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Anonymity of the participants is an important requirement for some applications in
electronic commerce, in particular for payment systems. Because anonymity could
be in conflict with law enforcement, for instance in cases of blackmailing or money
laundering, it has been proposed to design systems in which a trustee or a set
of trustees can selectively revoke the anonymity of the participants involved in a
suspicious transaction. From an operational point of view, it can be an important
requirement that such trustees are neither involved in payment transactions nor in
the opening of an account, but only in case of a justified suspicion. In this paper we
present an efficient anonymous digital payment systems satisfying this requirement.
The described basic protocol for anonymity revocation can be used in on-line or
off-line payment systems.

Keywords: Digital payment systems, electronic money, cryptography, privacy, ano-
nymity revocation.

1 Introduction

In most presently-used payment systems the protection of the user’s pri-
vacy relies exclusively on administrative and legal measures. Using crypto-
graphic tools, in particular blind signature schemes [6], it is possible to design
electronic payment systems that allow the customers to remain anonymous
(e.g. [1, 5, 7, 10]), without affecting the other security requirements such as the
unforgeability of money. However, while protecting the honest customers’ pri-
vacy, the anonymity also opens the door for misuse by criminals, for instance
for perfect blackmailing [22] or for money laundering.
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in Computer Science, pages 33—43. Springer Verlag, 1996.



Therefore, in order to make anonymous payment systems acceptable to
governments and banks, they must provide mechanisms for revoking a par-
ticipant’s anonymity under certain well-defined conditions. Such anonymity
revocation must be possible only for an authorized trusted third party or a
set of such parties. In this paper we refer to trusted third parties as trustees.
In a concrete scenario a trustee could be a judge or a law enforcement agency.

The concept of anonymity-revocable payment systems, sometimes called
fair payment systems, was introduced independently in [2] and [21]. This
concept, should not be confused with the kind of anonymity revocation de-
scribed in [8], where it is considered that parties involved in a transaction can
later reveal their identities if they wish to do so. The customer’s privacy can
be compromised neither by the bank nor by the payee, even if they collab-
orate, but the trustee or a specified set of trustees can (in cooperation with
the bank) revoke a customer’s anonymity. It is understood that the trustee(s)
will satisfy a revocation request only if there exists sufficient evidence that a
transaction is not lawful.

The first proposed anonymity-revocable systems are either inefficient be-
cause they are based on the cut-and-choose paradigm [2, 21], or they require
the participation of the trustee in the opening of accounts or even in the with-
drawal transactions [3, 4, 16, 21]. From an operational point of view, it is an
important requirement that a trustee can be passive, i.e., that he need not be
involved in regular transactions nor when a customer opens a new account.
The goal of this paper is to present an efficient and secure anonymous digital
payment systems satisfying this requirement.

Independently of this work, Frankel, Tsiounis and Yung proposed a differ-
ent solution to this problem in [14]. A comparison with their scheme is given
in Section 8.

The outline of the paper is as follows. In Sections 2 we give a brief overview
of digital payment systems. Different types of anonymity revocation are in-
troduced and discussed in Section 3. Section 4 summarizes the basic crypto-
graphic primitives underlying the payment schemes. The basic on-line scheme
is presented in Section 5 and extensions to off-line schemes and to multiple
trustees are discussed in Section 6 and 7, respectively. Section 8 compares
our schemes with other systems having passive trustees.

2 Digital payment systems

An electronic payment system consists of a set of protocols involving three
interacting parties: a bank, a customer (the payer), and a shop (the payee).
The customer and the shop have accounts with the bank. The goal of the
system is to transfer money in a secure way from the customer’s account to the
shop’s account. It is possible to identify three different phases: a withdrawal



phase involving the bank and the customer, a payment phase involving the
customer and the shop, and a deposit phase involving the shop and the bank.
In an off-line system, each phase occurs in a separate transaction, whereas
in an on-line system, payment and deposit take place in a single transaction
involving all three parties.

The bank, the shop and the customer have different security requirements.
The bank must ensure that money can be deposited only if it has previously
been withdrawn. In particular, double-spending of digital money must be
impossible. The shop, upon receiving a payment in an off-line system, must
be assured that the bank will accept the payment. Finally, the customer must
be assured that the withdrawn money will later be accepted for a payment
and that the bank is not able to claim that the money has already been
spent (called a framing attack), i.e., falsely accuse him of double-spending.
Furthermore, the customer may require that his privacy be protected. We
refer to [5] for a detailed discussion of security requirements for payment
systems.

Anonymous electronic payment systems (e.g. [1, 5, 7, 10]) are based on a
cryptographic mechanism called a blind signature scheme [6]. Such a signature
scheme allows a signer (the bank) to sign a message (a coin) without seeing its
content. Furthermore, while anyone, including a shop or the bank, is able to
verify such a signature, even the bank is not able to link a particular signature
with a particular instance of signing a message. In order to implement an
anonymous payment system based on a blind signature scheme, any message
signed (blindly) by the bank with the secret key corresponding to a particular
public key is agreed to have a certain value (e.g. $10). Different denominations
can be realized by using a different public key for every denomination.

An obvious problem with digital money is that it can in principle be spent
more than once. In an on-line system, double-spending can be prevented by
the bank by checking the record of previous deposits. This requires that all
deposit transactions (at least within the validity period of coins) are stored
by the bank. In an off-line system, double-spending cannot be prevented, but
it is possible to design systems that allow to revoke a customer’s anonymity
when the money is spent more than once. This can be achieved by assuring
that the customer’s identity is properly encoded in the signed message and
by having the customer answer to a challenge during the payment such that
the identity can be computed from the answers to two different challenges.
Alternatively, the anonymity revocation mechanism shown in this paper could
be used, but this is not the main purpose of presenting the mechanism.



3 Anonymity revocation by a trustee

Anonymity revocation by a trustee means that, when the need arises, the
trustee can link a withdrawal transaction with the corresponding deposit
transaction. There are two types of anonymity revocation, depending on
which kind of information is available to the trustee:

o Withdrawal-based anonymity revocation: Based on the bank’s view of a
withdrawal transaction, the trustee can compute a piece of information
that can be used (by the bank or a payee) to recognize the money when
it is spent later. This type of anonymity revocation can for instance be
used in case of blackmailing. When the owner of an account is forced
to withdraw money and to transfer it to an anonymous criminal, the
account owner could secretly inform the bank and the trustee could be
asked to compute a value that can be put on a blacklist so that the
money can be recognized when it is spent. This corresponds to putting
the serial-number of a conventional bank-note on a blacklist.

e Payment-based anonymity revocation: Based on the bank’s view of a
deposit transaction, the trustee computes a parameter that can be linked
by the bank with the corresponding withdrawal. This may for instance
be needed when the suspicion of money laundering arises.

One of the security requirements of such a payment system is that the trustee
must be capable only of anonymity revocation but that he cannot play a
different role in the system. Thus, if the trustee’s secret key was compromised,
only the anonymity of customers would fall, but the system would remain
secure from the bank’s point of view. In particular, the trustee must be
unable to forge money.

It is possible to distinguish three different approaches to achieving the
above goals, according to the type of the trustee’s involvement.

1. The trustee is involved in every withdrawal. In such systems [3, 16] the
trustee plays the role of an intermediary during the withdrawal protocol
and performs the blinding operation on behalf of the customer. The
trustee can then trivially revoke the anonymity if needed.

2. The trustee is involved in the opening of accounts, but not in trans-
actions (e.g. [4]). Such systems are potentially more efficient because
normally an account is used for many transactions.

3. The trustee is not involed in any of the protocols of the payment sys-
tem but is needed only for anonymity-revocation. In such systems the
customer proves to the bank that the coin and the exchanged messages



contain information, encrypted under the trustee’s public key, that al-
lows to revoke the anonymity. This can in principle be achieved by
application of the well-known cut-and-choose paradigm, as described
independently in [2] and [21]. However, such a system is quite ineffi-
cient as explained in Section 8.

The goal of this paper is to present an efficient anonymity-revocable pay-
ment system that allows both types of anonymity revocation and in which, in
contrast to the previously proposed efficient systems, the trustee is completely
passive unless he is requested to revoke a person’s anonymity. In particular,
after initially publishing a public key, the trustee need neither be involved
in the opening of an account nor in any withdrawal, payment, or deposit
transaction.

4 Proofs and signatures based on discrete logarithms

Before defining some cryptographic primitives we explain our notation and
introduce the algebraic preliminaries. The symbol || denotes the concatenation
of two (binary) strings, the letter € stands for the empty string, and by a €g
Z, we mean that o is chosen uniformly at random from Z,. We assume the
availability of a collision resistant hash function H : {0,1}* — {0,1} (e.g.
£ =128).

Let G be a finite cyclic group of order q and let g € G be a generator of G,
such that computing discrete logarithms to the base g is infeasible. Like for
most other cryptographic schemes based on the discrete logarithm problem,
a public key in our context is constructed by computing y = ¢g® for a secret
key x chosen at random from Z,.

We next explain our notation for illustrating protocols (see Figure 1 for
an example). The players’ names are indicated in boxes on the top line and
their lists of inputs are shown in brackets on the next line. The computations
performed by the players and the steps of the protocol are shown between
the two horizontal lines. Their lists of outputs in an honest execution of the
protocol are shown in brackets on the bottom line. Dishonest players are not
restricted to storing only their specified output. A player’s view consists of
the entire list of parameters seen during the execution of the protocol. For
the analysis of protocols, in particular of the anonymity of a certain player,
it is important to consider the entire view of other player(s). Whenever the
protocol specifies that a player must verify a condition, it is assumed that if
the verification fails, the protocol is stopped and all parties are informed.

We will make use of extensions of the Schnorr signature scheme [18]. A
Schnorr signature for a message m is a pair (c,s) with ¢ € {0,1}¢ and s € Z,
satisfying the verification equation

c=H(m|lg°y°).
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Figure 1: A protocol for obtaining a blind Schnorr signature.

Such a signature can be generated only if one knows the secret key z, by
choosing r at random from Z, and computing ¢ and s according to

¢ =H(mllg")
and
s=r—cx (modgq).

Basically, a Schnorr signature with respect to a public-key (g,y) is a proof
(depending on the message m to be signed) that the signer knows the discrete
logarithm of the public key y to the base g.

We now give definitions for two cryptographic primitives for proving knowl-
edge and equality of discrete logarithms, respectively. A (message-dependent)
proof of knowledge of the discrete logarithm of a group element h to the base
g, denoted PKLOG(m, g, h) consists of a Schnorr signature with respect to a
public-key (g, h) for the message m||g||h, i-e.,

PKLOG(m,g,h) = (c,s)
with
¢ = H(mllg|[hllg°h°).

A (message-dependent) proof of equality of the discrete logarithm of h; to the
base g1 and the discrete logarithm of hs to the base g2, denoted PLOGEQ(m, g1,



hi, g2, hs), is a pair (c, s) satisfying the following condition:
PLOGEQ(m, g1, h1,92,hs) = (¢, 8)
with
¢ = H(mllgillgzlP1l|h2llgT htllg3h3)-

Such a proof can be computed if and only if one knows the discrete logarithms
log,, b1 and log,, h2 and if they are both equal to the same value z. To
generate a proof one first chooses r at random from Z, and computes ¢ and
s according to ¢ = H(m||g1]|gz||h1]|h2ll97]|g5) and s = r — cz (mod g). Note
that the message m can be the empty string.

The protocol shown in Figure 1 is a protocol for blindly issuing Schnorr-
signatures. It was first proposed in a slightly different version in [17]. The
protocol allows a player B to sign a message m chosen by player A without
seeing m or receiving any information about m, and without knowing what
player A’s resulting Schnorr signature (¢, s) will be. If both players follow the
protocol then the pair (¢, s) is a valid Schnorr signature for m:

gsyc — g§+'yy5+6 — g'F—Eac-{—'y-{—Ezy& — i,“g'yyé —¢

and therefore the verification condition ¢ = H(m||g°y°) holds. To prove that
the protocol is blind, i.e., that the signer’s view is statistically independent of
the message and the signature (c, s), one has to show that for every possible
view and every possible signature there exists exactly one pair (v, d) of blind-
ing factors which would result in that particular signature and view. Given
any view consisting of 7, , & and 5 and any signature (c, s) of a message m,
let

¥ = s—35 (modyg),
0 = ¢—¢ (modg), and
= tg7y°.

It remains to show that t* =t = g°y° is satisfied:

F+y+dz F+s—5+(c—¢)z — o5tcz F—§—cCx

t*=1tg"y’ =g =g g°teg =gy =t
The last two equalities hold because § = 7 — éx (mod ¢) and because (c, s) is

a valid signature.

5 An efficient anonymous payment system with a passive anonym-
ity-revoking trustee

In this section we describe the on-line payment scheme with a single denom-
ination of coins. An extension to multiple denominations is straightforward.
Extensions to off-line payment schemes are discussed in Section 6.



Let us explain the underlying ideas of our scheme. The main components
of a coin are (1) a pair (hy, zp) satisfying 2z, = hj, where x is the bank’s secret
key, (2) a proof (denoted W) of this fact, and (3) a further proof (denoted
V') needed to guarantee that anonymity revocation is possible. The proof W
is given by the bank and the proof V can be computed by the customer on
his own. To achieve anonymity, the proof W must be issued blindly: During
withdrawal the customer sends the bank a blinded pair (A, 2.), the bank
computes a proof corresponding to W based on this pair, and the customer
transforms this proof into the proof W. This is achieved by a subprotocol of
the withdrawal and is explained in Section 5.2. The anonymity of a coin can
be revoked by the trustee if he can link pairs (hp,2,) and (huw, zw). This is
guaranteed by a mechanism explained in Section 5.5.

5.1  System setup

To set up the payment system the bank chooses a finite group G of prime
order ¢ such that computing discrete logarithms in G is infeasible. Such
a group is cyclic and thus every element (except the neutral element) is a
generator. Today, the choice ¢ ~ 270 appears to be secure unless the group
has a special structure. Three elements g, g1 and g» are chosen by a publicly
verifiable pseudo-random mechanism to assure that the discrete logarithms
of none of these elements with respect to one another is known. Finally, the
bank chooses at random a secret key z € Z, and computes the public key
y = ¢g*. The bank publishes G, g, g1, g2, and y.

The trustee randomly chooses his secret key 7 € ZZ and computes and
publishes the corresponding public key yr = g3.

5.2 A subprotocol: a modified blind Schnorr signature scheme

As mentioned before, the pair (h,, 2,) is obtained blindly by the customer in
a subprotocol, referred to as protocol P (see Figure 2), during which the bank
sees only the pair (hy,2,). This protocol is an extension of the blind issuing
protocol for Schnorr signatures due to Brands [1]. It is discussed here as an
independent protocol (with its own players, input and output parameters)
because it is of independent interest and because it will be reused later.

Protocol P takes place between two players A and B, substituted in the
withdrawal protocol by the customer and the bank, respectively. A’s input
consists of the pair (g,y), where y = ¢g” is B’s public key, a secret message m,
a group element h,, also known to B, and a blinding exponent . A’s output
consists of the pair (hy, z,) and the proof

W = (¢,s) = PLOGEQ(m, g,y, hp, 2p)
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Figure 2: The protocol P.

which serves two purposes. On one hand, it is a blind Schnorr signature for
the message m, and this blinding is achieved by the blinding exponents y and
d. On the other hand, W also proves that the pair (hy, 2,) satisfies z, = hy.
From B’s point of view, the proof is given for the pair (hy, 2,)- The exponent
a for blinding h,, is chosen by player A before engaging in protocol P.

The proof that B’s view of protocol P is unlinkable to (i.e., statistically
independent of) A’s output (m, hp, 2p, ¢, s) is similar to the proof of blindness
for the blind Schnorr signature protocol (see Section 4).

5.3  The withdrawal protocol

The actual withdrawal protocol, which uses protocol P as a subprotocol,
is shown in Figure 3. It is based on a fair blind signature scheme due to
Stadler [20]. The customer chooses a random exponent «, which plays two
different roles in the protocol. On one hand, a serves as the blinding exponent
(within protocol P) to transform the pair (hy,, 2, ) into the pair (h,,2,). On

the other hand, « is used in the first place to compute h, := g‘f_l g2 and



d := y7, together with a proof, denoted as U, that the two values of a used
in computing h,, and d are the same. The value d can be interpreted as a
Diffie-Hellman-type encryption of h, for the trustee and is stored by the bank
for possible later anonymity revocation.

For the computation of U we use the fact that by exchanging base and
input element of a discrete logarithm computation, the resulting discrete log-
arithm is inverted modulo the group order:

log, h = (log, g) ! (mod q).
The coin consists of the coin number c#, the values hp, z,, W, and a proof
V = PKLOG(G, go, hp/gl)

that the customer computes before spending the coin. The pair V is a proof
that h, equals g1g5 for some o known to the customer. This prevents the
potential attack that in protocol P, seen as an independent protocol, player A
could successfully choose h, = h%g° and 2, = 22yP for some 8 # 0. Such an
attack would allow a cheating customer to avoid later anonymity revocation.
However, the customer can generate the proof V' only if he chooses 8 = 0 and
hence the described attack is not successful.

5.4  The on-line payment protocol

A coin can be spent by sending it to a shop. The shop verifies the coin and, if
it is valid, passes the coin on to the bank. The bank checks the database of all
previously spent coins. (By including an expiration date in the coin one can
limit the size of this database.) If the coin is new, it is accepted and inserted
into the database, and the shop’s account is credited. The protocol is shown
in Figure 4.

We now discuss why the scheme provides anonymity for the customer.
Withdrawal and payment are unlinkable because of the blindness of the sub-
protocol P. However, although the blindness of protocol P is unconditional,
i.e. information-theoretical, the anonymity of the payment scheme is only
computational because of the revocation parameter d. The bank could link
withdrawal and payment by testing whether log, d = log,, (h,/g1), but this
is computationally infeasible because the bank does not know log,, yr (see [1]
for a discussion of the so-called Decision-Diffie-Hellman problem).

5.5  Anonymity revocation

As already mentioned, there are two kinds of anonymity revocation, namely
withdrawal-based and payment-based revocation. The latter can be achieved
by letting the trustee compute the value

(hp/91)" = (93)" =d

10
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Figure 3: The withdrawal protocol.

from an h, that is observed in a payment. The computed value d can then be
searched in the bank’s revocation database containing the transcripts of the
withdrawal transactions, including the values d.

Withdrawal-based anonymity revocation is achieved as follows. Given the
value d observed in a withdrawal transaction, the trustee computes

-1
91d" = g195 = hyp.

This value can be put on a blacklist for recognizing the coin later when it is
spent. The two types of anonymity revocation are possible because

a = (log,, (hw/g2)) "' =log,, d=1log,, (hy/g1)

holds for every triple (hw,hp,d) generated during a legitimate withdrawal
transaction.

11
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V := PKLOG(e, g2, hy/91)
c#, hp, 2p, W, V
verify V and W
c#y hp, 2p, W, V
verify V and W

verify that c# was
not spent so far

credit Shop’s account

Figure 4: The payment protocol in the on-line scheme.

5.6  Efficiency considerations

A coin in the proposed scheme consists of two group elements, two hash
values, and two numbers smaller than g. When the group allows for a compact
representation of its elements, the signatures can be quite short. For instance,
elements of an elliptic curve with order ¢ over a field of cardinality close to
q can be represented by two field elements. Hence, for ¢ ~ 270, the total
signature length is roughly 6log, ¢ + 256 = 1300 bits. This could be reduced
further to about 1000 bits by a compressed representation of group-elements
and by using the same challenge for the proofs V and W.

6 Extensions to off-line payments

In an off-line system, double-spending can only be detected after the fact, but
it cannot be prevented. Detecting double-spending is trivial, but identifying
the cheating customer requires an additional mechanism in the protocols. In
the presented system, a natural solution appears to be to involve the trustee
for exposing double-spenders. This solution is unsatisfactory from an oper-
ational point of view, when many instances of double-spending occur. In
Section 6.1 we describe a modified protocol that allows the bank to identify
double-spenders without the help of the trustee.

In Section 6.2 we discuss the use of tamper-resistant hardware (called

12



observer in this context) for preventing double-spending in off-line systems.
Since no secure tamper-proof components are currently available, such devices
must be combined with techniques for identifying double-spenders discussed
before. In contrast to off-line systems without observers, it is acceptable to
involve the trustee for identifying cheaters because the breaking of an observer
can be considered a rare event. However, it is also possible to use the technique
of Section 6.1 in an observer-based system.

6.1  Enabling the bank to identify double-spenders

The payment protocol of Figure 5 allows the bank to identify double-spenders,
but the anonymity of honest customers is not compromised. The basic idea
is to redefine the proof V and to make use of the following fact, which was
already used in a similar way in [1] for the purpose of identifying double-
spenders. If the value ¢ = g" generated by the signer for issuing a Schnorr
signature (or in a message-dependent PKLOG) is used for signing more than
one message, it is easy to compute the secret key from the two signatures.
Let (c1,51) and (co, s2) denote the two distinct signatures and let y = ¢g*. If

gyt =t =g>"y*,
then we have s1 + ¢1z = s2 + 2z (mod ¢) and hence

g=17%2 (mod q).
Cy —C1

This fact is used by forcing the customer to use the same value ¢, = g,°
in every potential payment of a given coin. This is achieved by having the
customer choose and store 7, during withdrawal and by including ¢, instead
of the coin number c¢# in the proof W. Furthermore, V' depends on a message
containing information about the shop and the withdrawal transaction, where
the latter is achieved by including W, which contains a hash-value of ¢, hp,
and z,. The counter cnt is included in the hash value because otherwise the
shop could deposit a coin twice and, in reply to bank’s objection, blame the
customer of having it spent twice.

When a coin is spent more than once, the bank can compute the value
a of that coin because « serves as the customer’s secret key in the payment
protocol.

6.2  Using observers for preventing double-spending

It is quite unsatisfactory that in anonymous off-line payment schemes the
multiple spending of coins can only be detected but not prevented. Chaum
et al. [9] proposed as a solution to use so-called observers, small tamper-
resistant hardware devices that are issued by the bank for every customer.

13
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Figure 5: The payment protocol in the off-line scheme.

Transactions can only be carried out in cooperation with the observer (see
Figure 6). In particular, the observer keeps a list of active (withdrawn but
not yet spent) coins and refuses to cooperate in spending a coin a second time,
i.e., it cooperates only in spending coins contained in its list of active coins.

The following requirements guarantee the customers’ privacy (for a more
detailed discussion see [11]):

e The observer must not be able to communicate with anyone except the
customer. In particular, the observer must not be able to establish a
subliminal channel to the bank.

e Even if later the bank gets access to the observer and obtains all its
protocol views, the bank must not be able to trace payments. This
implies that the observer must not have an internal clock.

In Figure 6 the communication between observer, customer, bank and
shop is illustrated. Because each customer’s observer is unique, the bank
could link the communications (ii) and (iii) with (i). In order to satisfy the
conditions stated above, the communication (iv) must be unlinkable with
communications (i) to (iii) .

We now describe how the on-line payment scheme presented in Section 5
can be turned into an observer-based off-line scheme. Let w and y, = ¢1“
denote the observer’s secret key and public key, respectively. (Note that each
observer has its own secret key/public key pair.) The basic idea is that the
customer and the observer share the value « such that neither of them alone

14
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Figure 6: The customer needs the help of the observer for carrying out with-
drawal and payment transactions. For each coin the observer only participates
once in a payment transaction; hence multiple spending of a coin can be pre-
vented.

knows a. More precisely, « is replaced by the product & modulo ¢, where &
is chosen (and kept secret) by the observer, and & is chosen by the customer.
During the withdrawal of a coin, the customer must prove to the bank that
the value « is indeed shared with the observer. All operations involving a
in the on-line protocol now require the observer’s cooperation. Hence the
observer can prevent double-spending.

Figure 7 shows the modifications in the subprotocol P. The parameter
a occurs in the computation of hy, z,, and t5. The observer obtains only
values (hy, 2., and fh) which the bank already knows; hence no relevant
information is leaked to the observer. The resulting subprotocol is called P,,
in which parameter & replaces player A’s input « in protocol P.

Figure 8 describes the withdrawal protocol. After the identification, the
customer and the observer jointly compute the values h,, and d. Then they
jointly construct the two proofs

Uy = PKLOG(€, Yo, hw/92)
and
U2 = PLOGEQ(E,gl; hw/QQ; da yT) .

The proof U, is identical to the proof U in the on-line scheme and convinces
the bank that d is formed correctly. The proof U; convinces the bank that
the observer is indeed engaged in the protocol, because knowledge of both
log, hu/g2 (proved in Uy) and log,, h. /g2 (proved in Us) implies knowledge
of log,, yo = w, the observer’s secret key.

An important point in the construction of these two proofs is the additional
blinding performed by the customer using the random values r; and ry. This
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th = {g hp, Zp, th h, = Ag
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th =ty h) 20
i 1
(huw) (hpazpath)

Figure 7: In the observer-based system, the computation of h,, z,, and ¢
within protocol P must be performed jointly by customer and observer. The
modified protocol P is referred to as protocol P,.

prevents the bank from computing a by using s; and §; (or s3 and §3) in case
the bank obtained the values §; and §5. This could happen for instance when
the observer is returned to the bank or when the bank knows the seed of the
pseudo-random number generator in the observer.

At the end of the withdrawal protocol the observer and the customer store
h. for the purpose of identifying the coin later in the payment protocol (shown
in Figure 9).

The payment protocol is very similar to the protocol in Figure 5, except
that the observer and the customer jointly compute the proof V. It is essential
that the communication between the customer and the observer is unlinkable
with the communication between the shop and the customer so that neither
the bank nor the observer obtains useful information about the correspondence
of withdrawal and payment transactions. This is achieved by a blinding of
the values t, and ¢,. The correctness of the protocol in Figure 9 can be seen
as follows:

s c &Tp—Cp i+ c 28 Tptipaa ra8 T
95" (hpfg1)® =gy * 7 ?(hplg)” = 9" " =9y (hp/gl)sp =t
and therefore the verification equation hold.
7 Sharing the revocation capability among several trustees

To achieve higher security against fraudulent anonymity revocation, the re-
vocation capability can be shared among several trustees such that only pre-
defined subsets of the trustees are able to cooperatively revoke a customer’s
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verify U; and U,
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Protocol P,
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Figure 8: The withdrawal protocol in the observer-based system.
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delete coin from list V= (cp, Sp)

T
(hp, 2p, W, ent, V)

Figure 9: The payment protocol in the observer-based system.
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anonymity. Borrowing terminology from the literature on secret sharing, the
set of all subsets with the revocation capability is called an access structure.

We first consider the simple case where all trustees must cooperate. This
can be achieved by letting each trustee choose a secret key 7; and defining 7
to be the product of the 7;. Raising a value to the power 7 or 7~! during
anonymity revocation is achieved by asking all trustees to consecutively com-
pute the 7;-th or Ti_l—t}h powers, respectively. Each trustee can perform the
needed computations without revealing the secret ;.

In the above solution all trustees must be available and must cooperate
for revoking the anonymity. To increase the robustness and the availability
of the revocation mechanism, a so-called threshold scheme can be applied:
for a threshold ¢, all coalitions of at least ¢ + 1 out of n trustees are able
to revoke the anonymity, while coalitions of ¢ or less trustees are not. The
realization is based on Shamir’s secret sharing schemes [19] and Feldman’s
verifiable secret sharing scheme [13]. A concrete problem in such a realization
is that exponentiations with both 7 and 7—! must be possible in a distributed
manner. A solution is described in [15] for the case ¢ < n/2 if all trustees
are honest and for the case t < n/3 if up to t trustees may be cheating.
Another solution is to avoid the exponentiations with 7!, which occurs only
in payment-based revocation. In the setup phase, the trustees collectively
compute a second public key §r = gi. During the payment, the customer

must send the additional value d = :lj;«/ ® to the shop. Moreover, the proof

V = PKLOG(¢, g2, hp/ 1) is replaced by PLOGEQ)(e, g, (hw/gl),ci, gr). The
trustees can thus perform a withdrawal-based revocation by computing

(hu/g2)" = g1’ = gy/* =

which is now part of the coin.

IS

7

8 Comparison with other schemes with passive trustees

In this section we compare our on-line scheme with the cut-and-choose based
approaches [21, 2] and the recent proposal of [14].

We sketch the scheme of [21] (which, both from the conceptual and the
efficiency points of, view is similar to the scheme of [2]). In order to obtain a
blind signature on a message m, the customer prepares 2K blinded messages,
each of which contains m encrypted with the trustee’s public key as well as
a session identifier encrypted with the trustee’s public key. K is a security
parameter. These encryptions are probabilistic (i.e., the text is padded with a
random string before encryption) in order to prevent decryption by an exhaus-
tive search over a small set of possible values. To check that these messages
are properly formed, the bank chooses a random subset of K blinded messages
and asks the customer to open all of them, where “open” means presenting the
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random padding used for encrypting the session identifier. For the purpose
of possible later anonymity revocation, the bank stores the corresponding K
encryptions of m. Then it blindly signs the remaining K messages that were
not opened. Such a coin (a blind signature for the message m) is valid if the
bank’s signature is valid and if it can be verified that m had correctly been
encrypted for the trustee.

In such a system, withdrawal-based revocation can be achieved by asking
the trustee to open the encryptions of m which the bank obtained and stored
during the withdrawal protocol. Payment-based anonymity revocation can be
achieved by asking the trustee to decrypt the encrypted session ID contained
in each of the K components of the signature. The probability that a dishonest
customer manages to escape payment-based or withdrawal-based anonymity
revocation is 1/ (>X) ~ 2-2K/mK. To achieve reasonable security, K should
be at least 20. Each of the K components consists of a random padding string
and a public-key encrypted value. In order to achieve the same security level
as in our scheme, the lengths of these two values must be at least 64 and
768 bits, respectively. This results in a total signature length of close to
17,000 bits, which is about 13 times longer than coins in our scheme (see
Section 5.6).

The scheme presented in [14] is based on Brands’ payment system [1]
and on so-called “indirect discourse proofs.” Two such proofs are used to
convince the bank and, independently, the shop that the trustee can revoke
the anonymity of a coin. Technically, an indirect discourse proof consists of an
ElGamal encryption [12] of either the customer’s identity (for payment-based
revocation) or a unique part of the coin (for withdrawal-based revocation) and
a proof that the correct value is encrypted. Conceptually, this technique is
similar to that described in this paper, but the system of [14] is less efficient.
For instance, coins in [14] are approximately twice as long.
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