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Abstract the existence of trapdoor one-way permutations [20, 21, 3].

(f)—OT can also be implemented in terms of Rabin’s
We propose a protocol for oblivious transfer that is uncon- OT [29], in which Alice sends a bit that is received by
ditionally secure under the sole assumption that the memoryBob with probability% [13]. The security of Rabin’s proto-
size of the receiver is bounded. The model assumes that &ol for OT is based on the factoring problem.
random bit string slightly larger than the receiver's mem-  These are relatively strong computational assumption-
ory is broadcast (either by the sender or by a third party). s. However, it is also known that oblivious transfer cannot
In our construction, both parties need memory of size in |ikely be based on weaker assumptions: Proving that obliv-
0(n*~2*) for somea < 3, when a random string of size jous transfer is secure assuming only a one-way function
N = n?~F is broadcast, forx > 3 > 0, whereas ama-  in a black-box reduction is as hard as proviPgNP [24].
licious receiver can have up tplV bits of memory for any  Oblivious transfer falls thus, together with key agreement,
v < 1. In the course of our analysis, we provide a direct in the class of tasks that are only known how to implement
study of an interactive hashing protocol closely related to ysing at least trapdoor one-way functions.

that of Naoret al.[27]. However, if Alice and Bob have access to a quantum
channel, oblivious transfer can be reduced to a weaker prim-
itive known as bit commitment [4, 12] and thus is secure

1. Introduction assuming only a one-way function in the quantum comput-
er model. Oblivious transfer can also be based on a noisy

Oblivious transfer is an important primitive in modern channel [15, 14].

cryptography. It was introduced to cryptography in several  Inthis paper we describe how a bound on memory size of
variations by Rabin and Eveet al.[29, 20] and had been the receiver Bob can be used to implement oblivious trans-
studied already by Wiesner [31] (under the name of “multi- fer. We assume that there is an initial broadcast of a huge
plexing”), in a paper that marked the birth of quantum cryp- @mount of random data, during which Bob is free to com-
tography. Oblivious transfer has since become the basis fofPute any probabilistic function with unlimited power. As
realizing a broad class of cryptographic protocols, such aslong as the function’s output size is bounded and does not
bit commitment, zero-knowledge proofs, and general secureexceed Bob’s memory size (storage space), we can prove

multiparty computation [32, 21, 22, 25, 18]. that the OT protocol is secure. No computational or memo-
In a one-out-of-two oblivious transfer, denotég-OT, ry restrictions are placed on Alice.
one party Alice owns two secret biig andb;, and another In order to carry out the protocol, both parties need to use

party Bob wants to learb, for a secret bit of his choice. some amount of memory, however. Lets be constants
Alice is willing to collaborate provided that Bob does not suchthal < § < o < % (e.g. asmalp anda = % - 0).
learn any information aboui.;;, but Bob will not partici- In our construction, both parties need memory of size in
pate if Alice can obtain information about 0(n?>~%>) when N = n?~2~# random bits are broadcast.
Traditionally, (f)-OT has been studied under computa- The security of the oblivious transfer can be shown if Bob
tional assumptions, such as the hardness of factoring orhas no more than.V bits of storage for any < 1.
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about her memory limitation is made. fluence by Bob. However, Alice does not learn which string
The study and comparison of different assumptions un- corresponds to Bob’s input. In order to apply interactive
der which cryptographic tasks can be realized is an impor-hashing, we use two tools of independent interest.
tant aspect of research in cryptography. Perhaps the most The first tool is an efficiently computable, dense encod-
prominent assumptions used today in the computational seing of k-element subsets frofi,...,n}, i.e., a mapping
curity model are factoring, the discrete logarithm problem, of k-element subsets to binary strings of Ien@(ﬁ). It
and lattice basis reduction problems [1]. However, factor- has to be efficient in the sense that encoding and decoding
ing and computing discrete logarithms could be solved ef- operate in time polynomial im rather than(z), even ifk
ficiently on a quantum computer [30], and systems basedis proportional ton. Such a scheme has been long known
on lattice reductions have been cryptanalized [28]. Alterna- in the literature [11]. The second tool is a direct analysis
tives to computational security assumptions that have beerof interactive hashing, since the original analysis based on
proposed include quantum cryptography, the noisy channelsimulators is not directly applicable to our setting.
model, and memory bounds [10]. Once two binary strings corresponding to the two sets
The memory bound model seems realistic in the view are isolated, it will be the case that Bob knows all bits in the
of current communication and high-speed networking tech- good set, but only few bits in the bad set. Then Bob asks
nologies that allow transmission at rates of multiple gigabits Alice to encode, andb; using the two sets such thiatis
per second. Storage systems on the order of petabytes, oencoded with the good set ang:; with the bad set. Bob
the other hand, require a major investment by a potentialcan recoveb,. since he knows the good set, but hg}; .
adversary. Furthermore, the model is attractive for the fol-  Additional results used to show the security of the pro-
lowing reasons: (1) the security can be based only on thetocol are privacy amplification (or entropy smoothing) by
assumption about the adversary’s memory capacity, (2) s-universal hashing [5] and a theorem by Zuckerman about
torage costs scale linearly and can therefore be estimatedhe min-entropy of a randomly chosen substring [33].
accurately, (3) memory bounds offer permanent protection
in the sense that future technological improvements cannot] 2. Related Work
retrospectively compromise the security of messages trans-

mltteq earlier. ) o For the purpose of secrecy, memory bounds have been
This model also relates to another real-life application, oy nsited in a similar model in the cryptosystem proposed
where memory limitation is based on a physical assump-y, cachin and Maurer [10]. They describe a private-key
tlon; smartcards provide a particularly Well-s_mted_scenarlo cryptosystem and a protocol for key agreement by pub-
to implement our protocol. In such a scenario, Alice could ;" gisc(ssion based on the assumption that an adversary’s
be a tellgr machine ahd Bob a card. Limiting t_he memo- memory capacity is bounded. The security margin for their
ry c;apacny Qf a card is a reasonable.assumptlon Whereas?(ey agreement protocol i9(n) memory needed for Alice
a similar limitation on the te]ler mac.hlne' Wo'uld bg much and Bob versus no more thai memory for an adversary.
Ies_s reasonab_lg. S'mﬁé)fo-r inone direction is sufficient Space bounds have also been studied with respect to in-
to |mplemen_t itin both d|re;t|ons (see [17]), any tyvo-p_arty teractive proof systems. Kilian [26] constructed a proof sys-
cryptograpmc task may be |mplemented securely in th.|§ Sit- o for any language iRSPACEwhich is zero-knowledge
u_atlon from our protocol._For instance, a mutual identifica- with respect to a logarithmic space-bounded verifier. Kil-
tion scheme may be realized [16]. ian’s technique can be extended to any known-space verifier
with polynomial space bounds. In this protocol, the memo-
1.1. Our Construction ry bound and interaction are interleaved in a crucial way.
De Santiset al.[19] introduced one-message proof sys-
We provide an implementation c(tf)—OT. During the tems with known-space verifiers, showing that no interac-
initial random broadcast, Alice and Bob both store a ran- tion is needed to exploit space bounds for zero-knowledge
dom subset of théV bits such that their parts overlap in proofs. An improved construction was given by Aumann
positions. Then they engage in a protocol to form two set- and Feige [2] of a one-message proof system where the ra-
s of k bits each among the bits stored by Alice: a “good” tio between the maximum space tolerated and the minimum
set consisting of the bits also known to Bob and a “bad” set space needed by the verifier can be arbitrarily large.
containing at least some bits unknown to Bob. This is done  We note that our construction also uses interaction in a
using an interactive hashing protocol similar to that of Naor crucial way, but the memory bound only has to be imposed
etal.[27]. for one message at the beginning, during the broadcast of
Interactive hashing is a protocol between Alice and Bob the random bits. Furthermore, the receiver in our protocol
for isolating two binary strings. One string is chosen by Bob is allowed to access the complete broadcast and to compute
and the other one is chosen randomly, without (much) in- any functionof it before interaction starts. This is not the



case for the commitment protocols by De Sastial. and Forasequence,,...,z, andsomesef C {1,...,n},
Aumann and Feige. we abbreviate the projection ef, ..., z, onto indices in

In addition, and in contrast to the proof systems with S by z°. Similarly, z(*} denotes the sequenas, ..., z,
memory-bounded verifiers mentioned, the data intended towith the convention that!”! is the empty word. We write
overflow a receiver's memory consists of purely random bit- @ for addition inGF'(2) and® for the inner product of two
s in our protocol. Therefore, an independent random sourcevectors oveiGF'(2).

with very high capacity can also be used for providing the . .
random bits. Lemma 1. Let X be a random variable with alphabét,

let V' be an arbitrary random variable with alphab¥t and
letr > 0. Then with probability at least — 27", V takes

1.3. Organization of the P r
3. Organization of the Pape on a valuev for which

The dense encoding @f-subsets into binary strings is Hoo(X|[V =0) > Hoo(X) —1g|V| — 1.
described in Section 3, where we also provide our analy- -
sis of interactive hashing. Section 4 contains the protocol
construction; the security proof is given in Section 5. We
start with defining terminology, assembling some tools, and
introducing the notation.

Proof. Letpy = 27"/[V|. Thus, > Py(v) <27

v:Py (v)<po
It follows for all v with Py (v) > pg

Hoo(X|V =v) = —lgmax Px|y—,()
2. Preliminaries e
Px (x) Py x—(v)
= —lgma
A random variableX induces a probability distribution veX Py (v)
Px over a sett. Random variables are denoted by capital > _lgmax Px(z)
letters. If not stated otherwise, the alphabet of a random N z€X  Po
variable is denoted by the corresponding script letter. = Ho(X)—r—1g|V|
The (Shannon) entropywf a random variableX with
probability distributionPx and alphabet’ is defined as which proves the lemma. O
Z Px (z)1g Px (). A classg of functionsX’ — Y is 2-universalif, for all
eX distinctz, x2 € X, there are at mosg|/|Y| functionsg in
G such thay(x;) = g(z2).
Leth(p) = —plgp — (1 —p)lg(1 — p) stand for thebinary A classg of functionsX’ — Y is strongly2-universalif,
entropy functionTheconditional entropyf X conditioned  for all distinctz;, z, € X and all (not necessarily distinct)
on a random variabl# is y1,y2 € Y, exactly|G|/||? functions fromg takez; to y;
andzxs to ys.
H(X[Y) Z Py (y)H(X]Y =y) A strongly 2-universal class of hash functions can be
yey used to generate a sequence of pairwise independent ran-

dom variables in the following way: SeleGte G uniform-

ly at random and apply it to any fixed sequenge. .., z;

of distinct values int, i.e.,Y; = G(z;) forj =1,...,L
Privacy amplification [7, 6] is a method to eliminate par-

Ho(X) = —lg ma Px (). tial informatiqn about a rapdom variable and extraqt ashort-

z er, almost uniformly distributed value. The following the-
orem [23, 5] is formulated using min-entropy, but it can be
generalized to Bnyi entropy of any ordef > 1 [9].

whereH(X|Y = y) denotes the entropy of the condition-
al probability distributionPxy—,. The min-entropyof a
random variableX is defined as

Thevariational distancebetween two probability distri-
butionsPx and Py over the same alphabgt is

Theorem 2 (Privacy Amplification [5]). Let X be a ran-

|Px = Pyll, = }}12’}‘ > Px(x) - Py(f)’ dom variable over the alphabet, let G be the random
"= wex variable corresponding to the random choice (with uniform
_ 1 Z Py () — Py ( )‘ distribution) from a 2-universal clas§ of hash functions
2 ' X — Y,andletY = G(X). Then

reX
28 | V|- Hoo (X)
In2

We say that a random variabl¢ is e-close toY whenever

|Px — Pyllo <€ HYI|G) = 1g|Y| -

@)



The following is a result by Zuckerman [33] about the
min-entropy of a randomly chosen subsét from a se-
quenceXy, ..., X,. Intuitively, one would like to show
that sinceS is chosen randomly frofil, . .., n}, the uncer-
tainty aboutX S is roughly% times the uncertainty about
X1,...,X,. The exact statement is somewhat more in-
volved.

Theorem 3 (Zuckerman [33]). Let X"/ be an random
variable with alphabet{0, 1} and H,.(X™) > dn, let

S ={51,..., 5} be chosen pairwise independently as de-
scribed above, leb = c61g 5! for some positive constant
cand lete = 3//pl. Then, for every value = {s1,...,s}
there exists a random variabl&; with alphabet{0, 1} and
min-entropy

Hoo(Ws) = pl

such that with probability at least — ¢ (over the choice of
S), XS is e-close tolWs.

3. Tools

3.1. Encodingk-Element Subsets

LetS = {1,2,...,n}. AsetQ is ak-element subset
of Sif @ C S and|Q| = k. We now describe an effi-
cient encoding of thé&-element subsets as binary strings,
that is, a mappingr from the set of allk-element subset-
s given by a list ofk integers from{1, ..., n} into binary
strings of length{lg ()] < nh(k/n). Such a scheme may

be found in [11]. The encoding as described associates a

integer in{0, ..., (}) — 1} with the k-element subset. The

e;_1, with theiri" 1 in position;j instead. Summing this
up over all; = 1,..., k, we obtain the index(Q) corre-
sponding tos andey, . . ., ex. Thus, the encoding is given

by
n—7j
k—i)
The decoding is done by the following procedure that
takes as input an integet and outputs the corresponding

setQ, represented by, ..., e. Itis easy to see thatand
o~! are computable in time polynomial in

k e;—1
(@ =2 ).

=1 j=e;_1+1

Algorithm 1 CalculateQ = o, } (m)
for: =1to k do z
—1 .
e; < biggest! such that Z <n B ]> <m

) k—1
j=ei—1+1

eifl .
n-—j
mem- ¥ (k_>
Jj=e;j—1+1
end for

3.2. Interactive Hashing

Interactive hashing [27] is a protocol between a chal-
lenger Alice (with no input) and a responder Bob with input
s € {0,1}™ and provides a way to isolate two strings. One
of the strings is Bob’s input and the other one is chosen
r{andomly; Alice does not learn which oneds Define the
2-universal class of hash functions frof, 1}™ to {0,1}

corresponding string is simply the binary representation of as

that integer.

Without loss of generality, le@ = {e;,ea,...,er} be
a k-element subset af such thate; € S ande;_; < ¢;
fori =1,2,...,k. For convenience, we usg = 0. The
k-subsets o correspond naturally to the binary strings of
lengthn and weightk. Theey, ..., e, are the positions of
1's starting from the left in the binary string corresponding
to Q.

The integer representing a binary stringpf weightk is
the number of strings that precedein the list of all such
strings according to the inverse lexicographical order (e.g
11100, 11010, 11001, 1011Q,. ). Let us count the num-
ber of strings preceding some particular stringiven by
e1,...,ex. The leftmost 1 ok is preceded by, — 1 zeros.
Thus, for every position, 1 < j < e; — 1, there are(} /)
strings of weight with their first 1 in positiony, each prior
to 5. Continuing this way of reasoning, th€ 1 of s is pre-
ceded by O’s in the positions_; + 1toe; — 1. For every
positionj frome;_; + 1 toe; — 1, there are(’,ij) strings
of weightk in the list; these are identical toup to position

T2

G = {g(a)=avz|ac{0,1}"}.

The protocol operates im — 1 rounds. Roundj, for
j=1,...,m — 1, consists of the following steps:

1. Alice chooses a functiogy € G with uniform distribu-
tion. Leta; € {0, 1} be the description af;. If a; is
linearly dependent omy, . .., a;_1, then Alice repeats
this step until it is independent. She announge$o
Bob.

Bob compute$; = g;(s) = a; © s and send$; to
Alice.

At the end, Alice knowsn — 1 linear equations satisfied
by s. Since theq;'s are linearly independent, the system
has exactly twon-bit stringssg, s; as solutions that can
be found by standard linear algebra. In our application of
interactive hashing, Bob can cheat if he can answer Alice’s
gueries in such a way that both, s; are elements of a fixed
setS.



This specific way of hashing will be the limiting factor of From the definition o™ we haveE[Y] = @ It follows
our construction in terms of the memory required by the par- from the fact that7 is repeatedly chosen fromRauniversal
ticipants. In order to check dependencies amongitf&  class of hash functions thatar[y] < 151 (the details are
Alice must store them all and thus memory sizé(m?) is left to the reader and will appear in the full version). Thus,

necessary. Moreover, the's are also necessary to compute it follows from the Chebychev Inequality that

80, s1 by both parties.

If a non-interactive hash function were used, Bob could
produce a collision ifS| ~ 2™/2. In contrast, Bob can only
cheat in interactive hashing if the size &fis close to2™.
This is shown in the remainder of this section.

The following lemma shows that each round of interac-
tive hashing reduces the size®by a factor of almost 2, as
long asS is large (compared t®°). Its proof uses the idea
Bob can do no better than always answer consistently with
the bigger part of his set.

Lemma 4. LetS C {0,1}™ with|S| =2""for0 < v < 1

and letc be a positive integer such that< vm/3. LetG

be the 2-universal class of hash functions defined above
mapping{0,1}™ to {0,1}. LetG be a random variable
with uniform distribution oveg. Then for any € {0, 1},

G takes on a valug such that

(s €Slgls)=b}| _ 1

S| 2

9—¢
5 +

with probability at leastt — 27,

Proof (Sketch).Consider the indicator random variables for

ses
Zsz{

and their sumzZ = > _cZ, = [{s <€ S|G(s)=0}|.
Similarly, let Z = |S| — Z = |{s € S|G(s) = 1}|. Let
X =max{Z, Z} and let

|

Our goal is to show thaX takes on a value such that

1 ifG(s)=0
0 otherwise

Z  with probability1/2
Z  with probability 1/2

T < 1+2
S| 2

—C

with probability at least — 2.

But notice thatZ — 'i2‘| = |Z - @| and therefore
| X — "‘;—|| = 1Y - ‘g—||. In consequence, for all > 0 we
haveP[| X — 18l > o] =P[lY — 151 > ol. Therefore, it
is sufficient to show that
IS

-
2

o

with probability at mosR .

or-9)ee] < 2

for ¢ > 0. Thus we must also finar[Y]. By definition

Var[Y] E[Y?] - E[Y]?

L _gzz).

Define the indicator random variable
Kuvso = {1 if G(s1) # G(s)

0 otherwise
and the sum

K= Y K. =I{s1,5 € 8G(s1) # G(s2)}I.

51,52€82

Notice thatK = ZZ + ZZ as for every such paifsi, s)
we haveZ choices fors; andZ choices fors, if G(s1) =0
andG(sz) = 1 and inversely wheii7(s1) = 1, G(s2) = 0.
ThereforeE[Z Z] = E[K] /2.

However, notice thaE[K] = > s E[K;, s,] and
thatE[K, s,] = 0if s1 = so, WhileE[K, ,,] > 1/2 when
81 # 89 Since( is repeatedly chosen from a 2-universal
class of hash functions.

In conclusion,E[K] > |{s1, sz € §%|s1 # s2}|/2 and

E[ZZ] > 'S‘i%, leading to

Var[Y] = g _E[ZZ] <

Substitutings = 1/2¢|S|/4 we get

P |:‘Y _ @‘ Z 2(c+u;n2):| S 2_0.

[SP* S —18] _ IS]

4 4

Therefore, the reduction factor satisfies
Y
S|

ctrm—2
2

—vm

1
- 2

1
< —-427€

2+



except with probabilit2—< and the lemma follows. [

The preceding lemma is not applicable whggets too

small; to keep track of the overall reduction, we also need

the following standard lemma.

Lemma5. LetS C {0,1}™ with|S| =2""for0 < v < 1
and lete, d < m be positive integers such thzm < d—c.

Let G be a 2-universal class of hash functions mapping
{0,1}™ to {0,1}%. LetG be a random variable with u-
niform distribution overG. The probability thatG' takes
on a valueg such that there are distingt;, s, € S with
g(s1) = g(s2) is at mos2~¢.

Proof. Define the functior: : G — N to give the number
of collisions inS for a particularg, that is,

a(g) = [{(s1,52) € 8?|g(s1) = g(52), 51 < 52}

and letA = a(G). Let

[{g€Glg(s1) =gls2)}| ifs1<s2

c(81,82) = .
(s1,52) {0 otherwise.
Since G is 2-universal, we have(sy, s3) < ‘2% for all
s1, s2. Now it is easy to see that
1 g
Sale) = Y clss) < LsPE
geg (81782)682
|$‘2 _ 92vm—d—1

and therefordi[A] < 71 = 2 . By the Markov

Inequality, we get
P[A > 1] < P[A > 2c+2um—d—1] < 9—¢

since2vm < d — c. O

Lemma 6. Suppose Alice and Bob engage in interactive
hashing of anm-bit string held by Bob ton — 1 bits as
described above and let> lgm. LetS C {0,1}™ be any
subset of the inputs with cardinaligy™. If v < 1 — 8254,
then the probability that Bob can answer Alice’s queries
such that two distinct elements, s, of S are consistent
with his answers is at mo&t™".

Proof. LetSy, = S and, forj = 1,...,m — 1, define
S; = {s€S;-1lgj(s) =b,}.

As long asS; is large enough, the size d&;,; can be

that will mark the transition. It follows from Lemma 4 by
induction onj from 1 to j; — 1 that

1
1S;| < (§+2 )’1S|

except with probability at mosj2=¢. In consequence,
|S;,| < 2v™m=it(1 4 27¢T1)J and we have

1g1S;,| < (vm—ji) +jelg(1+27°"") < 3c+1 (3)

from (2) and the fact that, 1g(1 + 27¢*1) < m27¢ < 1.
In order to apply Lemma 5 for stefp (roundsj; through
m — 1 collectively) usingS;,, we need to establish

21g|S;,| < (m—1-j,) —c. @)
Sincer < 1 — 4 impliesdc < m — vm — 4, it follows
from (3) that

21g|S;,| < 6c+2 < 2c+m—vm —2. 5)

Using (2) we have

2c+m—vm—2 m—(vm—3c) —c—2

< (m-1-j)—c
and (4) holds. The overall failure probability is at most
(Jjt + 1)27¢ < m27° < 27" and the lemma follows. O

4. The Protocol

Suppose a large amount of random data yniformly
distributed random bits) is sent from Alice to Bob over a
high-capacity channel. Alternatively, the random data can
be produced and broadcast by a random sofrdeat both
Alice and Bob trust to output random bits. The only as-
sumption needed to prove the security of the protocol is that
N must exceed Bob’s storage capacity. If both participants
are honest, they need much less memory than can be toler-
ated against malicious Bob. Thus, even if Alice produces
the random bits, she saves only a small part of them.

In (2)-OT, which our construction implements, Alice
has two input bitdg, b; and Bob choosesand obtaing,.,
but Alice does not lear. The protocol operates in the
following steps. During the initial random broadcast, Al-
ice and Bob both store a random subset of Ahéits such
that their parts overlap ik positions. Then they engage
in a way to form two sets among the bits stored by Alice,
a “good” set and a “bad” set, @k bits each. This is done

bounded using Lemma 4. Afterwards, we apply Lemma 5 ysing the interactive hashing protocol of Section 3.2 such

once for the remaining rounds. Let= 2r and letj; be the
integer such that

)

vm—3c+1 > 5 > vm—3c

that Alice does not learn which set is good. Bob knows all
bits in the good set, but not all of the bad set. Then Bob
asks Alice to encod#, andb; using the two sets such that
b. is encoded with the good set ahd,; with the bad set.



Bob can recoveb,, since he knows the bits from the good
set, but noth.q1, because some bits from the bad set are
missing.

Included in the protocol is an additional distillation step:
the bits stored by Alice are first divided into blocks/dsits

Formally, Bob constructs a permutation of the get
denoted byr : {1,...,n} — {1,...,n}, and the set-

sC; = {aﬂ((j,l)prl), . ,aﬂ(ﬂ)} forj =1,...,m
suchthatforallj € S C; C AnB. He announces
to Alice.

each and then each block is hashed to one bit. The two sets

are then formed on the level of bits and consistcdbits
each.

Alice and Bob agree on the following parameters (round-
ing is implicit).
1.

a,B such thatd < 8 < a < ;5. these parameters
determine the memory requirements.

1.

. n. number of bits that Alice and Bob store from the
random broadcast.

. N = n2~>=#: number of bits in the random broad-
cast.

m = n'~%: number of blocks (and bits, ..., t,,).
. £ = n*: length of one block.

. k = nP: number of blocks (and bits from, . ..
that must overlap.

M o= lg(M] = Ng (") < nl-*h(n+oLy:
length of the binary encoding ofiaelement subset

s tm)

. F = {fIf : {0,1}* — {0,1}}: 2-universal class of
hash functions for compressing blocks to bits.

The security margin in terms of memory will be that the
maximum memory for a malicious Bob that can be tolerated
isyN for~ < 1, versus thel/? memory size needed for the

3. Alice groups her storedn bits »* into blocks
r€1, ..., r°n as announced by Bob. Then Alice choos-
esm hash functionsfy, .. ., f,, independently and u-
niformly at random fromF and announces them to
Bob. She applies them to the blocks , ..., ¢~ and

obtains the bitg:, . .., t,,, wheret; = f;(r%).

4. Bob computeg,; = f;(r%) for j € S. He also com-
putes the string = ¢(S) of length M that encodes
by the methods of Section 3.1.

. Alice and Bob engage in the interactive hashing of
s into a bit string w of length M — 1, as de-
scribed in Section 3.2. Alice computes the two sets
Uy, Uy C {1,...,m} such thair (i) ando (U4, ) both
hash tow andi/y, < U; according to some fixed order.

If this is not possible because one of the strings that
hashes tav is not a valid encoding of a subset, Bob
aborts.

. Bob also knowg4,,;. He chooses the bit' such
thatl/..«. = S and sendg’ to Alice. Alice computes
20 =bo® (@jeuc, tj) andz = b @ (EBjEUc/@l tj)-

7. Bobrecover$, = z. @ (EBjeS Y;).

The descriptions ofA and B have size irD(n lgn), which

honest players. A typical choice of the parameters could becould be reduced by choosing the sets witiise indepen-

asmallfanda = + — 3, yielding N = n!5~2% and
M? < p2—2a — p1+28,

The Protocol for (3)-OT (bo, b1)(c):

1. Alice (or an independent source) broadcastandom
bitsr1, ..., r, abbreviated by"V]. Alice stores hen
bits at positionsd = {ay,...,a,} and Bob stores his
n bits at positiond3 = {b;,...,b,}. The setsd and
B consists ofn uniformly random and distinct values
from {1,..., N}. The substrings of! are denoted
by rA andrB, respectively.

. Alice sendsA to Bob. With the bits in~* Bob forms
m blockszy, ..., xz,, of length/ = n® bits each such
that the overlap4d N B spans at least = n® com-
plete blocks. If this is not possible (because the over-
lap is less thark bits) he aborts. Lef C {1,...,m}
denote a set ok blocks that Bob knows completely.

dent distribution. The expected number of common indices
is k¢ = n?/N = n®*8. By storing a few extra bits, Al-
ice and Bob can ensure that the overlag:#sbits except
with small probability. As mentioned earlier, this version
of the protocol requires both parties to memorize the hash
function of the interactive hashing in order to compute the
values ofAy, U, in step 6 and thus memory sizedfn?—22)

iS necessary.

It is easy to see that the protocol is complete and suc-
ceeds with probability at least % if Alice and Bob are
honest (aborts can occur in step 2 if the overlap is not large
enough and in step 5 if hashing yields an invalid subset en-
coding). In order to prevent Bob from cheating by inducing
aborts too often (e.g. while waiting until the overlap.4f
and B is much larger than expected), Alice will only co-
operate for at most’ repetitions of the protocol for some
n’ < n. If Bob aborts more often, she concludes that he
must be cheating, since the abort probability of an honest
Bob is at mosO(2~™).



5. Security Proof The next lemma shows that Bob lacks knowledge of at

least aboufpm bits from 17, ..., T,, with high probabili-

We note first that if the protocol does not abort, then Al- ty. It involves aspoiling knowledgargument that is often
ice obtains no information about which onetdf,24; cor-  used in connection with privacy amplification [5, 8]: Sup-
responds to Bob’s s&t and therefore the protocol is secure POse side information is made available to Bob by an oracle.
for Bob. If the protocol aborts, then no information depend- The side information is tailored for Bob’s distribution and
ing on Alice’s inputshy, by or Bob’s inputc has been dis- ~ Serves the purpose of increasing his entropy and to obtain
closed yet and therefore, we need not worry further aboutbetter results. Note that the oracle giving spoiling knowl-
aborts. edge is used only as a proof technique and not for carrying

Thus, the security of the protocol is established by the out privacy amplification.

next theorem. .
Lemma9. Let e4,¢5 > 0 and supposeX!™ has min-

Theorem 7. Suppose malicious Bob’s memory is not more entropy at leasipn. There is a subse® C {1,...,m}

than~ N bits for somey < 1. Then, for sufficiently large, of cardinalityq = (pn —m(lgn+2) —lg L —2mlg L) /¢

€5

the probability that Bob learns information about both bits  sych that Bob’s distribution of'2, conditioned on partic-
bo, b1 can be made inverse polynomially small. ular valuesu, fi,..., fm, andz; for j ¢ Q, is es-close to
the uniform distribution over bit strings of length where

During the random broadcast, a malicious Bob can com-
9 €6 :m2*2Z+e4+e5+\/2q65.

pute any probabilistic function frorf0, 1}V to V with out-
putV such thalg |V| < vN. Let the random variabl&"]
correspond to!M and letx) = X, ..., X,, correspond
to the distribution of the blocks, , . .., z,, in Alice’s subset
conditioned on Bob’s knowleddgé = v, or

Proof. The main part of the proof is to construct spoil-
ing knowledge such that min-entropies of the blocks
Xi,...,X,, add up and then applying privacy amplifica-
tion for hashing the blocks to bits,, ..., T;,.

c,n)' Suppose that side informatiom, . .., u,, with u; €

Pximi(z1,. .0 &) = PRA|V:v(7'Cl, s, T

20
|—lg Py (2]

if Py ({E[j]) < 2—2jt
otherwise.

{0,...,25¢} for j = 1,...,m is made available to Bob.

(X!™) is a random variable overbit strings.) Similarly, let et the random yariablé’[m] correspond to the distribution

Ty,....T, correspond ta,,. .., t,. of ul™. Itis defined forj = 1,...,m asU; = \;(XU]),

The proof consists of three major steps. First, a lower Where

bound on Bob’s min-entropy abol“ givenV = v, the

bits stored by Alice, is obtained in Lemma 8. Second, the );(zll) = {

hashing ofm blocks to bits is examined in Lemma 9 and it

is shown that Bob can know at most ab¢ut- p)m of the

bits t1, . .., .. The third step (proof of Theorem 7) uses (Side informationU; of this type has also been callém-

the analysis of interactive hashing from Lemma 6 to show Partition spoiling knowledgg8].) U; partitions the values

that a malicious Bob cannot learn information about both of XUl into sets of approximately equal probability under

bits. Pyxi)y,—u,- Forallu; exceptu; = 2;¢, the values of the
probability distributionsPy ;| —,,, differ by less than a
factor of two and we have

Lemma8. Lete; > 0, letd = (1 -7 — x1gL), let
p=cd/lgé! for somec > 0, and letex = 3/,/pn. Then,
except with probability; + 2¢o, < min Py
gl

5 max Py y, =y, (xm) VU, =u,; (z[ﬂ)_ (6)

2 glil
Hoo (X)) > pn. " o .
The probability that there exists as.t. U; = 2j¢ is no

Proof. BecauseRV is assumed to be uniformly distribut- more thane; = m2~2* and we assume&; # 2;¢ for j =

ed, it has min-entropy/ (R™) = N. Using Lemma 1 it
is easy to see that, with probability at ledst ¢, V takes
on valuev for which

1
Ho(RMV =v) > 1—~)N —1g—.

€1
We now invoke Theorem 3 and obtain that the distribution
of X"l = X;,...,X,, is ex-close to a random variable
W 4 with min-entropypn except with probability, and the
lemma follows. O

1,...,min the rest of the proof.
The size ofUl™ is less thanmlg(2ml) = mlg(2n).
Therefore 7™ satisfies

Hoo(X[m] |U[m] - u[m])

1
> Hoo (X)) —m(lgn + 1) — g oo

except with probability, by Lemma 1. We assume that (7)
holds in the remainder of the proof.



Claim. Forall zlY, ... z[™=1 we have

ZHoo(Xj‘U[m] — u[m],X[j—ll — x[j—l])
j=1
1
>pn—m(lgn+2)—1lg o (8)
This implies that Bob’s min-entropies of at least
1 1
g = (pn—m(gn+2)—lg— —2mlg—)/t (9)
€4 €5
blocks from X1, ..., X,, exceed2lg =, conditioned on

any particular values of the other blocks. (There are
blocks for which the sum of the min-entropies is bound-
ed from below by (8), and the min-entropy of each block is
at most(.)

Proof sketch of the claimThe claim can be easily reduced
to proving

ZHOO(Xj\U[m] =™l XU = g1
j=1
> HOO(X[m]\U[m] - u[m]) —m.

This can be done by induction using the property (6) of the

side informationU/l"! (details appear in the full version).
O

For the second step in the proof of Lemma 9, we apply

Theorem 2 (privacy amplification). L& C {1,...,m} be
a set ofg indices; such that, for allj € Q,

. ) 1
HOO(X]-|U["L] =™, xU-1 = m[Jfl]) > 2lg —.
€5

Such a set exists according to the claim (8). Using Theo-

rem 2, we obtain foj € 9,

H(T;|F; = fj,U[’”] =yl xU=1 = gli—1)y
> 1-262/In2,
where F; for j = 1,...,m denotes the random variable
corresponding to the choice of the hash functjgrwith
uniform distribution. Letg,.x be the largest element of

Qand letQ = {1,...,qmax} \ Q. By summing up the
entropies, we have

H(TQ|FQ,U[m] :u[""]7XQ :xQ) > ¢ — 2qes?/In2.

Thus, except with probabilitys, F'< takes on a valug<
such that

H(TQ|F2 = f2,Uulm = ylml xQ = 42)
> q — 2ges/In 2.

In this case, it follows from the standard inequality
2
lg|X| - H(X) > 5l|Px — Pull,” that

|Prejpe—fe yim—uim xo—pe — Pulls < v/2ge5,

where Py denotes the uniform distribution ovembits. Ac-

counting for all the cases excluded above, it follows
|Pre — Pulls < €3+ €1+ €5+ +/2qes.

€3 andey are used for spoiling knowledge anglis needed

to remove the expectation from the conditional entropy of
TC. O

Proof of Theorem 7Let x> 0 be a small constant. Then,
for all sufficiently largen, we haveq > (p — u)m from
Lemma 9.

For the analysis of interactive hashing in step 5, we will
use Lemma 6. There arg) = (";;a) subsets and in-
puts for Bob in total, thus\/ lg (73) for Lemma 6.
Suppose Bob lacks knowledge about at lepstits from
Ti,...,T,, i.e.,, he has complete knowledge about not
more than(™ ) < (4”;5_”) of the subsets, corresponding
to the setS of Lemma 6, wher€ =1 — p + u.

In order to apply the lemma setting= lg M, we need

to make sure that = lg (™, 9) < 1 — 221+ which
is equivalent to
nlfa Cnlfa nlfa
lg( B >—1g< B >—8lglg( B ) > 4.

This can be satisfied by choosingsufficiently large, since
¢ is a constant smaller than 1. It follows that Bob has prob-
ability not more than

1 nl—a -1 na—l
= =11 < —
M ( ¢ ( n? )) = B(pot i)
of knowing all bits of both sets and therefore of recovering
both bitsbg, b; .
Recapitulating all steps of the proof, the overall failure
probability is at most; + 2¢5 + €5 + €7, Whereey, €5 are

from Lemma 8 andg is from Lemma 9. More precisely,
€1, €4, €5 are parameters fixed above and

1. €y = 3/\/[) y

2. €3 = pl-a)g—2n%

3.6 = n1m®2720" o) 4 e 4+ /2ge5,
a1

4 e = (1("7) < neHnmeto )



6. Discussion

The error probability of the security proof guaranteed
by Theorem 7 is inverse polynomial i, which may not
be enough for some applications (evemifis generally
large). However, by repeating the protoé¢dimes the er-
ror can be reduced to an exponentially small quantity. Al-
ice selects2l random bitsbY, ..., bY andb},..., b such
thatby = @2:1 bg? andb; = @2:1 b; and they perform
(2)-0T(89,b})(c) for j = 1,...,1. Itis easy to see that
now the probability that a malicious Bob obtains any infor-
mation aboub,g; is O(271).

In our construction, both parties neggh?—2%) memory

(8]

(9]

(10]

size if they are honest and the security can be guaranteed

if Bob has not more thann?~>~# memory size for some
small > 0 and~y < 1, typically. Itis an interesting open
problem whether this difference can be enlarged. For ex-

(11]

ample, in the cryptosystem by Cachin and Maurer based onpyg)

memory bounds [10], the security margin is abot) vs.
n? for the public key agreement protocol. We believe that
this should also be achievable for oblivious transfer.
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