we mainly use relative
entropy distance.

3 Related Concepts

Privacy amplification and entropy smoothing have been introduced independently by Bennett,
Brassard, and Robert [3] and by Impagliazzo, Levin, and Luby [7]. Both techniques build on
the fact that uniform entropy can be extracted using universal hash functions [5].

3.1 Privacy Amplification

Privacy amplification is a key component of many unconditionally-secure cryptographic proto-
cols [2]. Assume Alice and Bob share a random variable W while an eavesdropper Eve knows
a correlated random variable V' that summarizes her knowledge about W. The details of the
distribution Py are unknown to Alice and Bob except that they assume a lower bound on the



Rényi entropy of order two of Pyy|y—, for the particular value v of Eve’s knowledge V' about
w.

Using a public channel, which is susceptible to eavesdropping but immune to tampering,
Alice and Bob wish to agree on a function g such that Eve knows nearly nothing about g(W).
Let X denote the random variable corresponding to the conditional probability distribution
Py |y—y- The following theorem by Bennett, Brassard, Crépeau, and Maurer [2] shows that if
Alice and Bob choose g randomly from a universal hash function G : W — Y for suitable ),
Eve’s information about Y = g(W) is negligible.

Theorem 1 ([2]). Let X be a random variable over the alphabet X with probability distribution
Px and Rényi entropy Ho(X), let G be the random variable corresponding to the random choice

(with uniform distribution) of a member of a 2-universal hash function G : X — ), and let
Y = G(X). Then HYY|G) > log|Y| — 28 YI-H2(X) /In 2,

This implies that Hy(X) is a lower bound for smooth entropy. Note that the same smoothing
algorithm can be applied to any X from a family X of random variables and produce an output
of the desired size and uniformity.

Corollary 2. The smooth entropy of a family X of random variables within 27°/1n2 in terms
of relative entropy with probability 1 is at least the minimum Rényi entropy of order 2 of any
X eX

3.2 Pseudorandom Generation

Hastad, Impagliazzo, Levin, and Luby [6] show how to construct a pseudorandom generator from
any one-way function f. Their construction uses one iteration of f that generates somewhat
pseudorandom, but not uniformly distributed bits. These bits are then converted into almost
uniform random bits using a universal hash function. The following theorem guarantees that
the output is almost uniform.

Theorem 3 ([7]). Let m be a positive integer and let X be a random wvariable with alphabet
{0,1}"™ such that Ho(X) > m. Let e > 0 be a positive integer parameter, let G be the random
variable corresponding to the random choice (with uniform distribution) of a member of a uni-
versal hash function G : {0,1}" — {0,1}™ 2¢, let Y = G(X), and let U be uniformly distributed
over {0, 1}m_2e. Then ||PYG - PUG“I < 276,

Corollary 4. The smooth entropy of a family X of random variables within 275/2 in terms of

L1 distance with probability 1 is at least the minimum Rényi entropy of order 2 of any X € X.

3.3 Entropy

The smooth entropy ¥(X) denotes the number of almost uniform random bits in X. Where lies
the difference between entropy H(X) and ¥U(X)? The important distinction is that entropy de-
notes the average length of the optimal code (which is a variable-length code in general) whereas
smooth entropy corresponds to a uniform output of fixed length that must be extractable from
a single realization of X. In general, entropy is an upper bound for smooth entropy and a lower
bound for average smooth entropy. Both results are stated formally in the full version.

3.4 Intrinsic Randomness

The intrinsic randomness of a source was introduced by Vembu and Verdud [14]. It differs
from smooth entropy only in the restriction to deterministic extraction functions. The goal of
extracting random bits with a small deviation from the uniform distribution is the same. They



show that intrinsic randomness is equal to the min-entropy Hy(X) = —logmaxgecy Px(x)
in the finite case. Allowing probabilistic extraction functions is thus an advantage, because
U(X) > Hy(X) and Hy(X) > Hy(X) in general.

4 Spoiling Knowledge

Corollary 2 shows that Rényi entropy of order two is a lower bound for smooth entropy. A
counter-intuitive property of expected conditional Rényi entropy of order « > 1 is that it can
increase when conditioned on a random variable that provides side information. Suppose side
information that increases the Rényi entropy is made available by a conceptual oracle. This
increase can be exploited to prove lower bounds on smooth entropy that are much better than
Rényi entropy of order two. Side information of this kind is called spoiling knowledge because
it leads to less information about the output of the smoothing process [2].

To characterize optimal spoiling knowledge, we distinguish between two kinds of side infor-
mation that implies bounds that hold with probability 1 or with probability very close to 1,
respectively.

4.1 Spoiling Knowledge for Bounds with Probability One

Spoiling knowledge is modeled by a virtual random variable U provided by the oracle. It
increases the Rényi entropy of X such that Ho(X|U = u) exceeds Hy(X) for some u with
a certain probability. The discussion in [2] suggests that the maximization of the expected
conditional Rényi entropy corresponds to the maximization of the lower bound. However, this
is not the case.

Theorem 5. The smooth entropy ¥(X) within 275/ In2 with probability 1 of a random variable
X is lower bounded by the following expression involving a minimization over an arbitrary
random variable U such that the joint distribution Pxy is consistent with Px:

—log n}%n( Z Py (u) - min{ %, ;PXU:U(,I')Q }) (1)

ucU

Let d = In|Y|/|Y| be a constant determined by the size of the output alphabet ) that
satisfies d < In|X|/|X|. An auxiliary random variable U € U can only sharpen the lower
bound on smooth entropy if for all u € U except for one, Ho(X|U = u) < 274 W.lo.g. we
assume Y = {0,...,m} and Hy(X|U =0) > ... > Hy(X|U =m).

Theorem 6. Let d < lr‘l/‘éf‘. Side information U can increase the lower bound on smooth
entropy U(X) with probability 1 only if Ho(X|U = 0) > 27 and Ho(X|U = j) < 27¢ for
j=1...,m.

The distribution of optimal spoiling knowledge can be found by solving a numerical opti-
mization problem in |X| variables.

Corollary 7. The optimal auziliary random variable U that gives a lower bound on the smooth
entropy U (X) with probability 1 in the sense of Theorem &5 can be found by solving the following
optimization problem in the |X| variables vy, x € X':

=z 2 - 1d Px(x subject to 0 < <1 forallz e X.
Srebs(e) I ePH() et to 09 <

minimize



The first term in the minimization is ), Py |y=o(z)? to which large probabilities contribute
an undesirably large amount. We can show that the best strategies for smooth entropy-
increasing side information assign smaller v to larger probabilities of X.

Theorem 8. The optimal auxiliary random variable U that gives a lower bound on the smooth
entropy U(X) with probability 1 satisfies vz, < Yoy, < Px(x1) > Px(x2) for all z1,29 € X.

4.2 Spoiling Knowledge for Probabilistic Bounds

The side information described above was confined not to change the probability with which
the resulting bound holds. If we relax this constraint and allow failure with probability €, a
broader range of side information is applicable.

Theorem 9. The smooth entropy U (X) within 27°/1n2 with probability 1 — € of a random
variable X is lower bounded by the mazimum of the conditional Rényi entropy Ho(X|U € &)
where £ C U 1is an event induced by side information U € U and the mazimization ranges over
all U such that the joint distribution Pxy is consistent with Px and satisfies P[U € £] > 1 —e.

We can show that optimal spoiling knowledge in the sense of Theorem 9 is provided by a
binary random variable that “cuts off” the values of the probability distribution Px above some
level o such that the total probability mass above o is €. Let pmin = ming Px ().

Theorem 10. Given a random variable X and e > 0, the optimal side information that induces
an event £ such that P[] is at least 1 — € and Ho(X|E) is mazimal is given by the binary
random variable U € {0,1} with £ corresponding to U = 0. The joint distribution of U and X
is Pxy(z,0) = Px(z) — €; and Pxy(z,1) = €, for all x € X, where the €, are as follows:

When € < 1 — |X|pmin, the €, are nonnegative numbers such that ) e; = € and Px(x) —
€z = 0 for all  with €, > 0 for some constant o determined by € and Px. Otherwise, when
€ > 1 — |X|pmin, €z = Px(Z) — pmin for x € X and the uniform distribution over X is induced
by U =0: Hy(X|U = 0) =log | X|.

These characterizations of spoiling knowledge do not translate directly into simple bounds
on smooth entropy. However, bounds using non-optimal side information show that smooth
entropy is lower bounded by Rényi entropy of order a for any a > 1 up to an asymptotically
vanishing term [4] .
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