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Abstract. Deniable Authentication is a highly desirable property for
secure messaging protocols: it allows a sender Alice to authentically
transmit messages to a designated receiver Bob in such a way that only
Bob gets convinced that Alice indeed sent these messages. In particular,
it guarantees that even if Bob tries to convince a (non-designated) party
Judy that Alice sent some message, and even if Bob gives Judy his own
secret key, Judy will not be convinced: as far as Judy knows, Bob could
be making it all up!
In this paper we study Deniable Authentication in the setting where
Judy can additionally obtain Alice’s secret key. Informally, we want that
knowledge of Alice’s secret key does not help Judy in learning whether
Alice sent any messages, even if Bob does not have Alice’s secret key and
even if Bob cooperates with Judy by giving her his own secret key. This
stronger flavor of Deniable Authentication was not considered before and
is particularly relevant for Off-The-Record Group Messaging as it gives
users stronger deniability guarantees.
Our main contribution is a scalable “MDRS-PKE” (Multi-Designated Re-
ceiver Signed Public Key Encryption) scheme—a technical formalization
of Deniable Authentication that is particularly useful for secure messaging
for its confidentiality guarantees—that provides this stronger deniability
guarantee. At its core lie new MDVS (Multi-Designated Verifier Sig-
nature) and PKEBC (Public Key Encryption for Broadcast) scheme
constructions: our MDVS is not only secure with respect to the new deni-
ability notions, but it is also the first to be tightly secure under standard
assumptions; our PKEBC—which is also of independent interest—is the
first with ciphertext sizes and encryption and decryption times that grow
only linearly in the number of receivers. This is a significant improvement
upon the construction given by Maurer et al. (EUROCRYPT ’22), where
ciphertext sizes and encryption and decryption times are quadratic in
the number of receivers.

1 Introduction

Motivation. More than 3 billion people currently use messaging apps.3 Naturally,
there is a demand for secure messaging which guarantees, e.g., the secrecy
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of the transmitted contents, or the authenticity of senders. For point-to-point
connections, combining standard cryptographic building blocks (like digital
signature, public-key, and secret-key encryption schemes) may be sufficient.
However, in particular for group messaging (in which groups of users communicate
in a group chat), additional security properties are desirable. For instance, group
members may want to be sure that all members receive the same messages (a
property that, surprisingly, is not captured by traditional broadcast encryption
definitions [8]).

Another security property that is generally desirable in messaging is deniability.
Intuitively, it should be possible for a sender to deny having sent a message, or
for a receiver to deny having received a particular message. Achieving deniability
is even more challenging when considering that users may store copies of received
(or even sent) messages on their communication device.

Here, we focus on a relatively mild (but still technically quite challenging)
variant of deniability: “Off-The-Record” (OTR) messaging. Informally, with OTR
security, received ciphertexts can be simulated, in the sense that it is easy to come
with ciphertexts for arbitrary messages that look as if they had been sent by a
particular sender. In this sense, OTR security guarantees that third parties cannot
be convinced of group-internal interactions. Of course, even OTR is relatively
difficult to achieve, and becomes even harder so in the group messaging setting.

MDRS-PKE schemes. When translating desirable properties of such group
messaging protocols into suitable cryptographic primitives (with associated
properties), we end up with “Multi-Designated Receiver Signed Public Key
Encryption” (MDRS-PKE, [17]). Informally, these protocols function like signed
versions of broadcast encryption schemes with additional integrity properties
(that guarantee, e.g., that all receivers receive the same message). A little more
formally, MDRS-PKE schemes work in a public-key infrastructure, and guarantee
the following:

Syntax: A sender can prepare a single broadcast ciphertext c for a set R of
intended receivers. Any intended receiver in R can decrypt c to retrieve the
identity pkS of the sender S, the encrypted message m, and the set R.

Consistency: Not even a maliciously created c should decrypt to different
sender identities, messages, or receiver sets for different intended receivers.
Furthermore, if one receiver decrypts to (pkS ,m,R), then all receivers in R
obtain the same (pkS ,m,R).

Unforgeability: Nobody except S can produce a ciphertext that decrypts to
sender identity pkS for any receiver.

Anonymity: c does not reveal the sender S or the set R of intended receivers
(only its size |R|).

Confidentiality: c does not reveal the encrypted message (only its length |m|).
Off-The-Record: Plausible-looking ciphertexts c can be simulated by any (sub-

set of) intended receivers of that ciphertext. Intuitively, this guarantees that
receivers cannot convince a third party of a received encrypted message.
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MDRS-PKE is a complex primitive, and appears to require specific, case-tailored
primitives to realize it. For instance, the combination of a group of designated
receivers and the simulation properties required by OTR prevent the use of
ordinary designated-verifier signatures (or even MACs) [6].

Fortunately, [17] show how to construct MDRS-PKE schemes from a com-
bination of suitable variants of signature and broadcast encryption schemes.
Specifically, they require the following:

– A type of signature scheme called “Multi-Designated Verifier Signature”
(MDVS [5,6,13]) with suitable consistency, unforgeability, and OTR properties.
(Here, “OTR” means that valid-looking signatures can be simulated by
designated receivers.) State-of-the-art MDVS constructions [6] exist from
algebraic assumptions (like the combination of Diffie-Hellman and Paillier-like
assumptions), and also from generic primitives (like the combination of non-
interactive key exchange (NIKE), non-interactive zero-knowledge (NIZK),
and a few other standard primitives).

– A type of broadcast encryption scheme called “Public-Key Encryption for
Broadcast” (PKEBC [17]) that essentially has all the properties of an MDRS-
PKE scheme except for authenticity. PKEBC schemes can be instantiated
from a combination of public-key encryption, NIZKs, and commitments.

The current situation. In summary, we do have tools that give meaningful security
and privacy guarantees for group messaging even in face of corruptions. The
current state of the art [6, 17] leaves a few questions unanswered, however:

Limited deniability guarantees. The deniability (technically: OTR) guaran-
tees given by the combination of [6,17] are limited to the case where the secret
keys of honest senders remain secret. In particular, simulated ciphertexts are
only proven to look plausible when the corresponding sender key is unknown.
However, current deniability notions do not provide any guarantees if an
honest sender is forced (or blackmailed) to give away its secret key, in which
case the sender might not be able to plausibly deny having sent a message.

Limited unforgeability guarantees. The MDVS constructions and analyses
from [6] show unforgeability only in a setting in which an adversary has no
verification oracle. (Intuitively, in such designated-verifier settings, signatures
are not publicly verifiable, and hence typically adversaries are given access
to an explicit verification oracle [15,20].) This is undesirable, in particular
because a constructive modeling of MDVS schemes [16] requires such a
verification oracle. As a result, the resulting combined MDRS-PKE scheme
from [6,17] suffers from a similarly weak unforgeability guarantee.4

4 It should be noted that this shortcoming appears to have gone unnoticed. In particular,
[17] explicitly define and assume MDVS schemes that are unforgeable in the presence
of a verification oracle, while [6] simply do not prove this property about their
MDVS schemes. Technically speaking, this means the transformation of [17] cannot
be directly applied to the MDVS schemes from [6]. However, it is easy to see that
the results from [17] carry over to “weakly unforgeable” (in the above sense) MDVS
schemes, such that the result is simply a weakly unforgeable MDRS-PKE scheme.
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Limited scalability. The combined MDRS-PKE construction of [6, 17] has
ciphertexts whose sizes are quadratic in the number of receivers. This is clearly
undesirable for large groups. Furthermore, while the generic transformation
of [17] itself is tightly secure, i.e., gives security guarantees that do not
incur a loss in the number of parties or ciphertexts, the underlying primitives
from [6,17] are not known to be. In particular, the (known) security guarantees
of the final scheme degrade in the number of ciphertexts and users.

Gaps in some proofs. Unfortunately, some of the proofs in [6] appear incom-
plete. (See Section C in the Appendix for details.)

Our contribution. In this work, we construct a MDRS-PKE scheme that

– enjoys strong deniability guarantees (i.e. a strong OTR notion that takes
into account leaked sender secret keys),

– likewise enjoys strong unforgeability properties (that take into account ad-
versaries with a verification oracle),

– is scalable, in the sense that ciphertext sizes, encryption and decryption times
are linear in the number of receivers, and we can prove it tightly secure based
on primitives for which tightly secure instantiations are known.

Like [17], our MDRS-PKE scheme is based upon suitable MDVS and PKEBC
schemes. In fact, we use the same generic MDRS-PKE construction as [17], but
for more secure and more efficient MDVS and PKEBC schemes (that we also
provide). In particular, we provide

– a conceptually simple MDVS scheme that achieves strong OTR and strong
unforgeability guarantees (as explained above),

– a PKEBC scheme for which ciphertext sizes, and both encryption and de-
cryption times only grow linearly with the number of receivers.

Both of these schemes can be proven tightly secure from primitives that have
tightly secure instantiations from standard computational assumptions. In par-
ticular, unlike [6], we avoid the use of non-interactive key exchange, a primitive
which is known to be difficult to prove tightly secure [2, 12].

2 Technical Overview

We now give an overview of the techniques used to construct our MDRS-PKE
scheme. As aforementioned, our scheme is tightly secure under adaptive corrup-
tions and satisfies the new (stronger) OTR notion considered in this paper. The
main building blocks of our construction are: 1. a new MDVS scheme construction
satisfying (the MDVS analogous of) the new OTR security notion which is tightly
secure under adaptive corruptions; and 2. a new PKEBC scheme construction
with linear-size ciphertexts, and linear-time encryption and decryption which is
also tightly secure under adaptive corruptions. By following (a straightforward
generalization of) the transformation given in [17] we then obtain the intended
MDRS-PKE scheme. It is worth noting that, since the MDRS-PKE construction
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given in [17] uses the PKEBC scheme to encrypt a message whose size is already
linear in the number of receivers, it is not sufficient for the underlying PKEBC
scheme to have ciphertext sizes, encryption and decryption times that grow lin-
early with the number of receivers times the size of the message: it is necessary for
the PKEBC’s ciphertext sizes, encryption and decryption times to grow linearly
with the number of receivers plus the size of the message. This is exactly what
we achieve: when instantiated with our new MDVS and PKEBC constructions,
the MDRS-PKE construction given in [17] yields the first (MDRS-PKE) scheme
that satisfies the new stronger OTR notion, that has ciphertext size, encryption
and decryption times that grow linearly with the number of receivers, and that
is tightly secure under adaptive corruptions.

2.1 MDVS Construction

We now give an overview of our MDVS scheme construction. As a first step we
consider the case of a single verifier and show how to construct a Designated
Verifier Signature (DVS) scheme. This already conveys the main technical ideas
of our construction. Then we discuss how to generalize the DVS to the case of
multiple verifiers (MDVS), and, finally, we explain how to achieve tight security
under adaptive corruptions. The building blocks of all our (M)DVS constructions
are an IND-CPA secure PKE scheme, a One-Way Function (OWF) F and a
Simulation-Sound (SS) NIZK.

The DVS scheme. Our signature scheme is of the following form: the public
parameters pp consist of a public key pk of the PKE scheme, and a Common
Reference String crs of the NIZK argument system. The secret signing key
ssk is a pre-image xS of the OWF F and the signer’s public key spk is the
corresponding image (i.e. spk = yS = F (xS)). A verifier’s key-pair is similar,
except that it additionally includes a PKE key pair (pkV , skV ): the verifier’s
secret key vsk consists of a pre-image xV of F together with the PKE secret
key skV ; the verifier’s public key vpk are the corresponding public keys, i.e.
vpk = (pkV , yV := F (xV )). To sign a message m (using ssk = xS , and vpk =
(pkV , yV )), we first generate two ciphertexts, c and cpp: c encrypts the bit 1 under
the verifier’s public key pkV (the role of this will be clear soon); cpp encrypts the
tuple (m, 1, ssk) under the public key pk included in the public parameters pp.
Finally, we generate a NIZK proof π that binds the ciphertexts together: π proves
that both cpp and c are well-formed and encrypt the same bit b, and that if b = 1
then cpp encrypts a pre-image (under F ) of either yS or yV . The signature σ then
consists of the tuple (cpp, c, π). To verify a signature the receiver first verifies the
NIZK proof π and then decrypts ciphertext c using its PKE secret key skV ; the
signature is valid if π is a valid NIZK proof and the decryption of c is 1.

Simulating a signature works as follows: 1. for the case of a dishonest verifier,
to simulate a signature one proceeds just like an honest signer would to generate
a signature, the only difference being that cpp, instead of encrypting xS—the
pre-image of the signer’s public key—encrypts xV —the pre-image of the verifier’s
public key; 2. if the verifier is honest, one forges a signature by having c be an
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encryption of 0 under the verifier’s public PKE key pkV , cpp be an encryption
of the triple (m, 0, 0), and π be a NIZK proof. Note that, thanks to the NIZK
relation we consider, in both cases one can compute a valid NIZK proof π: in
the first case this is possible because cpp encrypts a pre-image of the verifier’s
secret key; for the latter case this is possible because c is an encryption of 0.

To understand why the DVS scheme sketched above is unforgeable note first
that if both the sender and the verifier are honest, by the one-wayness of F
the adversary does not know a pre-image of neither F (xS) nor F (xV ). On a
high level the proof proceeds as follows: we begin by changing both the public
parameter’s crs and each signature’s NIZK proof by simulated ones. We, next,
further modify the signatures the adversary sees by making cpp be an encryption
of a “0” string—possible by the IND-CPA security of the underlying PKE scheme.
Note that at this point all the adversary sees is independent of both ssk = xS

and vsk = xV .
5 Now suppose the adversary manages to come up with a forgery

(c∗pp, c
∗, π∗) corresponding to some message m∗ whose signature it has never seen:

if the forgery is valid then on one hand c∗ is encryption of bit 1 and on the other
hand π∗ is a valid NIZK proof; by (simulation) soundness this means that c∗pp
encrypts a pre-image of either yS or yV . However, at this point we can use the
PKE secret key corresponding to the public parameter’s public key to extract
the pre-image, contradicting the one-wayness of F .

Understanding why the scheme sketched above satisfies the (stronger) OTR
property is more involved (and refer the reader to the full proof of Theorem 6
for details). For simplicity, below we consider a weaker OTR notion—one where
the adversary is not given access to a signature verification oracle: 1. If the
verifier is dishonest the only differences between real and simulated signatures
are that in the first case cpp encrypts xS and the NIZK proof π is generated
using xS as (part of the) witness, whereas in the latter case cpp encrypts xV and
π is generated using xV . If an adversary were able to distinguish real signatures
from simulated ones then it would be either breaking the IND-CPA security of
the underlying PKE scheme, or the Zero-Knowledge security of the NIZK (or
both). 2. If the verifier is honest the differences between real signatures and
simulated ones are that in the first case cpp encrypts xS , c is an encryption of 1
and π is generated using xS , while in a simulated signature cpp encrypts a “0”
string, c is an encryption of 0 and π is no longer generated using a pre-image
of neither yS nor yV . So, if an adversary were be able to distinguish real and
simulated signatures then it could break the IND-CPA security of the underlying
PKE scheme—since it could distinguish either the cpp or the c ciphertexts—or
could break the Zero-Knowledge of the NIZK.

Generalizing for multiple verifiers. We now discuss how to extend the previous
construction to the case of multiple designated verifiers. The main difference
is that we additionally need to guarantee consistency—meaning that either all
honest verifiers accept a signature, or they all reject.

5 Here, independent is in the sense that all the adversary sees only depends on
yS := F (xS) and yV := F (xV ), but not on any pre-image of yS or yV .
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Signatures in our MDVS construction consist of a vector of ciphertexts
c⃗ = (c1, · · · , cn) (one per receiver) and a ciphertext cpp. Each ciphertext ci is the
encryption of a bit bi under the i-th receiver’s public key pkVi

, and the ciphertext
cpp is an encryption of the tuple (m, bglobal, α⃗ = (α1, · · · , αn)), where αi = (bi, xi),
under the public parameter’s public key pk. Similarly to the DVS construction,
signatures also contain a NIZK proof π that not only ensures ciphertexts are
well-formed and signatures are unforgeable, but also consistency. In particular, π
proves: 1. all ciphertexts in c⃗ and ciphertext cpp are well-formed—in particular
each ciphertext ci of c⃗ encrypts the bit bi that is in the αi encrypted in cpp;
2. for each verifier, say the i-th, if bi = 1 then the αi encrypted in cpp contains a
pre-image of either yS—the signer’s public key—or yVi

—the i-th verifier’s public
key—under F (this guarantees unforgeability); and 3. for each i-th verifier, if
the value xi in αi that is encrypted under cpp is not a pre-image of this verifier’s
public key yVi

then bi = bglobal (this guarantees consistency). Note that, if the
verification of the NIZK proof is deterministic, the NIZK’s soundness implies
that if two verifiers disagree on a signature’s validity, one of them is dishonest.

Achieving tight security under adaptive corruptions. While the MDVS construc-
tion above already satisfies correctness, consistency, unforgeability and OTR, we
do not know how to prove it is tightly secure under adaptive corruptions. Our
problem is that we do not know how a reduction could know in advance which
parties the adversary will corrupt (and thus ask for their secret keys) and which
ones it will not. Suppose for example we are reducing an adversary from breaking
some security property of the MDVS construction to breaking the IND-CPA
game of the underlying PKE scheme, and in particular consider a reduction that
simply guesses whether the adversary will corrupt a party Pi: on one hand, if
the reduction guesses incorrectly that Pi will be corrupted then it is not taking
advantage of the adversary to win the underlying IND-CPA game; on the other
hand, if the reduction incorrectly guesses Pi will not be corrupted—in which
case it would set Pi’s public key to be one output by the underlying IND-CPA
game—then we do not know how the reduction could handle a query for the
secret key of Pi—and so the reduction would again not be taking advantage
of the adversary to win the underlying IND-CPA game. So although one could
resort to this guessing technique to prove the security of the MDVS scheme under
adaptive corruptions (via a hybrid argument), this leads to a reduction loss that
grows linearly with the number of parties.

To void this reduction loss we follow the “two-key” technique already used
in the context of tightly secure public-key encryption [1]. In the new scheme,
and at a high level, the public key of each party Pi is a pair of public keys—say
(pk0, pk1)—from the previous scheme, and its secret key consists of a bit b—picked
uniformly at random—and the secret key skb corresponding to pkb. Signatures
then consist of cpp as before, a vector of ciphertexts that includes two ciphertexts
per verifier—one under each of the verifier’s public keys—and the NIZK proof
π—which now proves that cpp encrypts a pre-image of one of the public keys
of a party (rather than a single one as before). This technique allows to come
up with tight security reductions to the underlying building blocks: having the
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two keys allows, on one hand, to embed challenges in the part of the public key
whose corresponding secret key is “forgotten”, i.e. pk1−b, where b is the bit in
the party’s secret key, and on the other hand to handle any possible queries the
adversary may make, including ones where the party’s secret key is leaked.

2.2 PKEBC Construction

We now give a high level overview of our PKEBC scheme’s construction. We first
explain how to achieve linear sized ciphertexts and linear time encryption (in the
number of receivers), and then move towards making decryption time also linear.
(We note that the ciphertext size and both the encryption and decryption times
of the only prior PKEBC scheme construction (see [17]) all grow quadratically
in the number of receivers.) Since the technique we use to obtain tight security
reductions under adaptive corruptions is the same one we used in the MDVS
construction, we do not include it in this overview.

As building blocks, we assume an IND-CPA and IK-CPA secure PKE scheme, a
Simulation-Sound NIZK and a (one-time) IND-CPA secure Symmetric Encryption
(SKE) scheme. The public parameters of our PKEBC schemes are the same as for
the MDVS construction—comprising a public key of a PKE scheme and a crs

for a NIZK, i.e. pp = (pk, crs)—and in the two constructions discussed below a
PKEBC key-pair is simply a key-pair of the underlying PKE scheme.

Achieving linear ciphertext size and encryption time. As we now explain, the
main idea to achieve linear ciphertext sizes and encryption time (in the number
of receivers) is to use hybrid encryption.

To encrypt a message m to a vector of receiver public keys v⃗ = (pk1, . . . , pkn)
we first encrypt (v⃗,m) under the public parameters’ public key; let cpp denote the
resulting ciphertext and rpp the sequence of random bits used for this encryption.
Next we generate a symmetric key k for the SKE scheme and for each receiver
public key pki in v⃗ we encrypt k under pki, resulting in a vector of ciphertexts
(c1, . . . , cn). Then we use k to encrypt not only v⃗ and m, but also rpp; let csym
denote the resulting (symmetric) ciphertext. (Having csym encrypt v⃗, m and rpp
allows receivers to confirm they obtained the correct vector of receivers and
message: since the public parameter’s public key is honestly sampled, cpp is a
commitment to (v⃗,m), and since csym also encrypts rpp, a receiver can simply
recompute cpp; as we will see, this is key to guaranteeing correctness, robustness
and consistency.) Finally, we create a NIZK proof π showing that: 1. cpp is
an encryption of (v⃗,m) under the public parameters’ public key using rpp as
the sequence of random encryption bits; 2. the symmetric key k was correctly
sampled; 3. csym is an encryption under k of (rpp, v⃗,m); and 4. for each ciphertext
ci of c⃗, ci is an encryption of k under the i-th public key pki of v⃗. The final
ciphertext is then the quadruple c = (cpp, c⃗, csym, π). To decrypt a receiver first
checks if π is a valid NIZK proof; if π is valid the receiver then starts trying to
decrypt each ciphertext ci ∈ c⃗; for each symmetric key k′ the receiver obtains
from successfully decrypting a ciphertext ci, the receiver tries decrypting csym.
If the decryption of csym is successful, returning a triple (rpp, v⃗,m), the receiver
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checks if cpp indeed encrypts (v⃗,m) under the public parameters’ public key using
rpp as the random encryption coins, and if it does the receiver outputs (v⃗,m) as
the result of decryption. If it does not (or any of the decryption attempts failed)
the receiver moves on to the next ciphertext cj of c⃗, or returns the special error
symbol ⊥ if there are no more ciphertexts.

It is easy to see that for a vector of receivers v⃗ and message m both the
ciphertext size and the encryption time of the scheme are O(|v⃗|+ |m|), exactly
as we needed. Unfortunately, the scheme does not achieve linear time decryption:
in the worst case the decryption of each ciphertext ci ∈ c⃗ outputs a valid looking
symmetric key k′6, the decryption of csym is successful—which, given the size of
csym is linear in the number of receivers, already takes time linear in the number
of receivers—but then the triple (rpp

′, v⃗′,m′) resulting from csym’s decryption
does not match cpp, i.e. cpp is not the encryption of (v⃗′,m′) under the public key
of the public parameters, and using rpp

′ as the random encryption coins. Given
the number of ciphertexts of c⃗ is linear in the number of receivers, the time to
decrypt then grows quadratically in the number of receivers.

Achieving linear decryption time. To achieve linear time decryption receivers
need a fast way of checking if any particular ciphertext cj ∈ c⃗ is really meant
for them without having to decrypt csym, as this already takes linear time in the
number of receivers. A first idea is adding, for each receiver, an encryption of
a long enough 0 bitstring (and appropriately modifying the NIZK relation): to
decrypt, a receiver would then first check if the decryption of this new ciphertext
would output back the expected 0 bitstring, and if not the receiver would not
have to attempt decrypting the (linear sized) csym ciphertext. Unfortunately, this
approach only works for honestly generated ciphertexts. For instance, consider
two key-pairs (pk, sk), (pk′, sk′) of some arbitrary PKE scheme with pk ̸= pk′:
one cannot assume that an adversarially created encryption of a 0 bitstring
under pk does not decrypt, under the non-matching secret key sk′, to the same
0 bitstring (and, more generally, to any particular value). This means that a
dishonest sender could potentially come up with “malformed” ciphertexts that
would pass this first check, thus making a receiver have to decrypt the (large)
csym ciphertext and then recompute cpp to ensure consistency.

The way our scheme achieves linear time decryption is by pairing each
ciphertext ci ∈ c⃗ with: 1. a commitment to the i-th receiver’s public key pki;
and 2. a ciphertext that encrypts, under pki, the random coins used to generate
the commitment. More concretely, in our scheme there are three ciphertexts per
receiver, i.e. c⃗ = (c1, . . . , cn) with ci = (ci,0, ci,1, ci,2), where: ci,0 is an encryption,
under the public parameter’s public key, of the i-th receiver’s public key pki
using some sequence of random bits ri,0; ci,1 is an encryption, under pki, of the
random coins ri,0; and ci,2 is an encryption of the SKE key k used to encrypt
csym. As one might note, by appropriately modifying the NIZK statement, we can
ensure that receivers no longer need to recompute cpp to confirm they obtained

6 For an arbitrary PKE scheme a receiver cannot a priori tell whether a given ciphertext
is intended for itself.
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the correct pair (v⃗ = (pk1, . . . , pkn),m) from the decryption of csym: first, note
that the correctness of the underlying PKE scheme together with the soundness
of the NIZK (for the modified NIZK statement) guarantee that ciphertext cj,0 of
each triple cj = (cj,0, cj,1, cj,2) of c⃗ binds the triple to a single receiver public key
pkj ; second, the PKE scheme’s correctness with the NIZK’s soundness further
imply that ciphertext cj,2 of every triple is an encryption of the same symmetric
key k under the public key pkj bound to the triple; third, the SKE’s (perfect)
correctness again with the NIZK’s soundness imply that the decryption of csym
using the aforementioned key k yields the same pair (v⃗ = (pk1, . . . , pkn),m),
where for each i ∈ {1, . . . , n}, the triple ci ∈ c⃗ is bound to the (corresponding)
public key pki ∈ v⃗. Since, as explained above, receivers need not recompute cpp,
in the new scheme csym no longer encrypts the random coins rpp. Furthermore, as
each receiver’s public key pki is already encrypted under the public parameter’s
public key in ci,0, cpp no longer needs to encrypt vector v⃗; in the new scheme cpp
encrypts only the message m.

3 Preliminaries

We denote the arity of a vector x⃗ by |x⃗| and its i-th element by xi. We write
α ∈ x⃗ to denote ∃i ∈ {1, . . . , |x⃗|} with α = xi. We write Set(x⃗) to denote the set
induced by vector x⃗, i.e. Set(x⃗) := {xi | xi ∈ x⃗}.

Throughout the paper we frequently use vectors. We use upper case letters
to denote vectors of parties, and lower case letters to denote vectors of artifacts
such as public keys, sequences of random coins, etc. Moreover, we use the
convention that if V⃗ is a vector of parties, then v⃗ denotes V⃗ ’s corresponding
vector of public keys. For example, for a vector of parties V⃗ := (Bob,Charlie),

v⃗ := (pkBob, pkCharlie) is V⃗ ’s corresponding vector of public keys. In particular,
V1 is Bob and v1 is Bob’s public key pkBob, and V2 is Charlie and v2 is Charlie’s

public key pkCharlie. More generally, for a vector of parties V⃗ with corresponding

vector of public keys v⃗, Vi’s public key is vi, for i ∈ {1, . . . , |V⃗ |}.

4 Multi-Designated Verifier Signature Schemes with
Enhanced Off-The-Record Security

An MDVS scheme Π is a 6-tuple of Probabilistic Polynomial Time Algorithms
(PPTs) Π = (S,GS ,GV ,Sig,Vfy,Forge), where:

– S: on input 1k, generates public parameters pp;

– GS : on input pp, generates a signer key-pair (spk, ssk);

– GV : on input pp, generates a verifier key-pair (vpk, vsk);

– Sig: on input (pp, ssk, v⃗,m), where ssk is the signer’s secret key, v⃗ is the
vector of public verifier keys of the designated verifiers and m is the message,
generates a signature σ;

10



– Vfy: on input (pp, spk, vsk, v⃗,m, σ), where vsk is a verifier’s secret key, Vfy
checks if σ is a valid signature on message m with respect to signer’s public
key spk and vector of verifier public keys v⃗;

– Forge: on input (pp, spk, v⃗,m, s⃗), where spk is the signer’s public key, v⃗ is
the vector of the designated verifiers’ public keys, s⃗ is a vector of designated
verifiers’ secret keys—with |s⃗| = |v⃗| and where for i ∈ {1, . . . , |v⃗|}, either
si = ⊥ or si is the secret key corresponding to the i-th public key of v⃗, i.e.
vi—and m is the message, generates a forged signature σ.

In this section we introduce a new (stronger) Off-The-Record security notion
for MDVS schemes capturing the setting where the signer’s secret key can leak
(Definition 4) and give a new construction satisfying this stronger notion.

4.1 Security Notions

Let Π = (S,GS ,GV ,Sig,Vfy,Forge) be an MDVS scheme. The MDVS secu-
rity games ahead have an implicitly defined security parameter k, and provide
adversaries with access to the following oracles:

Public Parameter Generation Oracle: OPP

1. On the first call to OPP , compute pp← S(1k); output pp;
2. On subsequent calls, simply output pp.

Signer Key-Pair Generation Oracle: OSK(Ai)
1. On the first call to OSK on input Ai, compute (spki, sski) ← GS(pp),

and output (spki, sski);
2. On subsequent calls, simply output (spki, sski).

Verifier Key-Pair Generation Oracle: OV K(Bj)
1. Analogous to the Signer Key-Pair Generation Oracle.

Signer Public-Key Oracle: OSPK(Ai)
1. (spki, sski)← OSK(Ai); output spki.

Verifier Public-Key Oracle: OV PK(Bj)
1. Analogous to the Signer Public-Key Oracle.

Signing Oracle: OS(Ai, V⃗ ,m)
1. (spki, sski)← OSK(Ai);
2. v⃗ = (OV PK(V1), . . . ,OV PK(V|V⃗ |));

3. Output σ ← Sigpp(sski, v⃗,m).

Verification Oracle: OV (Ai, Bj , V⃗ ,m, σ)
1. spki ← OSPK(Ai);
2. v⃗ = (OV PK(V1), . . . ,OV PK(V|V⃗ |));

3. (vpkj , vskj)← OV K(Bj);
4. Output d← Vfypp(spki, vskj , v⃗,m, σ), where d ∈ {0, 1}.

Definition 1 (Correctness). Game system GCorr provides an adversary A
with access to oracles OPP , OSK , OV K , OSPK , OV PK , OS and OV . A wins the
game if there are two queries qS and qV to OS and OV , respectively, where qS
has input (Ai, V⃗ ,m) and qV has input (Ai

′, Bj , V⃗
′,m′, σ), satisfying (Ai, V⃗ ,m) =

11



(Ai
′, V⃗ ′,m′), Bj ∈ V⃗ , the input σ in qV is the output of the oracle OS on query

qS, and the output of the oracle OV on the query qV is 0. The advantage of A
in winning the Correctness game, denoted AdvCorr(A), is the probability that A
wins game GCorr as described above.

We say an adversary A (ε, t)-breaks the (nV , qS , qV )-Correctness of Π if A
runs in time at most t, queries OV K , OV PK , OS and OV on at most nV different
verifiers, makes at most qS and qV queries to OS and OV , respectively, and
satisfies AdvCorr(A) ≥ ε.

Definition 2 (Consistency). Game GCons provides an adversary A with access
to oracles OPP , OSK , OV K , OSPK , OV PK , OS and OV . We say that A wins
the game if it queries OV on inputs (Ai, Bj , V⃗ ,m, σ) and (Ai

′, Bj
′, V⃗ ′,m′, σ′)

with (Ai, V⃗ ,m, σ) = (Ai
′, V⃗ ′,m′, σ′) and where {Bj , Bj

′} ⊆ V⃗ , the outputs of the
two queries differ, and there is no OV K query on either Bj or Bj

′. The advantage

of A in winning the Consistency game, denoted AdvCons(A), is the probability
that A wins game GCons as described above.

An adversary A (ε, t)-breaks the (nV , qV )-Consistency of Π if A runs in time
at most t, queries OV K , OV PK , OS and OV on at most nV different verifiers,
makes at most qV queries to OV and satisfies AdvCons(A) ≥ ε.

Definition 3 (Unforgeability). Game system GUnforg provides an adversary A
with access to oracles OPP , OSK , OV K , OSPK , OV PK , OS and OV . A wins if it
makes a query OV (Ai

∗, Bj
∗, V⃗ ∗,m∗, σ∗) with Bj

∗ ∈ V⃗ ∗ that outputs 1, for every

query OS(Ai
′, V⃗ ′,m′), (Ai

∗, V⃗ ∗,m∗) ̸= (Ai
′, V⃗ ′,m′), and there is no OSK query

on Ai
∗ nor OV K query on Bj

∗. The advantage of A in winning the Unforgeability

game is the probability that A wins GUnforg, and is denoted AdvUnforg(A).

An adversary A (ε, t)-breaks the (nS , nV , qS , qV )-Unforgeability of Π if A
runs in time at most t, queries OSK , OSPK , OS and OV on at most nS different
signers, OV K , OV PK , OS and OV on at most nV different verifiers, makes at most
qS and qV queries to OS and OV , respectively, and satisfies AdvUnforg(A) ≥ ε.

4.1.1 New Off-The-Record Security Notion. We now present the new
enhanced off-the-record security notion for MDVS schemes. As already mentioned,
the main difference between our new notion and the existing one (see [6, 17]) is
that in our new notion the adversary can query for the secret key of any sender
(and still win the game). This is reflected in Definition 4 in that there is no
restriction on which signer secret keys an adversary may query.

The off-the-record security notion defines two game systems, GOTR
0 and GOTR

1 ,
which provide adversaries with access to an additional oracle OChallenge whose
behavior varies depending on the underlying game system:

Challenge Oracle: OChallenge(type ∈ {sig, sim}, Ai, V⃗ ,m, C)
For game system GOTR

b , the oracle behaves as follows:
1. (spki, sski)← OSK(Ai);
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2. Let v⃗ = (v1, . . . , v|V⃗ |) and s⃗ = (s1, . . . , s|V⃗ |), where, for i ∈ {1, . . . , |V⃗ |}:

– (vi, si) =

 OV K(Vi) if Vi ∈ C

(OV PK(Vi),⊥) otherwise;

3. (σ0, σ1)← (Π.Sigpp(sski, v⃗,m), Π.Forgepp(spki, v⃗,m, s⃗));
4. If b = 0, output σ0 if type = sig and σ1 if type = sim; otherwise, if

b = 1, output σ1.

Definition 4 (Off-The-Record). For b ∈ {0, 1}, game GOTR
b provides an

adversary A with access to oracles OPP , OSK , OV K , OSPK , OV PK , OV and
OChallenge. We say that A wins the game if it outputs a guess bit b′ with b′ = b,

and for every query OChallenge(type, Ai, V⃗ ,m, C): 1. C ⊆ Set(V⃗ ); 2. there is no

query OV K(Bj) with Bj ∈ Set(V⃗ ) \ C; 3. letting σ be the output of the OChallenge

query above, there is no query OV (Ai, Bj , V⃗ ,m, σ) with Bj ∈ V⃗ . The advantage
of A in winning the Off-The-Record security game is

AdvOTR(A) :=
∣∣∣Pr[AGOTR

0 = win] + Pr[AGOTR
1 = win]− 1

∣∣∣.
An adversary A (ε, t)-breaks the (nV , dS , qS , qV )-Off-The-Record security of

Π if A runs in time at most t, queries OV K , OV PK , OV and OChallenge on at
most nV different verifiers, makes at most qS and qV queries to OChallenge and
OV , respectively, with the sum of the verifier vectors’ lengths input to OChallenge

being at most dS , and satisfies AdvOTR(A) ≥ ε. We say that Π is

(εCorr, εCons, εUnforg, εOTR, t, nS , nV , dS , qS , qV )-secure

if there is no adversary A that: 1. (εCorr, t)-breaks Π’s (nV , qS , qV )-Correctness;
2. (εCons, t)-breaksΠ’s (nV , qV )-Consistency; 3. (εUnforg, t)-breaksΠ’s (nS , nV , qS ,
qV )-Unforgeability; or 4. (εOTR, t)-breaks Π’s (nV , dS , qS , qV )-Off-The-Record.

4.2 DVS Construction

We present our MDVS construction incrementally.7 We begin by giving a con-
struction of a (single verifier) DVS scheme (see Algorithm 1) that is Correct
(Definition 1), Unforgeable (Definition 3) and Off-The-Record (Definition 4);
next, we generalize it into an MDVS scheme (which has to additionally satisfy
consistency); finally, we use a technique first introduced by Bader et al. in [1] to
make the scheme tightly secure under adaptive corruptions. The building blocks
for all our constructions are a NIZK scheme ΠNIZK = (G,P,V,S := (SG,SP )), a
PKE scheme ΠPKE = (G,E,D), and a One Way Function ΠOWF = (S,F).

For modularity, rather than introducing a single language/relation for the
NIZK scheme used by our constructions, we will introduce different relations
and then define the relation/language for our constructions as the intersection of

7 We only prove the security of the final MDVS construction given in Section 4.4.
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these relations. For example, in Algorithm 1 we consider the language induced
by a relation RDVS := RDVS-Match ∩RDVS-Unforg, where

•RDVS-Match :=
{(

(pkpp, spk, vpk,m, c, cpp), (a, b, r, rpp)
)
|(

cpp = ΠPKE.Epkpp

(
(m, b, a); rpp

))
∧

(
c = ΠPKE.Evpk.pk(b; r)

)}
;

•RDVS-Unforg :=
{(

(pkpp, spk, vpk,m, c, cpp), (a, b, r, rpp)
)
|

(b = 1)→ (ΠOWF.F(a) ∈ {spk.y, vpk.y})
}
.

The corresponding language is then defined as LDVS := {(pkpp, spk, vpk,m, c, cpp) |
∃(a, b, r, rpp) :

(
(pkpp, spk, vpk,m, c, cpp), (a, b, r, rpp)

)
∈ RDVS}.

Algorithm 1 DVS scheme construction ΠDVS = (S,GS ,GV ,Sig,Vfy,Forge).

S(1k)

(pk, sk)← ΠPKE.G(1k)

return pp := (1k, crs← ΠNIZK.G(1k), pk)

GS(pp)

x← ΠOWF.S(1
k)

return (spk := ΠOWF.F(x), ssk := (spk, x))

GV (pp)

(pk, sk)← ΠPKE.G(1k)

x← ΠOWF.S(1
k)

return (vpk := (ΠOWF.F(x), pk), vsk := (vpk, sk, x))

Sigpp(ssk, vpk,m)

c← ΠPKE.Evpk.pk(1; r)

cpp ← ΠPKE.Epp.pk

(
(m, 1, ssk.x); rpp

)
p← ΠNIZK.Pcrs

(
(pp.pk, spk, vpk,m, c, cpp) ∈ LDVS, (ssk.x, 1, r, rpp)

)
return σ := (p, c, cpp)

Vfypp(spk, vsk,m, σ := (p, c, cpp))

b← ΠNIZK.Vcrs

(
(pp.pk, spk, vpk,m, c, cpp) ∈ LDVS, p

)
return b ∧ ΠPKE.Dvsk.sk(c)

Forgepp(spk, vpk,m, vsk)
if vsk ̸= ⊥ then ▷ Forge using verifier’s secret key.

c← ΠPKE.Evpk.pk(1; r)

cpp ← ΠPKE.Epp.pk

(
(m, 1, vsk.x); rpp

)
p← ΠNIZK.Pcrs

(
(pp.pk, spk, vpk,m, c, cpp) ∈ LDVS, (vsk.x, 1, r, rpp)

)
else ▷ Forge without using verifier’s secret key.

c← ΠPKE.Evpk.pk(0; r)

cpp ← ΠPKE.Epp.pk

(
(m, 0, 0); rpp

)
p← ΠNIZK.Pcrs

(
(pp.pk, spk, vpk,m, c, cpp) ∈ LDVS, (0, 0, r, rpp)

)
return σ := (p, c, cpp)

In our scheme a signature consists of two ciphertexts, c and cpp, together
with a NIZK proof p which is the key for guaranteeing signature unforgeability.
Informally, ΠNIZK’s soundness guarantees that, on one hand, since RDVS ⊆
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RDVS-Match, ciphertexts cpp and c encrypt the same bit b, and on the other
hand, since RDVS ⊆ RDVS-Unforg, if this bit b is 1 (in which case the signature
verification succeeds), cpp encrypts either the signer’s or the verifier’s secret key.

4.3 A Conceptually Simple MDVS Construction

We now show how to generalize the DVS scheme from before into an MDVS
scheme. Our MDVS scheme construction is defined in Algorithm 2 and is analo-
gous to the DVS scheme from before, but adapted to the multi-verifier case. The
main difference is that MDVS schemes need to guarantee consistency.

In the following, let α⃗ := ((b1, a1), . . . , (b|α⃗|, a|α⃗|)); we assume for simplicity
that all vectors have matching lengths, i.e. |v⃗| = |⃗c| = |α⃗|.

•RMDVSstatic-Match :=

{(
(pkpp, spk, v⃗,m, c⃗, cpp), (α⃗, r⃗, rpp, b)

)
:[

cpp = ΠPKE.Epkpp

(
(m, b, α⃗); rpp

)]
∧
[ ∧
i∈{1,...,|v⃗|}

(
ci = ΠPKE.Evi.pk(bi; ri)

)]}

•RMDVSstatic-Unforg :=

{(
(pkpp, spk, v⃗,m, c⃗, cpp), (α⃗, r⃗, rpp, b)

)
:∧

i∈{1,...,|v⃗|}

(
(bi = 1)→ (ΠOWF.F(ai) ∈ {spk.y, vi.y})

)}

•RMDVSstatic-Cons :=

{(
(pkpp, spk, v⃗,m, c⃗, cpp), (α⃗, r⃗, rpp, b)

)
:∧

i∈{1,...,|v⃗|}

(
(ΠOWF.F(ai) ̸= vi.y)→ (bi = b)

)}
.

Similarly to RDVS, and for the sake of modularity, we define relation RMDVSstatic as
RMDVSstatic := RMDVSstatic-Match∩RMDVSstatic-Unforg∩RMDVSstatic-Cons. In Algorithm 2,
we consider the respective induced language LMDVSstatic := {(pkpp, spk, v⃗,m, c⃗, cpp) |
∃(α⃗, r⃗, rpp, b) :

(
(pkpp, spk, v⃗,m, c⃗, cpp), (α⃗, r⃗, rpp, b)

)
∈ RMDVSstatic}.

Note that, since RMDVSstatic ⊆ RMDVSstatic-Match ∩ RMDVSstatic-Unforg, ΠNIZK’s
soundness guarantees that if for any i ∈ {1, . . . , |v⃗|}, ci is an encryption of 1, then
cpp contains either the signer’s secret key or the i-th verifier’s secret key. Similarly,
since RMDVSstatic ⊆ RMDVSstatic-Match ∩RMDVSstatic-Cons, ΠNIZK’s soundness implies
that every designated verifier Bj whose secret key is not in cpp’s underlying
plaintext will agree on whether the signature is valid.

4.4 Achieving Tight Security under Adaptive Corruptions

We now show how to transform the MDVS scheme from before into one that is
tightly secure under adaptive corruptions. The main challenge here is finding a
way to embed the challenges from the security games of the underlying PKE and
OWF building blocks into the reductions (in such a way that the reduction is
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Algorithm 2 Πstat
MDVS.

S(1k)

(pk, sk)← ΠPKE.G(1k)

return pp := (1k, crs← ΠNIZK.G(1k), pk)

GS(pp)

x← ΠOWF.S(1
k)

return (spk := ΠOWF.F(x), ssk := (spk, x))

GV (pp)

(pk, sk)← ΠPKE.G(1k)

x← ΠOWF.S(1
k)

return (vpk := (ΠOWF.F(x), pk), vsk := (vpk, sk, x))

Sigpp(ssk, v⃗ := (vpk1, . . . , vpk|v⃗|),m)

for each i ∈ {1, . . . , |v⃗|} do
ci ← ΠPKE.Evi.pk

(1; ri)

(c⃗, r⃗)← ((c1, . . . , c|v⃗|), (r1, . . . , r|v⃗|))
α⃗← (α1 := (1, ssk.x), . . . , α|v⃗| = (1, ssk.x))
cpp ← ΠPKE.Epp.pk((m, 1, α⃗); rpp)

p← ΠNIZK.Pcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSstatic , (α⃗, r⃗, rpp, 1)

)
return σ := (p, c⃗, cpp)

Vfypp(spk, vsk, v⃗,m, σ := (p, c⃗, cpp))

if ΠNIZK.Vcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSstatic , p

)
= 1 then

for i = 1, . . . , |v⃗| do
if vsk.vpk = vi then

return ΠPKE.Dvsk.sk(ci)

return 0

Forgepp(spk, v⃗,m, s⃗ := (vsk1, . . . , vsk|v⃗|))

for each i ∈ {1, . . . , |v⃗|} do
if si ̸= ⊥ then

ci ← ΠPKE.Evi.pk
(1; ri)

αi ← (1, si.x)
else

ci ← ΠPKE.Evi.pk
(0; ri)

αi ← (0, 0)

(c⃗, r⃗)← ((c1, . . . , c|v⃗|), (r1, . . . , r|v⃗|))
α⃗← (α1, . . . , α|v⃗|)
cpp ← ΠPKE.Epp.pk((m, 0, α⃗); rpp)

p← ΠNIZK.Pcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSstatic , (α⃗, r⃗, rpp, 0)

)
return σ := (p, c⃗, cpp)
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tight on the security of the underlying building blocks) while still being able to
answer queries for the secret keys of signers and/or verifiers. To achieve this, we
rely on a technique that was first introduced in [1]. Essentially, for each party
two key-pairs are now sampled; the party’s public key are the public keys of each
of the underlying key-pairs, and the secret key is the secret key of one (and only
one) of these key-pairs. This allows answering secret key queries by the adversary
while still being able to embed challenges from the underlying security games
into reductions.

Let α⃗ := ((b1, a1), . . . , (b|α⃗|, a|α⃗|)); in the following, vectors are assumed to
have matching lengths:

•RMDVSadap-Match :=

{(
(pp.pk, spk, v⃗,m, c⃗, cpp), (α⃗, r⃗, rpp, b)

)
:(

cpp = ΠPKE.Epp.pk((m, b, α⃗); rpp)
) ∧

[ ∧
i∈{1,...,|v⃗|}

(
(ci,0 = ΠPKE.Evi.pk0

(bi; ri,0)) ∧ (ci,1 = ΠPKE.Evi.pk1
(bi; ri,1))

)]}

•RMDVSadap-Unforg :=

{(
(pp.pk, spk, v⃗,m, c⃗, cpp), (α⃗, r⃗, rpp, b)

)
:∧

i∈{1,...,|α⃗|}

(
(bi = 1)→ (ΠOWF.F(ai) ∈ {spk.y0, spk.y1, vi.y0, vi.y1})

)}

•RMDVSadap-Cons :=

{(
(pp.pk, spk, v⃗,m, c⃗, cpp), (α⃗, r⃗, rpp, b)

)
:∧

i∈{1,...,|α⃗|}

(
(ΠOWF.F(ai) ̸∈ {vi.y0, vi.y1})→ (bi = b)

)}
.

As in Section 4.3, we define RMDVSadap := RMDVSadap-Match ∩ RMDVSadap-Unforg ∩
RMDVSadap-Cons; in Algorithm 3, we consider the language LMDVSadap that is in-
duced by RMDVSadap , which is defined as: LMDVSadap := {(pp.pk, spk, v⃗,m, c⃗, cpp) |
∃(α⃗, r⃗, rpp, b) :

(
(pp.pk, spk, v⃗,m, c⃗, cpp), (α⃗, r⃗, rpp, b)

)
∈ RMDVSadap}.

4.4.1 Security Analysis of Πadap

MDVS
The theorem below gives an informal

summary of our construction’s security properties. The formal security theorems
(and the corresponding full proofs) are in the appendix (see Section B.2).

Theorem 1 (Informal). If ΠPKE is correct and tightly multi-user and multi-
challenge IND-CPA and IK-CPA secure under non-adaptive corruptions, ΠNIZK

is complete, sound, tightly multi-statement adaptive zero-knowledge and tightly
multi-statement simulation sound, and ΠOWF is tightly multi-instance secure
under non-adaptive corruptions, then Πadap

MDVS is:

1. tightly correct (Theorem 3);
2. tightly consistent under adaptive corruptions (Theorem 4);
3. tightly unforgeable under adaptive corruptions (Theorem 5); and
4. tightly off-the-record under adaptive corruptions (Theorem 6).
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Algorithm 3 The Πadap
MDVS MDVS scheme.

S(1k)

(pk, sk)← ΠPKE.G(1k)

return pp := (1k, crs← ΠNIZK.G(1k), pk)

GS(pp)

(x0, x1)← (ΠOWF.S(1
k), ΠOWF.S(1

k))
(y0, y1)← (ΠOWF.F(x0), ΠOWF.F(x1))
b← RandomCoin
return (spk := (y0, y1), ssk := (spk, x := xb))

GV (pp)

((pk0, sk0), (pk1, sk1))← (ΠPKE.G(1k), ΠPKE.G(1k))

(x0, x1)← (ΠOWF.S(1
k), ΠOWF.S(1

k))
(y0, y1)← (ΠOWF.F(x0), ΠOWF.F(x1))
b← RandomCoin
return (vpk := (pk0, y0, pk1, y1), vsk := (vpk, b, sk := skb, x := xb))

Sigpp(ssk, v⃗ := (vpk1, . . . , vpk|v⃗|),m)

for each i ∈ {1, . . . , |v⃗|} do
(ci,0, ci,1)← (ΠPKE.Evi.pk0

(1; ri,0), ΠPKE.Evi.pk1
(1; ri,1))

(c⃗, r⃗)← (((c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)), ((r1,0, r1,1), . . . , (r|v⃗|,0, r|v⃗|,1)))
α⃗← (α1 := (1, ssk.x), . . . , α|v⃗| := (1, ssk.x))
cpp ← ΠPKE.Epp.pk((m, 1, α⃗); rpp)

p← ΠNIZK.Pcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , (α⃗, r⃗, rpp, 1)
)

return σ := (p, c⃗, cpp)

Vfypp(spk, vsk, v⃗,m, σ := (p, c⃗, cpp))

if ΠNIZK.Vcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , p
)
= 1 then

for i = 1, . . . , |v⃗| do
if vsk.vpk = vi then

return ΠPKE.Dvsk.sk(ci,vsk.b)

return 0

Forgepp(spk, v⃗,m, s⃗ := (vsk1, . . . , vsk|v⃗|))

for each i ∈ {1, . . . , |v⃗|} do
if si ̸= ⊥ then

(ci,0, ci,1)← (ΠPKE.Evi.pk0
(1; ri,0), ΠPKE.Evi.pk1

(1; ri,1))
αi := (1, si.x)

else
(ci,0, ci,1)← (ΠPKE.Evi.pk0

(0; ri,0), ΠPKE.Evi.pk1
(0; ri,1))

αi := (0, 0)

(c⃗, r⃗)← (((c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)), ((r1,0, r1,1), . . . , (r|v⃗|,0, r|v⃗|,1)))
α⃗← (α1, . . . , α|v⃗|)
cpp ← ΠPKE.Epp.pk((m, 0, α⃗); rpp)

p← ΠNIZK.Pcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , (α⃗, r⃗, rpp, 0)
)

return σ := (p, c⃗, cpp)
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4.4.2 On Efficiently Instantiating the NIZK Relations All the relations
we consider consist of checking a number of equations over a pairing-friendly
group, when implemented with suitably algebraic primitives. (For instance, we
can use ElGamal [7] as the PKE scheme, and a pairing with one fixed input as the
One Way Function.) Then, we can use a simulation-sound variant of Groth-Sahai
proofs [10, 11] as a compatible NIZK scheme to prove these relations. This yields
proofs that are only linear-sized in the number of witness variables and equations.
Of course, this will result in an unoptimized solution that may not be quite
practical yet.

5 PKEBC Scheme with Linear Ciphertext Size and
Decryption Time

A PKEBC scheme Π is a quadruple Π = (S,G,E,D) of PPTs, where:

– S: on input 1k, generates public parameters pp;
– G: on input pp, generates a receiver key-pair (pk, sk);
– E: on input (pp, v⃗,m), where v⃗ is a vector of public keys of the intended

receivers and m is the message, generates a ciphertext c;
– D: on input (pp, sk, c), where sk is the receiver’s secret key, D decrypts c

using sk, and outputs the decrypted receiver-vector/message pair (v⃗,m) (or
⊥ if the ciphertext did not decrypt correctly).

In this section we introduce new security notions capturing the security of
PKEBC schemes under adaptive corruptions and give a new construction of a
PKEBC scheme that not only is tightly secure under these stronger notions, but
also for which both the ciphertext size and the decryption time only grow linearly
with the number of receivers.

5.1 Security Notions for Adaptive Corruptions

The security notions we now introduce are a strengthening of the original ones
introduced by Maurer et al. in [17], but capturing the security of PKEBC schemes
under adaptive corruptions. More concretely, in the Correctness, Robustness and
Consistency notions adversaries are now allowed to query for the secret keys of
any receiver and still win the game; in the (IND+ IK)-CCA-2adap security games—
a combination of the original IND-CCA-2 and IK-CCA-2 security notions [17]
capturing adaptive corruptions—adversaries can now corrupt parties adaptively.
(Our (IND+ IK)-CCA-2adap security notion can also be interpreted as a variant
of the notion introduced by Lee et al. in [14]—which captures the IND-CCA-2
security of PKE schemes under adaptive corruptions—but adapted for PKEBC
schemes and also capturing anonymity.)

We now introduce some oracles that the game systems ahead provide to the
adversaries. In the following, consider a PKEBC scheme Π = (S,G,E,D) with
message space M. The oracles below are defined for a game-system with (an
implicitly defined) security parameter k:
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Public Parameters Oracle: OPP

1. On the first call, compute and store pp← S(1k); output pp;

2. On subsequent calls, output the previously generated pp.

Secret Key Generation Oracle: OSK(Bj)

1. If OSK was queried on Bj before, simply look up and return the previously
generated key for Bj ;

2. Otherwise, store (pkj , skj)← G(pp) asBj ’s key-pair, and output (pkj , skj).

Public Key Generation Oracle: OPK(Bj)

1. (pkj , skj)← OSK(Bj);

2. Output pkj .

Encryption Oracle: OE(V⃗ ,m)

1. v⃗ ← (OPK(V1), . . . ,OPK(V|V⃗ |));

2. Create and output a fresh encryption c← Epp,v⃗(m).

Decryption Oracle: OD(Bj , c)

1. Query OSK(Bj) to obtain the corresponding secret-key skj ;

2. Decrypt c using skj , (v⃗,m)← Dpp,skj (c), and then output the resulting
receivers-message pair (v⃗,m), or ⊥ (if (v⃗,m) = ⊥, i.e. the ciphertext is
not valid with respect to Bj ’s secret key).

Definition 5 (Correctness). Game GCorr provides an adversary A with access
to oracles OPP , OSK , OPK , OE and OD. A wins the game if there are two
queries qE and qD to OE and OD, respectively, where qE has input (V⃗ ,m) and

qD has input (Bj , c), satisfying Bj ∈ V⃗ , the input c in qD is the output of qE,
and the output of qD is either ⊥ or (v⃗′,m′) with (v⃗,m) ̸= (v⃗′,m′). The advantage
of A in winning the Correctness game, denoted AdvCorr(A), is the probability
that A wins game GCorr as described above.

An adversary A (εCorr, t)-breaks the (n, dE , qE , qD)-Correctness of a PKEBC
scheme Π if A runs in time at most t, queries OSK , OPK , OE and OD on at most
n different parties, makes at most qE and qD queries to OE and OD, respectively,
with the sum of lengths of the party vectors input to OE being at most dE , and
satisfies AdvCorr(A) ≥ εCorr.

Definition 6 (Robustness). Game GRob provides an adversary A with access
to oracles OPP , OSK , OPK , OE and OD. A wins the game if there are two
queries qE and qD to OE and OD, respectively, where qE has input (V⃗ ,m) and

qD has input (Bj , c), satisfying Bj ̸∈ V⃗ , the input c in qD is the output of qE, and
the output of qD is (v⃗′,m′) with (v⃗′,m′) ̸= ⊥. The advantage of A in winning the
Robustness game is the probability that A wins game GRob as described above,
and is denoted AdvRob(A).

An adversary A (εRob, t)-breaks the Robustness of a PKEBC scheme Π if A
runs in time at most t and satisfies AdvRob(A) ≥ εRob.
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Definition 7 (Consistency). Game GCons provides an adversary A with access
to oracles OPP , OSK , OPK and OD. A wins the game if there is a ciphertext c
such that OD is queried on inputs (Bi, c) and (Bj , c) for some Bi and Bj (possibly
with Bi = Bj), query OD(Bi, c) outputs some (v⃗,m) satisfying (v⃗,m) ̸= ⊥
with pkj ∈ v⃗ (where pkj is Bj’s public key), and query OD(Bj , c) does not
output (v⃗,m). The advantage of A in winning the Consistency game is denoted
AdvCons(A) and corresponds to the probability that A wins game GCons.

We say that an adversary A (εCons, t)-breaks the (n, qD)-Consistency of Π
if A runs in time at most t, queries OSK , OPK and OD on at most n different
parties, makes at most qD queries to OD and satisfies AdvCons(A) ≥ εCons.

Below we present the definition of (IND+ IK)-CCA-2adap security. This notion
is a combination of the original IND-CCA-2 and IK-CCA-2 security notions in-
troduced in [17] that captures adaptive security (i.e. the adversary is allowed
to corrupt parties adaptively). The games defined by this definition provide
adversaries with access to the oracles OPP , OSK and OPK defined above, as well
as to oracles OE and OD defined below:

Encryption Oracle: OE

(
(V⃗0,m0), (V⃗1,m1)

)
1. For game system G

(IND + IK)-CCA-2adap

b , encrypt mb under v⃗b, the vector of

public keys corresponding to V⃗b; output c.
Decryption Oracle: OD(Bj , c)

1. If c was the output of some query to OE , output test;
2. Otherwise, compute and output (v⃗,m) ← Dpp,skj (c), where skj is Bj ’s

secret key.

Definition 8 ((IND+ IK)-CCA-2adap Security). For b ∈ {0, 1}, game system

G
(IND + IK)-CCA-2adap

b provides an adversary A with access to oracles OPP , OSK ,
OPK , OE and OD. A wins the game if it outputs a guess bit b′ satisfying b′ = b
and for every query OE

(
(V⃗0,m0), (V⃗1,m1)

)
: 1. |V⃗0| = |V⃗1|; 2. |m0| = |m1|; and

3. there is no query to OSK on any Bj ∈ Set(V⃗0) ∪ Set(V⃗1) at any point during
the game. We define the advantage of A in winning the (IND+ IK)-CCA-2adap

game as

Adv (IND + IK)-CCA-2adap(A) :=∣∣∣Pr[AG
(IND + IK)-CCA-2adap

0 = win] + Pr[AG
(IND + IK)-CCA-2adap

1 = win]− 1
∣∣∣.

We say that an adversary A (ε, t)-breaks the (n, dE , qE , qD)-(IND+ IK)-
CCA-2adap security of Π if A runs in time at most t, queries the oracles it
has access to on at most n different parties, makes at most qE and qD queries
to oracles OE and OD, respectively, with the sum of lengths of all the party

vectors input to OE being at most dE , and satisfies Adv (IND + IK)-CCA-2adap(A) ≥ ε.
Finally, we say that Π is

(εCorr,εRob, εCons, ε(IND+IK)-CCA-2adap , t, n, dE , qE , qD, adap)-secure,
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if there is no adversary A that: 1. (εCorr, t)-breaks Π’s (n, dE , qE , qD)-Correctness;
2. (εRob, t)-breaks Π’s Robustness; 3. (εCons, t)-breaks Π’s (n, qD)-Consistency; or
4. (ε(IND+IK)-CCA-2adap , t)-breaks Π’s (n, dE , qE , qD)-(IND+ IK)-CCA-2adap security.

5.2 Achieving Linear Ciphertext Size

As before, we present our PKEBC construction incrementally (and only prove the
security of the final PKEBC construction given Section 5.4). Our first PKEBC
scheme is defined in Algorithm 4. Like Maurer et al.’s scheme [17], our construction
is a generalization of Naor-Yung’s PKE scheme for multiple receivers (see [19]).
However, while Maurer et al.’s scheme encrypts, for each receiver, the vector
of all receivers’ public keys plus the message—leading not only to quadratic
sized ciphertexts but also to quadratic encryption and decryption time—our
scheme instead relies on a SKE scheme ΠSKE to encrypt the vector of all receivers
plus the message under a key k that is then encrypted under each receiver’s
public key, resembling the hybrid encryption technique [22]. Furthermore, while
Maurer et al.’s construction relies on a binding commitment scheme in order
to achieve consistency, our scheme instead uses a PKE scheme: note that as
long as a PKE key-pair (pk, sk) is sampled honestly, by the correctness of
the PKE scheme, the encryption of any message m under pk also works as a
commitment to m.8 The building blocks of this first scheme consist of a PKE
scheme ΠPKE = (G,E,D), a SKE scheme ΠSKE = (G,E,D) and a NIZK scheme
ΠNIZK = (G,P,V,S := (SG,SP )). In the following, vectors are assumed to have
matching lengths; consider relation RPKEBClin-ctxt defined as

RPKEBClin-ctxt :=

{(
(1k, pkpp, cpp, c⃗, csym), (v⃗,m, rpp, r⃗, rsym, rsym

′)
)
: (5.1)(

ksym = ΠSKE.G(1k; rsym)
)
∧
(
csym = ΠSKE.E

(
ksym, (rpp, v⃗,m); rsym

′))∧[ ∧
j∈{1,...,|⃗c|}

(
cj = ΠPKE.Evj (ksym; rj)

)]
∧ (cpp = ΠPKE.Epkpp

((v⃗,m); rpp))

}
.

In Algorithm 4, we consider the language LPKEBClin-ctxt that is induced by relation
RPKEBClin-ctxt : LPKEBClin-ctxt := {(1k, pkpp, cpp, c⃗, csym) | ∃(v⃗,m, rpp, r⃗, rsym, rsym

′) :(
(1k, pkpp, cpp, c⃗, csym), (v⃗,m, rpp, r⃗, rsym, rsym

′)
)
∈ RPKEBClin-ctxt}.

5.3 Achieving Linear Time Decryption

As discussed in Section 2.2, while the scheme given in Section 5.2 already achieves
linear size ciphertexts and linear time encryption, it does not achieve linear
time decryption. We now show how to modify Π lin-ctxt

PKEBC to achieve linear time
decryption. The new scheme, denoted Π lin-dec

PKEBC, is defined in Algorithm 5, and

8 At a more technical level, replacing the binding commitment scheme of Maurer et
al.’s PKEBC construction by a PKE scheme also serves the purpose of allowing the
(IND+ IK)-CCA-2 security reductions to handle decryption queries.
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Algorithm 4 Construction of PKEBC scheme Π lin-ctxt
PKEBC = (S,G,E,D).

S(1k)

(pk, sk)← ΠPKE.G(1k)

return pp := (1k, crs← ΠNIZK.G(1k), pk)

G(pp)

(pk′, sk′)← ΠPKE.G(1k)
return

(
pk := pk′, sk := (pk, sk′)

)
Epp(v⃗ :=

(
pk1, . . . , pk|v⃗|

)
,m)

cpp ← ΠPKE.Epp.pk

(
(v⃗,m); rpp

)
ksym ← ΠSKE.G(1k; rsym)

csym ← ΠSKE.Eksym

(
(rpp, v⃗,m); rsym

′)
for each j ∈ {1, . . . , |v⃗|} do

cj ← ΠPKE.Evj
(ksym; rj)

(r⃗, c⃗) :=
(
(r1, . . . , r|v⃗|), (c1, . . . , c|v⃗|)

)
p← ΠNIZK.Pcrs

(
(1k, pp.pk, cpp, c⃗, csym) ∈ L

PKEBClin-ctxt , (v⃗,m, rpp, r⃗, rsym, rsym
′)
)

return (p, cpp, c⃗, csym)

Dpp(sk, c := (p, cpp, c⃗, csym))

if ΠNIZK.Vcrs

(
(1k, pp.pk, cpp, c⃗, csym) ∈ L

PKEBClin-ctxt , p
)
= valid then

for j = 1, . . . , |⃗c| do
ksym ← ΠPKE.Dsk.sk′ (cj)(
rpp, v⃗,m

)
← ΠSKE.Dksym (csym)

if (rpp, v⃗,m) ̸= ⊥ ∧ sk.pk = vj then

if cpp = ΠPKE.Epp.pk

(
(v⃗,m); rpp

)
then

return (v⃗,m)

return ⊥

uses the same building blocks as Π lin-ctxt
PKEBC. In the following, vectors are assumed

to have matching lengths; furthermore, to simplify the definition of the relations
below, we introduce the following predicate:

CtxtMatch(pk, pk′, r0, r1, r2, α, k, c0, c1, c2) :=
(
(c0, c1, c2) = (5.2)(

ΠPKE.Epk(α; r0), ΠPKE.Epk′(r0; r1), ΠPKE.Epk′(k; r2)
))
.

Consider relation RPKEBClin-dec defined as

RPKEBClin-dec :=

{(
(1k, pkpp, cpp, c⃗, csym), (v⃗,m, rpp, r⃗, rsym, rsym

′)
)
: (5.3)(

ksym = ΠSKE.G(1k; rsym)
)
∧
(
csym = ΠSKE.E(ksym, (v⃗,m); rsym

′)
)
∧[ ∧

j∈{1,...,|⃗c|}

CtxtMatch(pkpp, vj , rj,0, rj,1, rj,2, vj , ksym, cj,0, cj,1, cj,2)

]
∧

(
cpp = ΠPKE.Epkpp

(m; rpp)
)}

.

In Algorithm 5, we consider the language LPKEBClin-dec that is induced by relation
RPKEBClin-dec : LPKEBClin-dec := {(1k, pkpp, cpp, c⃗, csym) | ∃(v⃗,m, rpp, r⃗, rsym, rsym

′) :(
(1k, pkpp, cpp, c⃗, csym), (v⃗,m, rpp, r⃗, rsym, rsym

′)
)
∈ RPKEBClin-dec}.
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Algorithm 5 Construction of PKEBC scheme Π lin-dec
PKEBC.

S(1k)

(pk, sk)← ΠPKE.G(1k)

return pp := (1k, crs← ΠNIZK.G(1k), pk)

G(pp)

(pk′, sk′)← ΠPKE.G(1k)
return

(
pk := pk′, sk := (pk, sk′)

)
Epp(v⃗ :=

(
pk1, . . . , pk|v⃗|

)
,m)

cpp ← ΠPKE.Epp.pk

(
m; rpp

)
ksym ← ΠSKE.G(1k; rsym)

csym ← ΠSKE.Eksym

(
(v⃗,m); rsym

′)
for each j ∈ {1, . . . , |v⃗|} do

(cj,0, cj,1, cj,2)← (ΠPKE.Epp.pk(vj ; rj,0), ΠPKE.Evj
(rj,0; rj,1), ΠPKE.Evj

(ksym; rj,2))

r⃗ :=
(
(r1,0, r1,1, r1,2), . . . , (r|v⃗|,0, r|v⃗|,1, r|v⃗|,2)

)
c⃗ :=

(
(c1,0, c1,1, c1,2), . . . , (c|v⃗|,0, c|v⃗|,1, c|v⃗|,2)

)
p← ΠNIZK.Pcrs

(
(1k, pp.pk, cpp, c⃗, csym) ∈ L

PKEBClin-dec , (v⃗,m, rpp, r⃗, rsym, rsym
′)
)

return (p, cpp, c⃗, csym)

Dpp(sk, c := (p, cpp, c⃗, csym))

if ΠNIZK.Vcrs

(
(1k, pp.pk, cpp, c⃗, csym) ∈ L

PKEBClin-dec , p
)
= valid then

for j = 1, . . . , |⃗c| do
r ← ΠPKE.Dsk.sk′ (cj,1)
if r ̸= ⊥ ∧ ΠPKE.Epp.pk(sk.pk; r) = cj,0 then

ksym ← ΠPKE.Dsk.sk′ (cj,2)
return ΠSKE.Dksym (csym)

return ⊥

5.4 Achieving Tight Security under Adaptive Corruptions

Finally, we modify Π lin-dec
PKEBC to get a PKEBC scheme that is tightly security under

adaptive corruptions. Informally, we use the same two-key technique that we used
for our MDVS scheme construction [1, 19]. In other words, in our scheme each
party generates two key-pairs, (pk0, sk0) and (pk1, sk1), and then discards one
of the secret keys skb picked uniformly at random. The new scheme is denoted
Πadap

PKEBC and is defined in Algorithm 6. Similarly to Π lin-dec
PKEBC, Π

adap
PKEBC uses the

same building blocks as Π lin-ctxt
PKEBC. Consider relation RPKEBCadap defined as

RPKEBCadap :=

{(
(1k, pkpp, cpp, c⃗, csym), (v⃗,m, rpp, r⃗, rsym, rsym

′)
)
| (5.4)(

ksym = ΠSKE.G(1k; rsym)
)
∧
(
csym = ΠSKE.E

(
ksym, (v⃗,m); rsym

′))
∧
(
cpp = ΠPKE.Epkpp

(m; rpp)
)
∧
[ ∧
j∈{1,...,|⃗c|}, b∈{0,1}

CtxtMatch(pkpp, vj .pkb, rj,0, rj,b,1, rj,b,2, vj , ksym, cj,0, cj,b,1, cj,b,2)

]}
,

where CtxtMatch is as in Equation 5.2. In Algorithm 6, we consider the fol-
lowing language: LPKEBCadap := {(1k, pkpp, cpp, c⃗, csym) | ∃(v⃗,m, rpp, r⃗, rsym, rsym

′) :(
(1k, pkpp, cpp, c⃗, csym), (v⃗,m, rpp, r⃗, rsym, rsym

′)
)
∈ RPKEBCadap}.
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Algorithm 6 Construction Πadap
PKEBC.

S(1k)

(pk, sk)← ΠPKE.G(1k)

return pp := (1k, crs← ΠNIZK.G(1k), pk)

G(pp)

(pk0, sk0)← ΠPKE.G(1k)

(pk1, sk1)← ΠPKE.G(1k)
b← RandomCoin
return

(
pk := (pk0, pk1), sk := (pk, b, skb)

)
Epp(v⃗ :=

(
pk1, . . . , pk|v⃗|

)
,m)

cpp ← ΠPKE.Epp.pk

(
m; rpp

)
ksym ← ΠSKE.G(1k; rsym)

csym ← ΠSKE.Eksym

(
(v⃗,m); rsym

′)
for each j ∈ {1, . . . , |v⃗|} do

cj,0 ← ΠPKE.Epp.pk(vj ; rj,0)
for each b ∈ {0, 1} do

(cj,b,1, cj,b,2)← (ΠPKE.Evj.pkb
(rj,0; rj,b,1), ΠPKE.Evj.pkb

(ksym; rj,b,2))

(rj , cj)← ((rj,0, rj,0,1, rj,0,2, rj,1,1, rj,1,2), (cj,0, cj,0,1, cj,0,2, cj,1,1, cj,1,2))

(r⃗, c⃗) :=
(
(r1, . . . , r|v⃗|), (c1, . . . , c|v⃗|)

)
p← ΠNIZK.Pcrs

(
(1k, pp.pk, cpp, c⃗, csym) ∈ L

PKEBCadap , (v⃗,m, rpp, r⃗, rsym, rsym
′)
)

return (p, cpp, c⃗, csym)

Dpp(sk, c := (p, cpp, c⃗, csym))

if ΠNIZK.Vcrs

(
(1k, pp.pk, cpp, c⃗, csym) ∈ L

PKEBCadap , p
)
= valid then

for j = 1, . . . , |⃗c| do
r ← ΠPKE.Dsk.sk(cj,sk.b,1)
if r ̸= ⊥ ∧ ΠPKE.Epp.pk(sk.pk; r) = cj,0 then

ksym ← ΠPKE.Dsk.sk(cj,sk.b,2)
return ΠSKE.Dksym (csym)

return ⊥

5.4.1 Security Analysis of Πadap

PKEBC
The following theorem gives an in-

formal overview of the security properties of our PKEBC scheme construction.
The formal theorems and corresponding full proofs are in the appendix (see
Section B.3).

Theorem 2 (Informal). If ΠPKE is correct and tightly multi-user and multi-
challenge IND-CPA and IK-CPA secure under non-adaptive corruptions, ΠNIZK

is complete, sound, tightly multi-statement adaptive zero-knowledge and tightly
multi-statement simulation sound, and ΠSKE is correct and tightly multi-instance
IND-CPA secure, then Πadap

PKEBC is:

1. tightly correct (Theorem 7);

2. tightly robust (Theorem 8);

3. tightly consistent (Theorem 9); and

4. tightly (IND+ IK)-CCA-2adap secure under adaptive corruptions (Theorem 10).
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6 Multi-Designated Receiver Signed Public Key
Encryption Schemes

An MDRS-PKE scheme Π is a 6-tuple of PPTs Π = (S,GS ,GR,E,D,Forge),
where:

– S: on input 1k, generates public parameters pp;
– GS : on input pp, generates a sender key-pair (spk, ssk);
– GR: on input pp, generates a receiver key-pair (rpk, rsk);
– E: on input (pp, ssk, v⃗,m), where ssk is the secret sending key, v⃗ is a vector

of public keys of the intended receivers, and m is the message, generates a
ciphertext c;

– D: on input (pp, rsk, c), where rsk is the receiver’s secret key, D decrypts c
using rsk, obtaining a triple sender/receiver-vector/message (spk, v⃗,m) (or
⊥ if decryption fails) which it then outputs;

– Forge: on input (pp, spk, v⃗,m, s⃗), where spk is the sender’s public key, v⃗ is
a vector of public keys of the intended receivers, m is the message and s⃗ is
a vector of designated receivers’ secret keys—with |s⃗| = |v⃗| and where for
i ∈ {1, . . . , |v⃗|}, either si = ⊥ or si is the secret key corresponding to the i-th
public key of v⃗, i.e. vi—generates a ciphertext c.

Analogously to Section 4, in this section we introduce new (stronger) security
notions for MDRS-PKE schemes (see Definitions 12 and 13). Then, we briefly
describe how one use the MDVS and PKEBC constructions from before to obtain
an MDRS-PKE scheme with the desired properties (by following the construction
given by Maurer et al. in [17]), and argue why the scheme is secure with respect
to our new stronger MDRS-PKE security notions.

6.1 Security Notions

Below we state the notions of Correctness, Consistency, Unforgeability, (IND+ IK)-
CCA-2adap and Off-The-Record for MDRS-PKE schemes. Analogously to the new
MDVS Off-The-Record security notion we introduced in Section 4.1 (Definition 4),
the (IND+ IK)-CCA-2adap and Off-The-Record security notions we now present
(Definitions 12 and 13, respectively), allow the adversary to obtain the sender’s
secret key; and analogously to the new PKEBC security notions we introduced
in Section 5.1 (in particular Definition 8), our new MDRS-PKE security notions
capture the setting where the adversary can adaptively corrupt parties (see
Definition 12). The security notions we now present are thus an enhancement
over the original ones given in [17].

Let Π = (S,GS ,GV ,E,D,Forge) be an MDRS-PKE scheme with message
spaceM. The oracles below are defined for a game-system with (an implicitly
defined) security parameter k:

Public Parameter Generation Oracle: OPP

1. On the first call, compute pp← S(1k); output pp;
2. On subsequent calls, simply output pp.
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Sender Key-Pair Oracle: OSK(Ai)
1. On the first call on input Ai, compute and store (spki, sski)← GS(pp);

output (spki, sski);
2. On subsequent calls, simply output (spki, sski).

Receiver Key-Pair Oracle: ORK(Bj)
1. Analogous to the Sender Key-Pair Oracle.

Sender Public-Key Oracle: OSPK(Ai)
1. (spki, sski)← OSK(Ai); output spki.

Receiver Public-Key Oracle: ORPK(Bj)
1. Analogous to the Sender Public-Key Oracle.

Encryption Oracle: OE(Ai, V⃗ ,m)
1. (spki, sski)← OSK(Ai);
2. v⃗ ← (ORPK(V1), . . . ,ORPK(V|V⃗ |));

3. Output c← Epp(sski, v⃗,m).
Decryption Oracle: OD(Bj , c)

1. (rpkj , rskj)← ORK(Bj);
2. Output (spk, v⃗ := (rpk1, . . . , rpk|v⃗|),m)← Dpp(rskj , c).

Definition 9 (Correctness). Game system GCorr provides an adversary A
with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD. A wins the
game if there are two queries qE and qD to OE and OD, respectively, where qE
has input (Ai, V⃗ ,m) and qD has input (Bj , c), satisfying Bj ∈ V⃗ , the input c in
qD is the output of qE, the output of qD is (spki

′, v⃗′,m′) with (spki
′, v⃗′,m′) = ⊥

or (spki
′, v⃗′,m′) ̸= (spki, v⃗,m)—where spki is Ai’s public key and v⃗ is the

corresponding vector of public keys of the parties of V⃗ . The advantage of A in
winning the Correctness game, denoted AdvCorr(A), is the probability that A wins
game GCorr as described above.

Definition 10 (Consistency). Game system GCons provides an adversary A
with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD. A wins
the game if there is a ciphertext c such that OD is queried on inputs (Bi, c) and
(Bj , c) for some Bi and Bj (possibly with Bi = Bj), there is no prior query on
either Bi or Bj to ORK , query OD(Bi, c) outputs some (spkl, v⃗,m) satisfying
(spkl, v⃗,m) ̸= ⊥, spkl is some party Al’s public sender key (i.e. OSPK(Al) =
spkl) and rpkj ∈ v⃗ (where rpkj is Bj’s public key), and query OD(Bj , c) does
not output the same triple (spkl, v⃗,m). The advantage of A in winning the

Consistency game is denoted AdvCons(A) and corresponds to the probability that
A wins game GCons as described above.

Definition 11 (Unforgeability). Game system GUnforg provides an adversary
A with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD. We
say that A wins the game if there is a query q to OD on an input (Bj , c) that
outputs (spki, v⃗,m) ̸= ⊥ with spki being some party Ai’s sender public key (i.e.

OSPK(Ai) = spki), there was no query OE(Ai, V⃗ ,m) where V⃗ is the vector
of parties with corresponding public keys v⃗, OSK was not queried on input Ai,
and ORK was not queried on input Bj. The advantage of A in winning the
Unforgeability game is the probability that A wins game GUnforg as described
above, and is denoted AdvUnforg(A).
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We say that an adversary A (ε, t)-breaks the (nS , nR, dE , qE , qD)-Correctness,
Consistency, or Unforgeability of Π if A runs in time at most t, queries OSK ,
OSPK , OE and OD on at most nS different senders, queries ORK , ORPK , OE

and OD on at most nR different receivers, makes at most qE and qD queries to
OE and OD, respectively, with the sum of lengths of the party vectors input to
OE being at most dE , and A’s advantage in winning the (corresponding) security
game is at least ε.

6.1.1 New (IND + IK)-CCA-2adap and Off-The-Record Notions. Analo-
gously to Section 4.1.1, in this section we present the new enhanced OTR and
(IND+ IK)-CCA-2adap security notions for MDRS-PKE schemes. As already men-
tioned, the main difference between our new notions and existing ones (see [17])
is that in our new notions the adversary can query for the secret key of any
sender (see Definitions 12 and 13) and can corrupt parties adaptively.

The games defined by these notions provide adversaries with access to the
oracles from before as well as to the oracles OE and OD defined below:

Encryption Oracle: OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
1. For game system G

(IND + IK)-CCA-2adap

b , encrypt mb under sski,b (Ai,b’s

sender secret key) and v⃗b (V⃗b’s corresponding vector of receiver public
keys); output c.

Decryption Oracle: OD(Bj , c)
1. If c was the output of some query to OE , output test;
2. Otherwise, compute (spki, v⃗,m) ← Dpp,skj (c), where skj is Bj ’s secret

key; output (spki, v⃗,m).

Definition 12 ((IND+ IK)-CCA-2adap Security). For b ∈ {0, 1}, game system

G
(IND + IK)-CCA-2adap

b provides an adversary A with access to oracles OPP , OSK ,
ORK , OSPK , ORPK , OE and OD. A wins the game if it outputs a guess bit b′

with b′ = b and for every query OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
: 1. |m0| = |m1|;

2. |V⃗0| = |V⃗1|; and 3. there is no query to ORK on any Bj ∈ Set(V⃗0) ∪ Set(V⃗1)
at any point during the game. We define the advantage of A in winning the
(IND+ IK)-CCA-2adap game as

Adv (IND + IK)-CCA-2adap(A) :=∣∣∣Pr[AG
(IND + IK)-CCA-2adap

0 = win] + Pr[AG
(IND + IK)-CCA-2adap

1 = win]− 1
∣∣∣.

An adversary A (ε, t)-breaks the (nR, dE , qE , qD)-(IND+ IK)-CCA-2adap security
of Π if A runs in time at most t, queries ORK , ORPK , OE and OD on at most nR

different receivers, makes at most qE and qD queries to OE and OD, respectively,
with the sum of lengths of the party vectors input to OE being at most dE , and

satisfies Adv (IND + IK)-CCA-2adap(A) ≥ ε.
The following notion defines two game systems, GOTR

0 and GOTR
1 , which

provide adversaries with access to an oracle OE , whose behavior varies depending
on the underlying game system. For b ∈ {0, 1}, OE behaves as follows:
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Encryption Oracle: OE(type ∈ {sig, sim}, Ai, V⃗ ,m, C)
For game system GOTR

b , the oracle behaves as follows:

1. Let v⃗ = (v1, . . . , v|V⃗ |) and s⃗ = (s1, . . . , s|V⃗ |), where, for i ∈ {1, . . . , |V⃗ |}:

– (vi, si) =

 ORK(Vi) if Vi ∈ C

(ORPK(Vi),⊥) otherwise;

2. (c0, c1)← (Π.Epp(sski, v⃗,m), Π.Forgepp(spki, v⃗,m, s⃗));
3. If b = 0, output c0 if type = sig and c1 if type = sim; otherwise, if

b = 1, output c1.

Definition 13 (Off-The-Record). For b ∈ {0, 1}, game system GOTR
b provides

an adversary A with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and
OD. A wins the game if it outputs a guess bit b′ with b′ = b and for every query
(type, Ai, V⃗ ,m, C) to OE, and letting c be the output of OE, all of the following

hold: 1. C ⊆ Set(V⃗ ); 2. for every query Bj to OV K , Bj ̸∈ Set(V⃗ ) \ C; 3. for all
queries OD(Bj , c

′), c′ ̸= c. A’s advantage in winning the Off-The-Record security
game is

AdvOTR(A) :=
∣∣∣Pr[AGOTR

0 = win] + Pr[AGOTR
1 = win]− 1

∣∣∣.
We say that an adversary A (εOTR, t)-breaks the (nS , nR, dE , qE , qD)-Off-The-
Record security of Π if A runs in time at most t, queries OSK , OSPK , OE and
OD on at most nS different senders, queries ORK , ORPK , OE and OD on at
most nR different receivers, makes at most qE and qD queries to OE and OD,
respectively, with the sum of lengths of the party vectors input to OE being at
most dE , and satisfies AdvOTR(A) ≥ εOTR. Finally, we say that Π is

(εCorr, εCons, εUnforg, ε(IND+IK)-CCA-2adap , εOTR,

t, nS , nR, dE , qE , qD)-secure,

if no adversary A: 1. (εCorr, t)-breaks the (nS , nR, dE , qE , qD)-Correctness of Π;
2. (εCons, t)-breaks the (nS , nR, dE , qE , qD)-Consistency of Π; 3. (εUnforg, t)-breaks
the (nS , nR, dE , qE , qD)-Unforgeability of Π; 4. (ε(IND+IK)-CCA-2adap , t)-breaks the

(nR, dE , qE , qD)-(IND+ IK)-CCA-2adap security of Π; or 5. (εOTR, t)-breaks the
(nS , nR, dE , qE , qD)-Off-The-Record security of Π.

6.2 Construction of MDRS-PKE with Short Ciphertexts

Maurer et al. give a black-box construction of an MDRS-PKE scheme from a
PKEBC scheme and an MDVS scheme [17]. At a high level, the construction [17,
Algorithm 2] essentially relies on the MDVS scheme to sign messages, and on the
PKEBC scheme to encrypt the message, the signature and all relevant public
keys. More concretely, in their construction a sender key-pair consists of an
MDVS signer key-pair, whereas a receiver key-pair consists of an MDVS verifier
key-pair and a PKEBC key-pair. To encrypt a message m, a signer first uses its
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MDVS signer key-pair to generate a signature σ on both m and the vector of
PKEBC public keys of the intended receivers, and then uses the PKEBC scheme
to encrypt its own MDVS signer public key, the MDVS verifier public key of each
receiver, the message m and the signature σ; the resulting MDRS-PKE ciphertext
is the one output by the PKEBC scheme. Conversely, to decrypt an MDRS-PKE
ciphertext, a receiver first decrypts the PKEBC ciphertext, obtaining not only
the vector of PKEBC public keys of the receivers, but also a signer’s MDVS
public key (of the sender), a vector of MDVS verifier public keys (of each of the
receivers), a message m, and an MDVS signature σ; then, it uses its MDVS secret
verification key to check if σ is a valid MDVS signature on the message m and
the vector of PKEBC public keys obtained from decryption, and with respect to
all the MDVS public keys obtained from decrypting the PKEBC ciphertext.

Security of the Resulting MDRS-PKE Scheme. In contrast to the MDRS-PKE
security notions considered in this paper, the original notions introduced in [17]
do not capture the setting where the adversary is given access to the secret
keys of signers (see [17, Definitions 9, 10 and 11]). Yet, as noted by the authors,
on one hand the IND-CCA-2 and IK-CCA-2 security proofs of the MDRS-PKE
construction (see [18, Sections H.2 and H.3]) actually prove the scheme’s security
with respect to the stronger IND-CCA-2 and IK-CCA-2 security notions where
the adversary is given access to any sender secret keys. On the other hand,
and as is even noted by the authors in [17, Remark 11], if one would assume
the underlying MDVS scheme satisfies the stronger off-the-record notion we
consider in this paper—wherein the adversary is given access to the sender’s
secret key, see Definition 4—then the resulting MDRS-PKE scheme also satisfies
the corresponding stronger off-the-record notion (that we also consider in this
paper, see Definition 13).

Regarding adaptive security, note that the only security notions from [17]
where the adversary cannot adaptively corrupt parties are the IND-CCA-2 and
IK-CCA-2 security notions (see [17, Definitions 9 and 10]). Yet, the MDRS-PKE
construction’s IND-CCA-2 security proof (see [18, Section H.2]) is a trivial re-
duction to the IND-CCA-2 security of the underlying PKEBC scheme, and the
IK-CCA-2 security proof (see [18, Section H.3]) is also a trivial reduction, but to
both the IND-CCA-2 and IK-CCA-2 security of the underlying PKEBC scheme
(this is necessary since the PKEBC is used to encrypt the MDVS public keys of
the involved parties). It is then rather straightforward to see that the IND-CCA-2
and IK-CCA-2 security proofs from [18] can be trivially adapted for the case
of adaptive corruptions, as long as one assumes that the underlying PKEBC
scheme is also secure with respect to adaptive corruptions. In fact, and since, as
one may note, we consider the joint (IND+ IK)-CCA-2adap security notions (see
Definitions 8 and 12) that capture both IND-CCA-2adap and IK-CCA-2adap, the
MDRS-PKE scheme’s (IND+ IK)-CCA-2adap security proof becomes even simpler:
it essentially becomes a one to one reduction to the (IND+ IK)-CCA-2adap security
of the underlying PKEBC scheme.
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Appendix

A Game-Based Security Definitions

A.1 One Way Function Schemes

A One Way Function (OWF) Π is a pair Π = (S,F), where S is a Probabilistic
Polynomial Time Algorithm (PPT) and F is a Polynomial Time Algorithm (PT).
The role of S is sampling values from F’s domain, whereas the role of F is to
actually compute the function. Definition 14, which captures the security of OWF
schemes, makes use of oracles OY and OS , which, for an OWF Π = (S,F) are
defined as:

Image Generation Oracle: OY (i ∈ N)
1. On the first call on index i ∈ N, compute x← S(1k) and store (i, x, y :=

F(x)); output y;
2. On subsequent calls, simply output y.

Submission Oracle: OS(i ∈ N, x)
1. On the first call on i (to either this oracle or to OY ), compute x← S(1k)

and store (i, x, y := F(x)); the oracle does not give any output;
2. On subsequent calls, the oracle simply does not perform any action nor

give any output.

Definition 14. Consider the following game played between an adversary A and
game system GOWF:

1. AOY ,OS .

A wins the game if it makes a query to OS on an input (i, x) such that F(x) =
OY (i).

A’s advantage in winning the One Way Function security game is defined as

AdvOWF(A) := Pr[AGOWF = win].

An adversary A (εOWF, t)-breaks the (n)-One-Wayness of OWF Π if it runs
in time t, queries oracles OY and OS on at most n different indices i ∈ N, and
satisfies AdvOWF(A) ≥ εOWF. We say Π is (εOWF, t, n)-secure if there is no such
adversary.

A.2 Public Key Encryption Schemes

A Public Key Encryption (PKE) scheme Π with message spaceM is a triple of
PPTs Π = (G,E,D). Below we state the multi-user multi-challenge variants of
Correctness and IND-CPA and IK-CPA security for PKE schemes (first introduced
in [9] and [3], respectively). Throughout the rest of this section, let Π = (G,E,D)
be a PKE scheme with message spaceM. As before, we assume the game systems
of the following definitions have (an implicitly defined) security parameter k.

Definition 15, which captures the correctness of PKE schemes, provides
adversaries with access to oracles OPK , OE and OD:
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Secret Key Generation Oracle: OSK(Bj)

1. On the first call on Bj , compute and store (pkj , skj) ← G(1k); output
(pkj , skj);

2. On subsequent calls, simply output (pkj , skj).

Public Key Generation Oracle: OPK(Bj)

1. (pkj , skj)← OSK(Bj); output pkj .

Encryption Oracle: OE(Bj ,m; r)

1. If r is given as input, encrypt m under pkj (Bj ’s public key, as generated
by OPK) using r as random tape; if r is not given as input create a fresh
encryption of m under pkj ;

2. Output the resulting ciphertext back to the adversary.

Decryption Oracle: OD(Bj , c)

1. Decrypt c using skj (Bj ’s secret key, as generated by OPK);
2. Output the resulting plaintext back to the adversary (or ⊥ if decryption

failed).

Definition 15. Consider the following game played between an adversary A and
game system GCorr:

– AOSK ,OPK ,OE ,OD

A wins the game if there are two queries qE and qD to OE and OD, respectively,
where qE has input (Bj ,m; r) and qD has input (Bj

′, c), the input c in qD is the
output of qE, Bj = Bj

′, and the output of qD is not m.

The advantage of A in winning the Correctness game, denoted AdvCorr(A),
is the probability that A wins game GCorr as described above.

A (computationally unbounded) adversaryA (εCorr)-breaks the (n)-Correctness
of a PKE scheme Π if A queries OPK , OE and OD on at most n different parties
and satisfies AdvCorr(A) ≥ εCorr.

The IND-CPA game systems provide adversaries with access to oracle OPK

described above, and to an additional oracle OE which behaves as follows:

Encryption Oracle: OE(Bj ,m0,m1)

1. For game system GIND-CPA
b , the oracle encrypts mb under Bj ’s public key,

pkj , creating a fresh ciphertext c;
2. The oracle outputs the resulting ciphertext c back to the adversary.

Definition 16. For b ∈ {0, 1}, consider the following game played between an
adversary A and game system GIND-CPA

b :

– b′ ← AOPK ,OE

A wins the game if b′ = b and for every query OE(Bj ,m0,m1), |m0| = |m1|.
We define the advantage of A in winning the IND-CPA security game as

Adv IND-CPA(A) :=
∣∣∣Pr[AGIND-CPA

0 = win] + Pr[AGIND-CPA
1 = win]− 1

∣∣∣.
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Similarly to the IND-CPA game systems, the IK-CPA game systems provide
adversaries with access to oracle OPK and to an oracle OE which behaves as
follows:

Encryption Oracle: OE(Bj,0, Bj,1,m)
1. For game system GIK-CPA

b , encrypt m under Bj,b’s public key, pkj,b,
creating a fresh ciphertext c;

2. Output the resulting ciphertext c back to the adversary.

Definition 17. Consider the following game played between an adversary A and
game system GIK-CPA

b , with b ∈ {0, 1}:

– b′ ← AOPK ,OE

A wins the game if b′ = b.
We define the advantage of A in winning the IK-CPA security game as

Adv IK-CPA(A) :=
∣∣∣Pr[AGIK-CPA

0 = win] + Pr[AGIK-CPA
1 = win]− 1

∣∣∣.
We say A (εIND-CPA, t)-breaks (resp. (εIK-CPA, t)-breaks) the (n, qE)-IND-CPA

(resp. (n, qE)-IK-CPA) security of a PKE scheme Π if A runs in time at most
t, queries the oracles it has access to on at most n different parties, makes
at most qE queries to oracle OE , and satisfies Adv IND-CPA(A) ≥ εIND-CPA (resp.
Adv IK-CPA(A) ≥ εIK-CPA).

Finally,Π is (εCorr, εIND-CPA, εIK-CPA, t, n, qE)-secure if no adversaryA (εIND-CPA, t)-
breaks the (n, qE)-IND-CPA security of Π nor (εIK-CPA, t)-breaks the (n, qE)-IK-
CPA security of Π, and no (possibly computationally unbounded) adversary
(εCorr)-breaks the (n)-Correctness of Π.

A.3 Symmetric Encryption Schemes

A Symmetric Encryption (SKE) scheme Π with message spaceM is a triple of
PPTs Π = (G,E,D). Below we state the (Perfect) Correctness notion and the
IND-CPA security notion for SKE schemes. Throughout the rest of this section,
let Π = (G,E,D) be an SKE scheme. As before, we assume the game systems of
the following definitions have (an implicitly defined) security parameter k.

Definition 18. Consider a SKE scheme Π = (G,E,D) with message spaceM.
We say Π is correct if for every m ∈M and every key ksym ∈ Supp(G(1k)):

Pr[D(ksym,E(ksym,m)) = m] = 1.

The (One Time) 1-IND-CPA game systems provide adversaries with access
to oracle OK described above, and to an additional oracle OE which behaves as
follows:

Encryption Oracle: OE(i ∈ N,m0,m1)
1. For game system G1-IND-CPA

b , the oracle encrypts mb under the i-th key,
ki, creating a fresh ciphertext c;
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2. The oracle outputs the resulting ciphertext c.

Definition 19. For b ∈ {0, 1}, consider the following game played between an
adversary A and game system G1-IND-CPA

b :

– b′ ← AOE

A wins the game if b′ = b and for every query OE(i,m0,m1), |m0| = |m1| and
there is no other query to OE on the same index i.

A’s advantage in winning the (One Time) 1-IND-CPA security game is defined
as

Adv1-IND-CPA(A) :=
∣∣∣Pr[AG1-IND-CPA

0 = win] + Pr[AG1-IND-CPA
1 = win]− 1

∣∣∣.
We sayA (ε1-IND-CPA, t)-breaks the (qE)-1-IND-CPA security of an SKE scheme

Π if A runs in time at most t, makes at most qE queries to oracle OE and satisfies
Adv1-IND-CPA(A) ≥ ε1-IND-CPA.

Finally, we say Π is (ε1-IND-CPA, t, qE)-secure if Π is perfectly correct (see
Definition 18) and no adversary A (ε1-IND-CPA, t)-breaks the (qE)-1-IND-CPA
security of Π.

A.4 Non Interactive Zero Knowledge Schemes

For a binary relation R, let LR be the language LR := {x | ∃w, (x,w) ∈ R}
induced by R. A Non Interactive Proof System (NIPS) for LR is a triple of PPT
algorithms Π = (GCRS,Prove,Verify) where:

– GCRS(1
k): given security parameter 1k, outputs a common reference string

crs;
– Provecrs(x,w): given a common reference string crs and a statement-witness

pair (x,w) ∈ R, outputs a proof p;
– Verifycrs(x, p): given a common reference string crs, a statement x and a

proof p, either accepts, outputting valid (= 1) or rejects, outputting invalid
(= 0).

In the following definitions, let Π = (GCRS,Prove,Verify) be a NIPS for
a relation R, and let k be the security parameter. The security notions below
(Definitions 20 and 21) provide adversaries with access to oracles OS and OV ,
defined as:

CRS Generation Oracle: OS

1. On the first call, compute and store crs← GCRS(1
k); output crs;

2. On subsequent calls, output the previously generated crs.
Verify Oracle: OV (x, p)

1. Compute b = Verifycrs(x, p); output b.

Definition 20 additionally provides adversaries with access to an oracle OP :

Prove Oracle: OP (x,w)
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1. Compute p = Provecrs(x,w); output p.

Definition 20. Consider the following game played between an adversary A and
game system GComplete:

– AOS ,OP ,OV

A wins the game if there are two queries qP and qV to OP and OV , respectively,
where qP has input (x,w) and qV has input (x′, p), satisfying x = x′, the input p
in qV is the output of qP, the output of qV is invalid, and (x,w) ∈ R.

The advantage of A in winning the Completeness game, denoted AdvComplete(A),
corresponds to the probability that A wins game GComplete as described above.

We say that an adversary A (εComplete, t)-breaks the (qP , qV )-Completeness of
a NIPS scheme Π if A runs in time at most t, makes at most qP and qV queries
to oracles OP and OV , respectively, and satisfies AdvComplete(A) ≥ εComplete.

Definition 21. Consider the following game played between an adversary A and
game system GSound:

– AOS ,OV

A wins the game if there is a query to OV on input (x, p), satisfying x ̸∈ LR,
such that the oracle outputs valid.

The advantage of A in winning the Soundness game corresponds to the prob-
ability that A wins game GSound as described above and is denoted AdvSound(A).

An adversary A (εSound, t)-breaks the (qV )-Soundness of a NIPS scheme Π
if A runs in time at most t, makes at most qV queries to OV and satisfies
AdvSound(A) ≥ εSound.

A NIZK scheme Π = (GCRS,Prove,Verify,S = (SCRS ,SSim)) for a relation
R consists of a NIPS scheme Π ′ = (GCRS,Prove,Verify) for R and a simulator
S = (SCRS ,SSim), where:

– SCRS(1
k): given security parameter 1k, outputs a pair (crs, τ);

– SSim(crs,τ)(x): given a pair (crs, τ) and a statement x, outputs a proof p.

Consider a NIZK scheme Π = (GCRS,Prove,Verify,S = (SCRS ,SSim)). The
following security notion, which defines game systems GZK

0 and GZK
1 , provides

adversaries with access to two oracles, OS and OP , whose behavior depends on
the underlying game system. For GZK

b (with b ∈ {0, 1}):

CRS Generation Oracle: OS

1. On the first call, compute and store crs ← GCRS(1
k) if b = 0 , and

(crs, τ)← SCRS(1
k) if b = 1; output crs;

2. On subsequent calls, output the previously generated crs.
Prove Oracle: OP (x,w)

– If b = 0, output π = Provecrs(x,w);
– If b = 1, output π ← SSim(crs,τ)(x).
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Definition 22. For b ∈ {0, 1}, consider the following game played between an
adversary A and game system GZK

b :

– b′ ← AOS ,OP

A wins the game if b′ = b and for every query to OP , the input (x,w) given to
OP satisfies (x,w) ∈ R.

The advantage of A in winning the Zero-Knowledge security game for Π is

AdvZK(A) :=
∣∣∣Pr[AGZK

0 = win] + Pr[AGZK
1 = win]− 1

∣∣∣.
We say that an adversary A (εZK, t)-breaks the (qP )-ZK security of a NIZK

scheme Π if it makes at most qP queries to OP and satisfies AdvZK(A) ≥ εZK.
We now introduce Simulation Soundness for NIZK [21]. The game system

defined by this notion provides adversaries with access to oracles OS , OP and
OV defined as:

CRS Generation Oracle: OS

1. On the first call, compute and store (crs, τ)← SCRS(1
k); output crs;

2. On subsequent calls, output the previously generated crs.
Prove Oracle: OP (x)

1. Compute p = SSim(crs,τ)(x); output p.
Verify Oracle: OV (x, p)

1. Compute b = Verifycrs(x, p); output b.

Definition 23. Consider the following game played between an adversary A and
game system GSS:

– AOS ,OP ,OV

A wins the game if it makes a query to OV on input (x, p) such that p was not
output by any query to OP , x ̸∈ LR and OV outputs valid.

The advantage of A in winning the Simulation Soundness game, denoted
AdvSS(A), is the probability that A wins game GSS as described above.

An adversary A (εSS, t)-breaks the (qP , qV )-Simulation Soundness of a NIZK
scheme Π if it makes at most qP and qV queries to OP and OV , respectively,
and satisfies AdvSS(A) ≥ εSS.

Finally, we say that a NIZK scheme Π is (εComplete, εSound, εZK, εSS, t, qP , qV )-
secure if no adversary A (εComplete, t)-breaks the (qP , qV )-Completeness of Π,
(εSound, t)-breaks the (qV )-Soundness ofΠ, (εZK, t)-breaks the (qP )-Zero-Knowledge
of Π, or (εSS, t)-breaks the (qP , qV )-Simulation Soundness of Π.

B Full Proofs

B.1 Helper Claims

We now establish two (straightforward) results that allow to simplify the MDVS
and PKEBC security proofs ahead.
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B.1.1 One Way Function Image Collision Resistance

Definition 24 (n-Instance ε-Image Collision-Resistance). A OWF Π =
(S,F) is n-Instance ε-Image Collision-Resistant if

Pr

∣∣{Π.F(x1), . . . ,Π.F(xn)}
∣∣ < n

∣∣∣∣∣∣∣∣∣
x1 ← Π.S(1k)

. . .

xn ← Π.S(1k)

 ≤ ε.

Lemma 1. If Π is (εOWF, t, n)-secure, with t ⪆ n · (tS + tF)—where tS and
tF are, respectively, the times to run S and F—then Π is n-Instance ε-Image
Collision-Resistant, with ε ≤ 2 · εOWF.

Proof. To prove this result we give an adversaryAn such that 2·AdvOWF(An) ≥ ε.
Since AdvOWF(An) ≤ εOWF, it then follows that ε ≤ 2 · εOWF.

Consider the following adversary An. First, An samples an n bit long vector
b⃗, each bit being picked independently and uniformly at random. For each index
i ∈ {1, . . . , n}, if bi = 0 then An queries OY on input i, and sets yi = OY (i),
and if bi = 1 then An samples an element xi from the domain of the one way
function Π.S(1k), saves xi, and sets yi = Π.F(xi). If there are no two indices
i, j ∈ {1, . . . , n} such that bi ̸= bj and yi = yj , A

n aborts. Otherwise, for the
least i ∈ {1, . . . , n} for which bi = 0 and there exists j ∈ {1, . . . , n} with bj = 1
and yi = yj , A

n makes a query OS(i, xj). Since algorithm F is deterministic, it
follows that Π.F(xj) = yj = yi, and so An wins the game.

Note that if there are two indices i, j ∈ {1, . . . , n} with yi = yj , the only case
where An does not win the game is if bi = bj . Given this only happens with
probability at most 1

2 and this event is independent from the existence of two

indices i, j ∈ {1, . . . , n} such that yi = yj , it follows 2 ·AdvOWF(An) ≥ ε. ⊓⊔

B.1.2 Public Key Collision Resistance

Definition 25 (n-Party ε-Public Key Collision-Resistance). PKE scheme
Π = (G,E,D) is n-Party ε-Public Key Collision-Resistant if

Pr

∣∣{pk1, . . . , pkn}∣∣ < n

∣∣∣∣∣∣∣∣∣
(pk1, sk1)← Π.G(1k)

. . .

(pkn, skn)← Π.G(1k)

 ≤ ε.

Lemma 2. If Π is (εCorr, εIND-CPA, εIK-CPA, t, n, qE)-secure, with t ⪆ n · tG + tD—
where tG and tD are, respectively, the times to run Π.G and Π.D—then Π is
n-Party ε-Public Key Collision-Resistant, with ε ≤ 2 · εIND-CPA + εCorr.

Proof. To prove this result we give two adversaries—An,m0,m1

IND-CPA for the IND-CPA
security games and An,m0,m1

Corr for the Correctness game—such that for these
adversaries

2 ·Adv IND-CPA(An,m0,m1

IND-CPA ) +AdvCorr(An,m0,m1

Corr ) ≥ ε.
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Since Adv IND-CPA(An,m0,m1

IND-CPA ) ≤ εIND-CPA and AdvCorr(An,m0,m1

Corr ) ≤ εCorr, it then
follows that ε ≤ 2 · εIND-CPA + εCorr.

Consider the following adversary An,m0,m1

IND-CPA for the IND-CPA game of Π. First,

An,m0,m1

IND-CPA samples an n bit long vector b⃗, each bit being picked independently and
uniformly at random. Next, An,m0,m1

IND-CPA queries OPK on each party Bi for which
bi = 0 and sets pki = OPK(Bi). Similarly, An,m0,m1

IND-CPA samples a key pair using
Π.G for each party Bi for which bi = 1 and sets (pki, ski)← G(1k) (where k is
the security parameter). If there are no two indices i, j ∈ {1, . . . , n} such that
bi ̸= bj and pki = pkj , A

n,m0,m1

IND-CPA aborts. Otherwise, for the least i ∈ {1, . . . , n} for
which bi = 0 and there exists j ∈ {1, . . . , n} with bj = 1 and pki = pkj , A

n,m0,m1

IND-CPA

makes a query OE(Bi,m0,m1); letting c be the output of this query, An,m0,m1

IND-CPA

tries decrypting c using skj (here, j is assumed to be the least j ∈ {1, . . . , n}
such that bj = 1 and pki = pkj). Finally, A

n,m0,m1

IND-CPA outputs 0 if the decryption
resulted in m0, 1 if the decryption resulted in m1, and otherwise aborts.

The adversary An,m0,m1

Corr for the Correctness game of Π uses oracle OPK

to sample all the n parties’ public keys. For each party Bi and each possible
sequence r of random coins used by Π.E, An,m0,m1

Corr makes queries OE(Bi,m0; r)
and OE(Bi,m1; r). Letting c0 and c1 be the respective outputs of the two oracle
queries above, An,m0,m1

Corr makes queries OD(Bi, c0) and OD(Bi, c1).
Note that if there are two parties Bi and Bj with equal public keys, the only

case where An,m0,m1

IND-CPA may not win the IND-CPA games is when either bi = bj or
the scheme does not work correctly. Given Pr[bi = bj ] ≤ 1

2 and the probability

that the scheme does not work correctly is bounded by AdvCorr(An,m0,m1

Corr ), it

follows 2 ·Adv IND-CPA(An,m0,m1

IND-CPA ) +AdvCorr(An,m0,m1

Corr ) ≥ ε. ⊓⊔

B.2 MDVS Construction Security Proofs

In this section we give the formal security theorems and the (corresponding) full
proofs for the MDVS construction given in Section 4.4.

B.2.1 Proof of Correctness

Theorem 3. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE)-secure,
(B.1)

and ΠNIZK is

(εNIZK-Complete, εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(B.2)

then no adversary A (ε, t)-breaks Π’s

(nV := nPKE, qS := qPNIZK, qV := qV NIZK)-Correctness,

with ε > εNIZK-Complete + εPKE-Corr and with tNIZK ≈ t+ tCorr, where tCorr is the
time to run Π’s GCorr game.

Proof. This proof proceeds in a sequence of games [4, 23].
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GCorr ⇝ G1: G1 is just like the original game GCorr, except that in G1 for each
signature σ := (p, c⃗, cpp) output by a query OS(Ai, V⃗ ,m), if OV is queried on

any input (Ai
′, Bj , V⃗

′,m′, σ′) with (Ai, V⃗ ,m, σ) = (Ai
′, V⃗ ′,m′, σ′) and Bj ∈ V⃗ ,

it no longer verifies p’s validity and simply proceeds as if it were valid.
Note that one can reduce distinguishing GCorr and G1 to breaking ΠNIZK’s

completeness: since the reduction holds the secret keys of every signer and of every
verifier, it can trivially handle any oracle queries. Furthermore, the reduction
makes at most one ΠNIZK-OP query for each OS query, and at most one ΠNIZK-
OV query for each OV query. Since A only makes up to qS ≤ qPNIZK queries
to OS and qV ≤ qV NIZK queries to OV , it follows from Equation B.2 that no
adversary (εNIZK-Complete, tNIZK)-breaks the (qPNIZK, qV NIZK)-Completeness of
ΠNIZK, implying∣∣∣Pr[AG1 = win]− Pr[AGCorr = win]

∣∣∣ ≤ εNIZK-Complete.

G1 ⇝ G2. Game G2 is just like G1, except that now for each signature
σ := (p, c⃗, cpp) output by a query OS(Ai, V⃗ ,m), if OV is queried on any input

(Ai
′, Bj , V⃗

′,m′, σ′), with (Ai, V⃗ ,m, σ) = (Ai
′, V⃗ ′,m′, σ′) and Bj ∈ V⃗ , and letting

l ∈ {1, . . . , |V⃗ |} be the least index such that Bj = Vl, OV no longer tries
decrypting ciphertext cl,b ∈ (cl,0, cl,1)—where b is the secret bit in Bj ’s secret
key and (cl,0, cl,1) ∈ c⃗—and instead simply outputs 1 as if the decryption of cl,b
had output 1.

It is easy to see that one can reduce distinguishing these two games to
breaking ΠPKE’s correctness: since the reduction holds all secret keys, it can
handle any oracle queries. Noting that an adversary A can only query for the
verifier public keys of at most nV ≤ nPKE parties and since the reduction only has
to rely on ΠPKE-OSK oracle to generate at most one key-pair per party (namely,
(pkb, skb)), it follows from Equation B.1 that no adversary (εPKE-Corr)-breaks the
(nPKE)-Correctness of ΠPKE, implying∣∣∣Pr[AG2 = win]− Pr[AG1 = win]

∣∣∣ ≤ εPKE-Corr.

To conclude, since no adversary can win game G2, Pr[AG2 = win] = 0. ⊓⊔

B.2.2 Proof of Consistency

Theorem 4. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE)-secure,
(B.3)

with nPKE ≥ 1, ΠNIZK is

(εNIZK-Complete, εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(B.4)
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ΠOWF is

(εOWF, tOWF, nOWF)-secure, (B.5)

and ΠNIZK.V is a deterministic algorithm, then no adversary A (ε, t)-breaks Π’s

(nV := min(nPKE, nOWF), qV := qV NIZK)-Consistency,

with ε > 3 · εPKE-Corr + εNIZK-Sound + 2 · εOWF and with tNIZK, tOWF ≈ t+ tCons,
where tCons is the time to run Π’s GCons game.

Proof. We proceed via game hopping.

GCons ⇝ G1: G1 is just like GCons except that in G1 the ΠPKE key pair (pk0, sk0)
sampled for each party Bj is assumed to be a correct one.

Note that one can reduce distinguishing these two games to breaking ΠPKE’s
correctness: since the reduction holds all secret keys it can handle any oracle
queries. Furthermore, given an adversary A can only query for the verifier
public keys of at most nV ≤ nPKE parties and given the reduction only has to
rely on ΠPKE-OSK oracle to generate at most one key-pair per party—namely,
(pk0, sk0)—it follows from Equation B.3 that no adversary (εPKE-Corr)-breaks the
(nPKE)-Correctness of ΠPKE, implying∣∣∣Pr[AG1 = win]− Pr[AGCons = win]

∣∣∣ ≤ εPKE-Corr.

G1 ⇝ G2: This game hop is just like the previous one (i.e. GCons ⇝ G1), the
only difference being that the key-pair which is assumed to be a correct one is
now (pk1, sk1). Hence,∣∣∣Pr[AG2 = win]− Pr[AG1 = win]

∣∣∣ ≤ εPKE-Corr.

G2 ⇝ G3: This step is similar to the previous ones, except that this time the
key pair that is assumed to be a correct one is the public parameters’ public key
and the corresponding secret key (i.e. the key pair sampled by Π.S).

One can, once again, reduce distinguishing these games to breaking ΠPKE’s
correctness: the reduction has all secret keys so it can handle any oracle queries.
In contrast to the previous reductions, this one only has to rely on the ΠPKE-
OPK oracle to generate a single key-pair. Since nPKE ≥ 1, it then follows from
Equation B.3 that no adversary (εPKE-Corr)-breaks the (1)-Correctness of ΠPKE,
implying ∣∣∣Pr[AG3 = win]− Pr[AG2 = win]

∣∣∣ ≤ εPKE-Corr.
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G3 ⇝ G4: Game G4 is just G3 except that for each query OV (Ai, Bj , V⃗ ,m, σ :=
(p, c⃗, cpp)) in G4 it is assumed that if the NIZK proof p verifies as being valid
then (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap .

Once again, the reduction holds all secret keys and thus it can handle any
oracle query. Moreover, because the reduction has a witness for every statement it
has to produce a NIZK proof for, it can simply use ΠNIZK.P to generate the NIZK
proofs. Regarding OV queries, however, the reduction now relies on oracle ΠNIZK-
OV to verify the validity of each signature’s the NIZK proof. Given the reduction
only verifies at most one NIZK proof for each OV query and since qV ≤ qV NIZK,
it follows from Equation B.4 that no adversary (εNIZK-Sound, tNIZK)-breaks the
(qV NIZK)-Soundness of ΠNIZK, and so∣∣∣Pr[AG4 = win]− Pr[AG3 = win]

∣∣∣ ≤ εNIZK-Sound.

To conclude we now prove the following claim:

Claim. Pr[AG4 = win] ≤ 2 · εOWF.

Proof. An adversary A can only win G4 if it makes two queries to OV on inputs
(A,Bj , V⃗ ,m, σ := (p, c⃗, cpp)) and (A′, Bj

′, V⃗ ′,m′, σ′) satisfying (A, V⃗ ,m, σ) =

(A′, V⃗ ′,m′, σ′) and Bj , Bj
′ ∈ V⃗ , and one of the queries outputs 1 while the other

outputs 0.
Given ΠNIZK.V is a deterministic algorithm and one of the queries outputs

1, the NIZK proof p in the signature input to the OV queries verifies as being
valid both times. Furthermore, for the least i, i′ ∈ {1, . . . , |V⃗ |} such that Vi = Bj

and Vi′ = Bj
′, by the correctness of Bj ’s and Bj

′’s key pairs, ci,b and ci′,b′ are
encryptions of two different bits—b being the bit in Bj ’s secret key, and b′ the bit
in Bj

′’s secret key. By the soundness ofΠNIZK it follows (pp.pk, spk, v⃗,m, c⃗, cpp) ∈
LMDVSadap . On one hand, this implies cpp is an encryption of a plaintext of the
form (m, b′′, ((b1, x1), . . . , (bl, xl))), and on the other hand, since RMDVSadap ⊆
RMDVSadap-Cons and ci,b and ci′,b′ are encryptions of two different bits, either
xi is such that ΠOWF.F(xi) ∈ {vi.y0, vi.y1} or xi′ is such that ΠOWF.F(xi′) ∈
{vi′ .y0, vi′ .y1} (or both). The correctness of pp.pk implies that decrypting cpp
results in the plaintext above.

By Definition 2, if the adversary wins the game then it did not query OV K

on either Bj or Bj
′. This in particular means that everything the adversary

sees is independent of Bj ’s and Bj
′’s secret key bits. Thus, if it is the case that

ΠOWF.F(xi) ∈ {vi.y0, vi.y1}, with probability at least 1
2 , ΠOWF.F(xi) = vi.yb̄,

where b̄ := 1− b and b is the bit in Bj ’s secret key. Otherwise, if ΠOWF.F(xi′) ∈
{vi′ .y0, vi′ .y1}, with probability at least 1

2 , ΠOWF.F(xi′) = vi′ .yb̄, where b̄ := 1−b
but this time b being the bit in Bj

′’s secret key. It is easy to see that one
can then reduce winning game G4 to breaking the security of the underlying
ΠOWF by decrypting the ciphertext cpp of signature σ. For each verifier Bl, and
letting b be the bit in Bl’s secret key, the yb̄ image in Bl’s public key is now
obtained via a query ΠOWF-OY . Given nV ≤ nOWF, it follows from Equation B.5
that no adversary (εOWF, tOWF)-breaks the (nOWF)-security of ΠOWF, implying
Pr[AG4 = win] ≤ 2 · εOWF. ⊓⊔
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B.2.3 Proof of Unforgeability

Theorem 5. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE)-secure,
(B.6)

with nPKE ≥ 1, ΠNIZK is

(εNIZK-Complete, εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(B.7)

and ΠOWF is

(εOWF, tOWF, nOWF)-secure, (B.8)

with tOWF ⪆ nOWF · (tS + tF) (where tS and tF are, respectively, the times to run
ΠOWF.S and ΠOWF.F) and with nOWF ≥ 1, then no adversary A (ε, t)-breaks
Π’s

(nS := max(nOWF − nV , 0), nV := min(nPKE,max(nOWF − nS , 0)),

qS := min(qPNIZK, qEPKE), qV := qV NIZK)-Unforgeability,

with ε > (3 · εPKE-Corr + εPKE-IND-CPA) + εNIZK-ZK + εNIZK-SS + 4 · εOWF, with
tPKE, tOWF ≈ t + tUnforg + qS · tSP

+ tSG
and with tNIZK ≈ t + tUnforg, where

tUnforg is the time to run Π’s GUnforg game and tSP
and tSG

are, respectively, the
runtime of ΠNIZK.SP and ΠNIZK.SG.

Proof. We proceed via a sequence of games [4, 23].

GUnforg ⇝ G1: G1 is just like GUnforg except that in G1 the ΠPKE key pair
(pk0, sk0) sampled for each party Bj is assumed to be a correct one.

Note that one can reduce distinguishing these two games to breaking ΠPKE’s
correctness: since the reduction holds all secret keys it can handle any oracle
queries. Furthermore, given an adversary A can only query for the verifier
public keys of at most nV ≤ nPKE parties and given the reduction only has to
rely on ΠPKE-OSK oracle to generate at most one key-pair per party—namely,
(pk0, sk0)—it follows from Equation B.6 that no adversary (εPKE-Corr)-breaks the
(nPKE)-Correctness of ΠPKE, implying∣∣∣Pr[AG1 = win]− Pr[AGUnforg = win]

∣∣∣ ≤ εPKE-Corr.

G1 ⇝ G2: This game hop is just like the previous one (i.e. GUnforg ⇝ G1), the
only difference being that the key-pair which is assumed to be a correct one is
now (pk1, sk1). Hence,∣∣∣Pr[AG2 = win]− Pr[AG1 = win]

∣∣∣ ≤ εPKE-Corr.
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G2 ⇝ G3: This step is similar to the previous ones, except that this time the
key pair that is assumed to be a correct one is the public parameters’ public key
and the corresponding secret key (i.e. the key pair sampled by Π.S).

Once again one can reduce distinguishing these games to breaking ΠPKE’s
correctness: the reduction has all secret keys so it can handle any oracle queries.
In contrast to the reductions for the previous steps, however, this time the
reduction only has to rely on ΠPKE-OPK oracle to generate a single key-pair.
Since nPKE ≥ 1, it then follows from Equation B.6 that no adversary (εPKE-Corr)-
breaks the (1)-Correctness of ΠPKE, implying∣∣∣Pr[AG3 = win]− Pr[AG2 = win]

∣∣∣ ≤ εPKE-Corr.

G3 ⇝ G4: Game G4 is just like G3 except that in G4 both the crs and the
NIZK proofs in the signatures output by OS are simulated (i.e. the crs is now
generated by ΠNIZK.SG and the NIZK proofs are now generated by ΠNIZK.SP ).

It is easy to see that one can reduce distinguishing these two games to breaking
ΠNIZK’s Zero-Knowledge property, as the reduction holds all secret keys and
thus can handle any oracle queries. (Although the reduction does not have the
trapdoor for the crs, in case the crs is a simulated one, since it only has to prove
true statements it can rely on oracle ΠNIZK-OP for generating the necessary
NIZK proofs.) Noting the reduction only has to generate at most one NIZK
proof for each OS query, since qS ≤ qPNIZK it follows from Equation B.7 that no
adversary (εNIZK-ZK, tNIZK)-breaks ΠNIZK’s (qPNIZK)-ZK security, implying∣∣∣Pr[AG4 = win]− Pr[AG3 = win]

∣∣∣ ≤ εNIZK-ZK.

G4 ⇝ G5: The only difference between games G4 and G5 is that in game G5

ciphertext cpp is an encryption of m followed by a 0-bitstring of appropriate
length.

As before the reduction holds all secret keys and thus it can handle any
oracle queries (note that the secret key corresponding to the public parameters’
public key is never used by the scheme). Note that the reduction only relies
on the ΠPKE-OPK oracle to generate one key-pair and only queries ΠPKE-OE

at most once for each OS query. Hence, as nPKE ≥ 1 and qS ≤ qEPKE, it
follows from Equation B.6 that no adversary (εPKE-IND-CPA, tPKE)-breaks the
(nPKE, qEPKE)-IND-CPA security of ΠPKE, implying∣∣∣Pr[AG5 = win]− Pr[AG4 = win]

∣∣∣ ≤ εPKE-IND-CPA.

G5 ⇝ G6: Game G6 is just like G5 except that now it is assumed that the OWF
image y0 in each party’s public key is unique. From Lemma 1 and Equation B.8
it then follows ∣∣∣Pr[AG6 = win]− Pr[AG5 = win]

∣∣∣ ≤ 2 · εOWF.
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G6 ⇝ G7: Game G7 is just like game G6 except that in G7, for each query
OV (Ai, Bj , V⃗ ,m, σ := (p, c⃗, cpp)), if the NIZK proof p verifies as valid and was

not output by a query OS(Ai, V⃗ ,m) it is assumed that (pp.pk, spk, v⃗,m, c⃗, cpp) ∈
LMDVSadap .

One can reduce distinguishing G6 and G7 to breaking the simulation sound-
ness of ΠNIZK. On one hand, since the reduction holds all secret keys, it can
handle any query to oracles OPP , OSK , OV K , OSPK , OV PK and OV . Regarding
queries to OS , the reduction can rely on the ΠNIZK-OP oracle to generate a
simulated NIZK proof (even though the NIZK proof is for a false statement,
see Definition 23). On the other hand, each query to OV is handled by using
the ΠNIZK-OV oracle to verify the validity of NIZK proof p. We now argue that
if there is a query OV (Ai, Bj , V⃗ ,m, σ := (p, c⃗, cpp)) such that the NIZK proof
p of σ verifies as valid for statement (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap , then
either indeed (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap , or σ was output by a query

OS(Ai
′, V⃗ ′,m′) with (Ai

′, V⃗ ′,m′) = (Ai, V⃗ ,m): if NIZK proof p in σ was not out-
put by OS as part of a signature, then either (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap

or the reduction would win the simulation soundness game of the underly-
ing ΠNIZK; if p was output as part of a signature σ′ = (p, c⃗′, cpp

′) by some

query OS(Ai
′, V⃗ ′,m′) such that (Ai

′, V⃗ ′,m′, c⃗′, cpp
′) ̸= (Ai, V⃗ ,m, c⃗, cpp) then p

was not generated for the same NIZK statement—in particular, note that we
are assuming all parties have a distinct OWF image y0 in their public key—
implying that either (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap or once again the re-
duction would win the simulation soundness game of the underlying ΠNIZK; it
is easy to see it only remains the case where some query OS(Ai

′, V⃗ ′,m′) with

(Ai
′, V⃗ ′,m′) = (Ai, V⃗ ,m) output signature σ. Note that the reduction generates at

most one proof for each OS query and verifies one NIZK proof for each OV query.
Because qS ≤ qPNIZK and qV ≤ qV NIZK, it follows from Equation B.7 that no
adversary (εNIZK-SS, tNIZK)-breaks the (qPNIZK, qV NIZK)-Simulation Soundness
of ΠNIZK, and so∣∣∣Pr[AG7 = win]− Pr[AG6 = win]

∣∣∣ ≤ εNIZK-SS.

To conclude we now prove the following claim:

Claim. Pr[AG7 = win] ≤ 2 · εOWF.

Proof. Recall that an adversary A can only win game G7 if it makes a query
OV (Ai, Bj , V⃗ ,m, σ := (p, c⃗, cpp)) that outputs 1, and A did not make any

query OS(Ai, V⃗ ,m), OSK(Ai) nor any query OV K(Bj) for Bj ∈ V⃗ . This im-
plies that an adversary can only win G7 if it forges a signature σ such that
OV (Ai, Bj , V⃗ ,m, σ := (p, c⃗, cpp)) outputs 1 and it did not query OS on (Ai, V⃗ ,m).

In other words, for every queryOS(Ai
′, V⃗ ′,m′), we have (Ai, V⃗ ,m) ̸= (Ai

′, V⃗ ′,m′).
Note that all parties are assumed to have distinct public keys—since, as men-
tioned above, the OWF image y0 in each party’s public key is unique—and so
for the adversary to win the game, the NIZK proof p in σ will have to verify
as being valid with respect to a NIZK statement that was never proven by
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the OS oracle. From the simulation soundness of ΠNIZK it then follows that
(pp.pk, spki, v⃗,m, c⃗, cpp) ∈ LMDVSadap , where spki is Ai’s signer public key and v⃗

is the vector of verifier public keys corresponding to vector of parties V⃗ . Taking
this one step further, note that OV only outputs 1 if, in addition to the NIZK
proof p being valid, for the least i ∈ {1, . . . , |V⃗ |} such that Vi = Bj , ci,b is an
encryption of 1 (by correctness, where b is the bit in Bj ’s secret key). Since by
definition RMDVSadap ⊆ RMDVSadap-Match ∩ RMDVSadap-Unforg, this implies cpp is an
encryption of a plaintext (m′, b′, ((b′1, x

′
1), . . . , (b

′
l, x
′
l))) with x′i being such that

ΠOWF.F(x
′
i) ∈ {spk.y0, spk.y1, vi.y0, vi.y1}.

The correctness of pp.pk further implies that decrypting cpp results in this
plaintext. By Definition 3, since the query is a winning one, the adversary could
not have queried OSK on Ai nor OV K on Bj . This implies that everything the
adversary sees is now completely independent of Ai’s bit b in its secret key and
Bj ’s bit b in its secret key; thus, the probability that eitherΠOWF.F(x

′
i) = spk.yb̄—

with b̄ := 1−b, b being the secret key in Ai’s secret key—or ΠOWF.F(x
′
i) = vi.yb̄—

with b̄ this time being the complement of the bit in the secret key in Bj—is 1
2 .

Given the correctness of pp.pk, one can then reduce winning G7 to breaking
the security of the underlying ΠOWF. For each signer and each verifier, letting
b be the bit in the party’s secret key, the yb̄ image in the party’s public key is
now obtained via a query ΠOWF-OY . Given nS ≤ max(nOWF−nV , 0) and nV ≤
max(nOWF − nS , 0), it follows by Equation B.8 that no adversary (εOWF, tOWF)-
breaks the (nOWF)-security of ΠOWF, implying Pr[AG7 = win] ≤ 2 · εOWF. ⊓⊔

B.2.4 Proof of Off-The-Record Security

Theorem 6. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE)-secure,
(B.9)

with nPKE ≥ 1, ΠNIZK is

(εNIZK-Complete, εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(B.10)

and ΠOWF is

(εOWF, tOWF, nOWF)-secure, (B.11)

with tOWF ⪆ nOWF · (tS + tF) (where tS and tF are, respectively, the times to run
ΠOWF.S and ΠOWF.F) and with nOWF ≥ 1, then no adversary A (ε, t)-breaks
Π’s

(nV := nPKE, qS := min(qEPKE, qPNIZK),

qV := qV NIZK, dV := qEPKE)-Off-The-Record security,
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with ε > 6 · (εPKE-Corr + εPKE-IND-CPA) + 2 · (εNIZK-ZK + εNIZK-SS) + 4 · εOWF, with
tPKE ≈ t+ tOTR + qS · tSP

+ tSG
, and with tNIZK ≈ t+ tOTR, where tOTR is the

time to run Π’s GOTR
β game experiment (with β ∈ {0, 1}), and tSP

and tSG
are,

respectively, the runtime of SP and SG.

The proof of Theorem 6 relies on an alternative signature verification procedure
that is defined in Algorithm 7.

Algorithm 7 Alternative signature verification algorithm for the OTR security
reductions. Below, skpp is the secret key corresponding to the public parameter’s
public key pp.pk.

Vfypp(spk, vpk, skpp, v⃗,m, σ := (p, c⃗, cpp))

if ΠNIZK.Vcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , p
)
= 1 then

(m′, b′, ((b′1, x
′
1), . . . , (b

′
l, x

′
l)))← ΠPKE.Dskpp (cpp)

for i = 1, . . . , l do
if vpk = vi then

return b′i
return 0

Proof. As before, we proceed in a sequence of games.

For any given adversary A, we bound A’s advantage

AdvOTR(A) :=
∣∣∣Pr[AGOTR

0 = win] + Pr[AGOTR
1 = win]− 1

∣∣∣,
by bounding, for β ∈ {0, 1}, the difference between the probability of A winning
GOTR

β and winning G1
β , and, for i ∈ {1, . . . , 10}, the difference between the

probability of A winning Gi
β and winning Gi+1

β . In other words, for β ∈ {0, 1},
we bound ∣∣∣∣Pr[AGOTR

β = win]− Pr[AG1
β = win]

∣∣∣∣,
and bound, for i ∈ {1, . . . , 10},∣∣∣∣Pr[AGi

β = win]− Pr[AGi+1
β = win]

∣∣∣∣.
As we will see, games G11

0 and G11
1 are perfectly indistinguishable; it follows∣∣∣Pr[AG11

0 = win] + Pr[AG11
1 = win]− 1

∣∣∣ = 0,
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implying

AdvOTR(A) :=
∣∣∣Pr[AGOTR

0 = win] + Pr[AGOTR
1 = win]− 1

∣∣∣
≤

∣∣∣∣Pr[AGOTR
0 = win]− Pr[AG1

0 = win]

∣∣∣∣
+

∑
i=1,...,10

∣∣∣∣Pr[AGi
0 = win]− Pr[AGi+1

0 = win]

∣∣∣∣
+

∑
i=1,...,10

∣∣∣∣Pr[AGi
1 = win]− Pr[AGi+1

1 = win]

∣∣∣∣
+

∣∣∣∣Pr[AGOTR
1 = win]− Pr[AG1

1 = win]

∣∣∣∣.
For β ∈ {0, 1}, game hops GOTR

β ⇝ G1
β , G

1
β ⇝ G2

β , G
2
β ⇝ G3

β , G
3
β ⇝ G4

β ,

G4
β ⇝ G5

β and G5
β ⇝ G6

β are analogous to the ones given in the proof of
Theorem 5 (see Section B.2.3), the only difference being that OTR game systems
now give the adversary access to the OChallenge oracle instead of giving access
to the OS oracle. Nevertheless, it is trivial to adapt the reductions given in the
proof of Theorem 5 to this proof. We now proceed with the remaining ones.

G6
β ⇝ G7

β: Game G7
β is just like game G6

β except that in G7
β , for each OV query

where NIZK proof p in the input signature verifies as valid for the corresponding
statement, it is assumed that (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap .

One can reduce distinguishing G6
β and G7

β to breaking the simulation sound-
ness of ΠNIZK. On one hand, since the reduction holds all secret keys, it can
handle any query to oracles OPP , OSK , OV K , OSPK , OV PK and OV . Regarding
queries to OChallenge, the reduction can rely on the ΠNIZK-OP oracle to generate
a simulated NIZK proof (even though the NIZK proof is for a false statement,
see Definition 23). On the other hand, each query to OV is handled by using the
ΠNIZK-OV oracle to verify the validity of NIZK proof p. At this point, it only
remains to show that distinguishing G6

β and G7
β implies the reduction would win

the simulation soundness game for the underlying ΠNIZK scheme.
For every query OV (Ai, Bj , V⃗ ,m, σ := (p, c⃗, cpp)) where p verifies as a valid

NIZK proof (for the corresponding statement), we will assume from now on

that signature σ was not output by a query OChallenge(type, Ai, V⃗ ,m, C) (as
otherwise by definition the adversary does not win the game). In case p was not
output as part of any signature output by OChallenge then it was not output
by the underlying ΠNIZK-OP oracle, and so, since it verifies as valid, either
indeed (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap or the adversary breaks the simulation
soundness of ΠNIZK. In case p was output as part of a signature σ′ = (p, c⃗′, cpp

′)

generated by a query OChallenge(type, Ai
′, V⃗ ′,m′, C), then by assumption we

have (Ai
′, V⃗ ′,m′, c⃗′, cpp

′) ̸= (Ai, V⃗ ,m, c⃗, cpp). Given all parties have a distinct

OWF image y0 in their public key, it follows that if (Ai
′, V⃗ ′) ̸= (Ai, V⃗ ) then

either spki ̸= spki′ or v⃗ ̸= v⃗′. However, in this case the NIZK proof p verified as
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valid for a statement that is different from the one proven by OChallenge—and
thus also different from any statement proven by the underlying ΠNIZK-OP

oracle—and thus either (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap or the adversary
breaks the simulation soundness of ΠNIZK. If (m

′, c⃗′, cpp
′) ̸= (m, c⃗, cpp) then once

again the NIZK proof p verified as valid for a statement that is different from the
one proven by OChallenge (and thus either (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap

or the adversary breaks the simulation soundness of ΠNIZK).
To conclude, noting that the reduction only generates at most one NIZK

proof for each query to oracle OChallenge and verifies at most one NIZK proof
for each query to OV , it follows that since qS ≤ qPNIZK and qV ≤ qV NIZK, by
Equation B.10 no adversary (εNIZK-SS, tNIZK)-breaks ΠNIZK’s (qPNIZK, qV NIZK)-
Simulation Soundness, implying∣∣Pr[AG6

β = win]− Pr[AG7
β = win]

∣∣ ≤ εNIZK-SS.

G7
β ⇝ G8

β: While in game G7
β queries to oracle OV are handled by following the

normal signature verification procedure, in game G8
β these queries are handled by

following the alternative signature verification procedure given in Algorithm 7.
Since at this point we are assuming the perfect correctness of all ΠPKE

key-pairs sampled by the game—which includes the public parameters public
key (and corresponding secret key) as well as the two ΠPKE pairs sampled for
each party—and furthermore are assuming that if a NIZK proof p verifies as
valid for a statement (pp.pk, spk, v⃗,m, c⃗, cpp) then it must indeed be the case
that (pp.pk, spk, v⃗,m, c⃗, cpp) ∈ LMDVSadap , it follows that G7

β and G8
β are perfectly

indistinguishable: ∣∣Pr[AG7
β = win]− Pr[AG8

β = win]
∣∣ = 0.

G8
β ⇝ G9

β: The only difference between games G8
β and G9

β is that in G9
β each

signature σ := (p, c⃗, cpp) output by a query OChallenge(type, Ai, V⃗ ,m, C) is such
that for all i ∈ {1, . . . , |V⃗ |}, ciphertext ci,b̄ in the vector of ciphertexts c⃗—where

b̄ := 1− b, b being the secret bit of party Vi—is an encryption of bit 0.
Once again, one can reduce distinguishing the two games to breaking the IND-

CPA security of the underlying scheme ΠPKE: since the reduction holds exactly
the same secret information as it did in the last game, it can handle all queries as
before. Furthermore, as for each verifier the reduction only has to rely on ΠPKE-
OPK to generate one public key and for each query OChallenge(type, Ai, V⃗ ,m, C)
the reduction queries ΠPKE-OE at most |V⃗ | times, given nV ≤ nPKE and dV ≤
qEPKE, it follows by Equation B.9 that no adversary (εPKE-IND-CPA, tPKE)-breaks
ΠPKE’s (nPKE, qEPKE)-IND-CPA security, implying∣∣Pr[AG8

β = win]− Pr[AG9
β = win]

∣∣ ≤ εPKE-IND-CPA.
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G9
β ⇝ G10

β : The difference between games G9
β and G10

β is that in G10
β each

signature σ := (p, c⃗, cpp) output by a query OChallenge(type, Ai, V⃗ ,m, C) is such
that for all i ∈ {1, . . . , |V⃗ |}, ciphertext ci,b̄ in the vector of ciphertexts c⃗ returns
to being an encryption of the same bit as it was in G9

β , whereas ci,b becomes an
encryption of bit 0.

Note that for any partyBj the existence of a queryOChallenge(type, Ai, V⃗ ,m, C)
with Bj ∈ V⃗ implies there is no query to OV K on Bj (and vice-versa). Thus all
the adversary sees is independent of Bj ’s secret key bit. It then follows that G9

β

is perfectly indistinguishable from G10
β , and hence∣∣Pr[AG9

β = win]− Pr[AG10
β = win]

∣∣ = 0.

G10
β ⇝ G11

β : This step is analogous to step G8
β ⇝ G9

β , except that this time ci,b
is an encryption of bit 0. It follows∣∣∣∣Pr[AG8

β = win]− Pr[AG9
β = win]

∣∣∣∣ ≤ εPKE-IND-CPA.

To conclude the proof, note that G11
0 is perfectly indistinguishable from G11

1 ,
as everything an adversary sees when interacting with either game is exactly the
same (independently of which game the adversary is actually interacting with).
Also, note that each intermediate game simply has to emulate the original game
towards A—with a few tweaks that, apart from the generation of a simulated
crs and the generation of simulated NIZK proofs, do not affect the time for
emulating the game. Letting tOTR be the time to run Π’s GOTR

β game experiment
(with β ∈ {0, 1}), tSP

be the runtime of SP and tSG
be the runtime of SG, it

follows

tPKE ≈ t+ tOTR + qS · tSP
+ tSG

,

tNIZK ≈ t+ tOTR.

⊓⊔

B.3 PKEBC Construction Security Proofs

In this section we give the formal security theorems and corresponding full proofs
for the PKEBC construction given in Section 5.4.

B.3.1 Proof of Correctness

Theorem 7. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE,Corr)-secure,
(B.12)
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with tPKE ⪆ nPKE · tG + tD (where tG and tD are, respectively, the times to run
ΠPKE.G and ΠPKE.D) and with nPKE ≥ 1, ΠNIZK is

(εNIZK-Complete, εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(B.13)

and ΠSKE is

(εSKE-1-IND-CPA, tSKE, qESKE,Corr)-secure, (B.14)

then no adversary A (ε, t)-breaks Π’s

(n := nPKE, qE := qPNIZK, qD := qV NIZK)-Correctness,

with ε > εNIZK-Complete + 2 · εPKE-IND-CPA + 3 · εPKE-Corr, with tNIZK ≈ t+ tCorr—
where tCorr is the time to run Π’s GCorr game—and with t < tPKE.

Proof. We proceed in a sequence of games.

GCorr ⇝ G1: Game G1 is just like the original game GCorr, except that in G1

for each ciphertext c := (p, cpp, c⃗, csym) output by a query OE(V⃗ ,m), if OD is
queried on input (Bj , c) it no longer verifies p’s validity and simply proceeds as
if p would verify as being valid.

Games GCorr and G1 are perfectly indistinguishable unless there is a query
OD(Bj , c) where c was output by some query OE(V⃗ ,m) such that Bj ∈ V⃗ , and
the verification of the NIZK proof p in c fails. One can then reduce distinguishing
these games to breaking ΠNIZK’s completeness: the reduction holds the secret
keys of every party, and so it can trivially handle any oracle queries. Noting the
reduction makes at most one ΠNIZK-OP query for each OS query and at most one
ΠNIZK-OV query for each OV query, as A only makes up to qE ≤ qPNIZK queries
to OE and qD ≤ qV NIZK queries to OD, it follows from Equation B.13, that
no adversary (εNIZK-Complete, tNIZK)-breaks the (qPNIZK, qV NIZK)-Completeness
of ΠNIZK, implying∣∣∣Pr[AG1 = win]− Pr[AGCorr = win]

∣∣∣ ≤ εNIZK-Complete.

G1 ⇝ G2: G2 is just like G1, except that now there are no two parties with the
same public key. It follows from Lemma 2 and Equation B.12 that∣∣∣Pr[AG2 = win]− Pr[AG1 = win]

∣∣∣ ≤ 2 · εPKE-IND-CPA + εPKE-Corr.

G2 ⇝ G3: G3 is just like G2, except that now OD behaves differently. For each
query (Bj , c) to OD, where c := (p, cpp, c⃗, csym) is the output of a query OE(V⃗ ,m),

OD now skips decryption attempts for every index i ∈ {1, . . . , |V⃗ |} such that
Vi ̸= Bj .
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Games G3 and G2 are perfectly indistinguishable unless there is a decryption
query OD(Bj , c) where c := (p, cpp, c⃗, csym) was the output of a query OE(V⃗ ,m)
and for some i ∈ {1, . . . , |⃗c|}, ciphertext ci,0 ∈ c⃗ is an encryption of two different
values under pp.pk—one being pkj and the other being the public key pki of

party Vi ∈ V⃗ . Note that one can reduce distinguishing these two games to
breaking ΠPKE’s correctness. More concretely, the reduction only has to rely on
the underlying oracle ΠPKE-OPK to generate a single public key (pp.pk), but
otherwise can handle any oracle queries since it holds all necessary secret keys.
Putting things together, since by Equation B.12 no adversary (εPKE-Corr)-breaks
the (1)-Correctness of ΠPKE, implying∣∣∣Pr[AG3 = win]− Pr[AG2 = win]

∣∣∣ ≤ εPKE-Corr.

G3 ⇝ G4: Game G4 is just like G3 except that once again OD behaves
differently. Again, let c := (p, cpp, c⃗, csym) be the output of OE when queried

on some input (V⃗ ,m). If OD is queried on input (Bj , c) such that Bj ∈ V⃗

and letting i ∈ {1, . . . , |V⃗ |} be the least index such that Vi = Bj and letting b
be the bit in Bj ’s secret key, OD no longer follows the procedure of trying to
decrypt ci,b,1, reconstructing ci,0 and then decrypting ci,b,2 to obtain ksym—the
ΠSKE’s symmetric key that was generated in the OE query. Instead, OD simply
proceeds as if this check (i.e. reconstructing ci,0) succeeded for index i, and ci,b,2’s
decryption resulted in ksym.

It is easy to see one can reduce distinguishing these two games to breaking the
correctness of the underlying PKE scheme, similarly to the previous game hop (i.e.
G2 ⇝ G3). The main difference is that now the reduction relies on ΠPKE-OSK

to generate a key-pair for each party: for each party Bj , the reduction uses ΠPKE-
OSK to generate key-pair (pkb, skb), where b is the bit in Bj ’s secret key. As
before, the reduction has access to all the secret keys, and thus it can handle any
oracle queries. Since A queries on at most n ≤ nPKE different parties, it follows
from Equation B.12 that no adversary (εPKE-Corr)-breaks the (nPKE)-Correctness
property of ΠPKE, implying∣∣∣Pr[AG4 = win]− Pr[AG3 = win]

∣∣∣ ≤ εPKE-Corr.

G4 ⇝ G5: G5 is just like G4 except that again OD behaves differently. Let
c := (p, cpp, c⃗, csym) be the output of OE when queried on some input (V⃗ ,m). If

OD is queried on input (Bj , c) such that Bj ∈ V⃗ and letting i ∈ {1, . . . , |V⃗ |} be
the least index such that Vi = Bj , OD no longer tries decrypting csym using ksym,
and instead simply proceeds as if the decryption had output the (v⃗,m) pair that
was encrypted by the OE query.

As before, one can reduce distinguishing the two games to winning the
correctness game of ΠSKE. It follows from Equation B.14 that ΠSKE is perfectly
correct, which implies∣∣∣Pr[AG5 = win]− Pr[AG4 = win]

∣∣∣ = 0.
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Finally, noting that in G5 any query OD(Bj , c)—where c was output by a

query OE(V⃗ ,m) with Bj ∈ V⃗—must output (v⃗,m)—v⃗ being the vector of public

keys corresponding to the vector of parties V⃗—it follows

Pr[AG5 = win] = 0.

⊓⊔

B.3.2 Proof of Robustness

Theorem 8. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE)-secure,
(B.15)

with tPKE ⪆ nPKE · tG + tD (where tG and tD are, respectively, the times to run
ΠPKE.G and ΠPKE.D) and nPKE ≥ 1, then no adversary A (ε, t)-breaks Π’s
(n := nEPKE)-Robustness, with ε > 2 · εPKE-IND-CPA + 2 · εPKE-Corr and t < tPKE.

Proof. This result can be proven by following (some of) the arguments given in
the proof of Theorem 7 (see Section B.3.1). More concretely, one would first hop
from the original GRob Robustness game to one where all parties are assumed to
have distinct public keys (see G2), and then to one where decryption queries for
ciphertexts not meant for the decrypting party would simply output ⊥ (see G3

of Section B.3.1). ⊓⊔

B.3.3 Proof of Consistency

Theorem 9. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE)-secure,
(B.16)

with nPKE ≥ 1, ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(B.17)

ΠSKE is

(εSKE-1-IND-CPA, tSKE, qESKE)-secure, (B.18)

and ΠNIZK.V is a deterministic algorithm, then no adversary A (ε, t)-breaks Π’s

(n := nPKE, qD := qV NIZK)-Consistency,

with ε > εNIZK-Sound + 3 · εPKE-Corr and with tNIZK ≈ t+ tCons, where tCons is the
time to run Π’s GCons game.

Proof. We prove this result via game hopping.
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GCons ⇝ G1: Game G1 is just like the original game GCons, except that when-
ever OD is queried on an input (Bj , c), with c := (p, cpp, c⃗, csym) such that
(1k, pp.pk, cpp, c⃗, csym) ̸∈ LPKEBCadap , the oracle outputs ⊥.

It is easy to see that G1 is perfectly indistinguishable from GCons unless
A makes a decryption query on a ciphertext c := (p, cpp, c⃗, csym) such that
the NIZK proof p verifies as being valid but the statement is not true (i.e.
(1k, pp.pk, cpp, c⃗, csym) ̸∈ LPKEBCadap). One can then reduce distinguishing these
two games to breaking the soundness of ΠNIZK, as the reduction holds the secrets
of all parties, and thus it can handle any oracle queries. Since the reduction only
has verify the validity of a NIZK proof for each query the adversary makes to
OD—which it does using the ΠNIZK-OV oracle of the underlying security game—
and since the adversary can only make up to qD ≤ qV NIZK decryption queries,
it follows from Equation B.17 that no adversary (εNIZK-Sound, tNIZK)-breaks the
(qV NIZK)-Soundness of ΠNIZK, implying∣∣∣Pr[AG1 = win]− Pr[AGCons = win]

∣∣∣ ≤ εNIZK-Sound.

G1 ⇝ G2: The only difference between G2 and G1 is that in G2 the public
key of the public parameters (pp.pk) and the corresponding secret key skpp are
assumed to be correct.

It is easy to see that one can reduce distinguishing the two games to breaking
the correctness ofΠPKE: since the reduction holds all secret keys, it can handle any
oracle queries. Noting that the reduction only queries the underlying game for the
public key of a single party (which it does via the ΠPKE-OPK oracle), it follows
from Equation B.16 that no adversary (εPKE-Corr)-breaks the (1)-Correctness of
ΠPKE, implying∣∣∣Pr[AG2 = win]− Pr[AG1 = win]

∣∣∣ ≤ εPKE-Corr.

G2 ⇝ G3: Game G3 only differs from G2 in that the key pair (pk0, sk0) of each
party Bj is assumed to be correct.

Similarly to the previous step, one can reduce distinguishing the two game
systems to winning the correctness game of the underlying ΠPKE. Given the
reduction queries for at most one key for each party, since n ≤ nPKE it follows
from Equation B.16 that no adversary (εPKE-Corr)-breaks the (nPKE)-Correctness
of ΠPKE, implying∣∣∣Pr[AG3 = win]− Pr[AG2 = win]

∣∣∣ ≤ εPKE-Corr.

G3 ⇝ G4: This game hop is analogous to the previous one (G2 ⇝ G3) except
that now the key-pairs that are assumed to be correct are each party’s (pk1, sk1)
key-pair.
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G4 ⇝ G5: G5 differs from G4 in that in G5 it is assumed that ΠSKE is perfectly
correct. It then follows from Equation B.18 that∣∣∣Pr[AG5 = win]− Pr[AG4 = win]

∣∣∣ = 0.

To conclude this proof it only remains to prove the following claim:

Claim. For any adversary A, Pr[AG5 = win] = 0.

Proof. A wins G5 if it queries OD on inputs (Bi, c) and (Bj , c) for some Bi

and Bj and some ciphertext c, and the first query outputs (v⃗,m) ̸= ⊥ with
pkj ∈ v⃗ (where pkj is Bj ’s public key) whereas the second outputs either ⊥
or some (v⃗′,m′) with (v⃗′,m′) ̸= (v⃗,m). Consider any two queries qD,i and qD,j

that A makes to OD on inputs (Bi, c) and (Bj , c), respectively, such that qD,i

outputs (v⃗,m) with (v⃗,m) ̸= ⊥ and pkj ∈ v⃗. (If A does not make any two

queries satisfying these conditions, it does not win G5.) In the following, let
c := (p, cpp, c⃗, csym) be the input ciphertext of both qD,i and qD,j .

To prove this claim we will first show that since qD,i outputs a pair (v⃗,m) ̸= ⊥
then cpp must be an encryption of m under pp.pk—i.e. for some sequence of
random coins rpp we have cpp = ΠPKE.E(pp.pk,m; rpp)—and for l ∈ {1, . . . , |v⃗|}
each ciphertext cl,0 is an encryption of vl under pp.pk—i.e. for some sequence
of random coins rl,0, we have cl,0 = ΠPKE.E(pp.pk, vl; rl,0). Then, we will show
that if qD,j outputs some pair (v⃗′,m′) ̸= ⊥, then it must be the case that
(v⃗′,m′) = (v⃗,m). Finally, we will show that qD,j does not output ⊥, implying
that it must output the same pair (v⃗,m) that was output by qD,i (and so the
adversary cannot win the game).

First, since query qD,i does not output ⊥, NIZK proof p verified as being
valid; the soundness of ΠNIZK implies (1k, pp.pk, cpp, c⃗, csym) ∈ LPKEBCadap . By the
definition of the decryption algorithm, it follows that for some l ∈ {1, . . . , |⃗c|},
the oracle decrypted cl,b,1 obtaining a sequence of random coins rl,0 such that
cl,0 = ΠPKE.E(pp.pk, pki; rl,0). By the correctness of pp.pk, there is no sequence
of random coins r such that cl,0 = ΠPKE.E(pp.pk, pk

′; r), for any pk′ ̸= pki. Since
(1k, pp.pk, cpp, c⃗, csym) ∈ LPKEBCadap , it then follows there are sequences of random
coins rl,b,2 and rsym such that cl,b,2 = ΠPKE.E(pki, ΠSKE.G(1k, rsym); rl,b,2). In
the following, let ksym = ΠSKE.G(1k, rsym). By the correctness of each party’s
(pkb, skb) key-pair (where b is the bit in the party’s secret key) the decryp-
tion of cl,b,2 outputs ksym. By the definition of the decryption algorithm, since
qD,i outputs (v⃗,m), then the decryption of csym resulted in this same pair
(v⃗,m). Again since (1k, pp.pk, cpp, c⃗, csym) ∈ LPKEBCadap , and by the correctness
of ΠSKE it follows that there is a sequence of random coins rsym

′ such that
csym = ΠSKE.E(ksym, (v⃗,m); rsym

′). To conclude the first step of the claim’s proof,
once again since (1k, pp.pk, cpp, c⃗, csym) ∈ LPKEBCadap , cpp is an encryption of m
under pp.pk and for k ∈ {1, . . . , |v⃗|} each ciphertext ck,0 is an encryption of vk
under pp.pk.

Recall that by assumption the output (v⃗,m) of query qD,i is such that pkj ∈ v⃗.

Consider any l ∈ {1, . . . , |v⃗|} with vl = pkj . Given (1k, pp.pk, cpp, c⃗, csym) ∈
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LPKEBCadap and letting ksym be the same as above, it follows from the correctness
of each party’s (pkb, skb) key-pair (where b is the bit in the party’s secret key) that
if the oracle tries to decrypt cl,b,2 using Bj ’s secret key, the decryption will yield
ksym. By the correctness of ΠSKE and since (1k, pp.pk, cpp, c⃗, csym) ∈ LPKEBCadap ,
any decryption of csym under ksym results in the same pair (v⃗,m). Noting that
the correctness of pp.pk implies that the oracle will not attempt to decrypt
any ciphertext ck,b,2 with vk ̸= pkj (where k ∈ {1, . . . , |v⃗|})—since there is no
sequence of coins r such that ck,0 = ΠPKE.E(pp.pk, pkj ; r)—it then follows that
if qD,j does not output ⊥, then it outputs the same pair as query qD,i.

To conclude the proof it only remains to show that query qD,j does not
output ⊥. Since ΠNIZK’s proof verification algorithm V is deterministic and
because query qD,i does not output ⊥, the NIZK proof p in ciphertext c also
verifies as being valid in query qD,j . Furthermore, on one hand, and as argued
above, the correctness of pp.pk implies the oracle will skip decryption attempts
for every index k ∈ {1, . . . , |v⃗|} such that pkj ̸= vk. On the other hand, since

(1k, pp.pk, cpp, c⃗, csym) ∈ LPKEBCadap and due to the correctness of Bj ’s (pkb, skb)
key-pair (where b is the bit in the Bj ’s secret key), for each l ∈ {1, . . . , |v⃗|}
such that vl = pkj , decrypting cl,b,1 would result in a sequence r such that
cl,0 = ΠPKE.E(pp.pk, pkj ; r). This means that for the least l ∈ {1, . . . , |v⃗|} such
that vl = pkj the oracle will attempt to decrypt cl,b,2; as argued above, this
implies that on query qD,j the oracle will output the same pair (v⃗,m) as it did
on query qD,i, which concludes the proof of this claim. ⊓⊔

B.3.4 Proof of (IND + IK)-CCA-2adap Security

Theorem 10. If ΠPKE is

(εPKE-Corr,εPKE-IND-CPA, εPKE-IK-CPA,

tPKE, nPKE, qEPKE)-secure,
(B.19)

with nPKE ≥ 1, ΠNIZK is

(εNIZK-Complete,εNIZK-Sound, εNIZK-ZK, εNIZK-SS,

tNIZK, qPNIZK, qV NIZK)-secure,
(B.20)

and ΠSKE is

(εSKE-1-IND-CPA, tSKE, qESKE)-secure, (B.21)

then no adversary A (ε, t)-breaks Π’s

(n := nPKE − 2, dE := qEPKE, qE := min(qPNIZK, qESKE),

qD := qV NIZK)-(IND+ IK)-CCA-2adap security,
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with

ε > (6 · εPKE-Corr + 12 · εPKE-IND-CPA + 8 · εPKE-IK-CPA)

+ 2 · (εNIZK-ZK + εNIZK-Sound + εNIZK-SS)

+ 2 · εSKE-1-IND-CPA,

tPKE, tSKE ≈ t+ t(IND+IK)-CCA-2adap + qE · tSP
+ tSG

,

tNIZK ≈ t+ t(IND+IK)-CCA-2adap ,

where t(IND+IK)-CCA-2adap is the time to run Π’s G
(IND+IK)-CCA-2adap

β game experiment
(for any β ∈ {0, 1}), tSP

is the runtime of SP , and tSG
is the runtime of SG

(S = (SG, SP ) is the simulator of ΠNIZK).

The proof of Theorem 10 relies on an alternative decryption procedure that
is defined in Algorithm 8.

Algorithm 8 Alternative decryption algorithm for the (IND+ IK)-CCA-2 security
reductions. Below, skpp is the secret key corresponding to the public parameter’s
public key (i.e. pp.pk) and pk is the public key of the party who is supposed to
decrypt c.

Dpp(skpp, pk, c := (p, cpp, c⃗, csym))

if ΠNIZK.Vcrs

(
(1k, pp.pk, cpp, c⃗, csym) ∈ L

PKEBCadap , p
)
= valid then

m← ΠPKE.Dskpp (cpp)

for j = 1, . . . , |⃗c| do
vj ← ΠPKE.Dskpp (cj,0)

v⃗ := (v1, . . . , v|v⃗|)
if pk ∈ v⃗ then ▷ By ΠPKE’s Correctness and ΠNIZK’s Soundness, (v⃗,m) ̸= ⊥

return (v⃗,m)

return ⊥

Proof. This proof proceeds in a sequence of game hops.

For simplicity of notation, we will refer to G
(IND+IK)-CCA-2adap

β as GCCA
β , for

β ∈ {0, 1}. For any given adversary A, we bound A’s advantage

Adv (IND + IK)-CCA-2adap(A) :=
∣∣∣Pr[AGCCA

0 = win] + Pr[AGCCA
1 = win]− 1

∣∣∣,
by bounding, for β ∈ {0, 1}, the difference between the probability of A winning
GCCA

β and winning G1
β , and, for i ∈ {1, . . . , 19}, the difference between the

probability of A winning Gi
β and winning Gi+1

β . In other words, for β ∈ {0, 1},
we bound ∣∣∣∣Pr[AGCCA

β = win]− Pr[AG1
β = win]

∣∣∣∣,
and bound, for i ∈ {1, . . . , 19},∣∣∣∣Pr[AGi

β = win]− Pr[AGi+1
β = win]

∣∣∣∣.
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Since G20
0 is perfectly indistinguishable from G20

1 ,∣∣∣Pr[AG20
0 = win] + Pr[AG20

1 = win]− 1
∣∣∣ = 0.

This then implies

Adv (IND + IK)-CCA-2adap(A) :=
∣∣∣Pr[AGCCA

0 = win] + Pr[AGCCA
1 = win]− 1

∣∣∣
≤

∣∣∣∣Pr[AGCCA
0 = win]− Pr[AG1

0 = win]

∣∣∣∣
+

∑
i=1,...,19

∣∣∣∣Pr[AGi
0 = win]− Pr[AGi+1

0 = win]

∣∣∣∣
+

∑
i=1,...,19

∣∣∣∣Pr[AGi
1 = win]− Pr[AGi+1

1 = win]

∣∣∣∣
+

∣∣∣∣Pr[AGCCA
1 = win]− Pr[AG1

1 = win]

∣∣∣∣.
The sequence of games is given in Table 1; by summing up the differences of

the winning probabilities, one obtains

Adv (IND + IK)-CCA-2adap(A) ≤ (6 · εPKE-Corr + 12 · εPKE-IND-CPA + 8 · εPKE-IK-CPA)

+ 2 · (εNIZK-ZK + εNIZK-Sound + 2 · εNIZK-SS)

+ 2 · εSKE-1-IND-CPA.

We now justify each game hop in Table 1.

GCCA
β ⇝ G1

β: For β ∈ {0, 1}, one can reduce distinguishing G1
β and GCCA

β to
breaking ΠPKE’s correctness: the reduction holds the secret key of every party
and so it can trivially handle any oracle queries. Noting that the reduction only
has to query oracle ΠPKE-OSK on at most n ≤ nPKE key-pairs, it follows from
Equation B.19 that no adversary (εPKE-Corr)-breaks ΠPKE’s (nPKE)-Correctness,
implying ∣∣Pr[AGCCA

β = win]− Pr[AG1
β = win]

∣∣ ≤ εPKE-Corr.

G1
β ⇝ G2

β: Analogous to GCCA
β ⇝ G1

β ; it follows∣∣Pr[AG1
β = win]− Pr[AG2

β = win]
∣∣ ≤ εPKE-Corr.

G2
β ⇝ G3

β: By Equation B.21, ΠSKE is perfectly correct, implying∣∣Pr[AG3
β = win]− Pr[AG2

β = win]
∣∣ = 0.

G3
β ⇝ G4

β: Similar to GCCA
β ⇝ G1

β , except that this time the reduction only
has to query oracle ΠPKE-OSK on at most one key-pair; since nPKE ≥ 1 it then
follows by Equation B.19 that∣∣Pr[AG4

β = win]− Pr[AG3
β = win]

∣∣ ≤ εPKE-Corr.
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G4
β ⇝ G5

β: Note that, for β ∈ {0, 1}, one can reduce distinguishing G4
β and

G5
β to breaking the soundness of the underlying ΠNIZK: since at this point we

are assuming perfect correctness of both ΠSKE and ΠPKE, an adversary can
only distinguish G4

β from G5
β if it submits a decryption query for a ciphertext

c := (p, cpp, c⃗, csym) such that the NIZK proof p verifies as being valid but the
corresponding statement is not true (i.e. (1k, pp.pk, cpp, c⃗, csym) ̸∈ LPKEBCadap). In
particular, since the reduction holds the secret key of every party Bj—which
consists of Bj ’s public key pkj , the secret bit bj and the secret key skbj—it can
handle any secret key queries. Moreover, it also holds the secret key corresponding
to the public parameter’s public key, it can handle any decryption oracle queries
by using the alternative decryption procedure defined in Algorithm 8. Noting
that the reduction queries the underlying ΠNIZK-OV oracle only once for each
OD query, and there are at most qD ≤ qV NIZK queries to OD, it follows by
Equation B.20 ∣∣Pr[AG5

β = win]− Pr[AG4
β = win]

∣∣ ≤ εNIZK-Sound.

G5
β ⇝ G6

β: It is easy to see that one can reduce distinguishing these two games
to breaking ΠNIZK’s Zero-Knowledge, as the reduction holds all secret keys
(including the secret key corresponding to pp.pk) and thus can handle any oracle
queries. (Although the reduction does not have the trapdoor for the crs, in case
the crs is a simulated one, since it only has to prove true statements it can
rely on oracle ΠNIZK-OP for generating the necessary NIZK proofs.) Noting the
reduction only has to generate at most one NIZK proof for each OE query, since
qE ≤ qPNIZK it follows from Equation B.20 that no adversary (εNIZK-ZK, tNIZK)-
breaks ΠNIZK’s (qPNIZK)-ZK, implying∣∣Pr[AG6

β = win]− Pr[AG5
β = win]

∣∣ ≤ εNIZK-ZK.

G6
β ⇝ G7

β: One can reduce distinguishing G7
β and G6

β to breaking the IND-CPA
security of ΠPKE. In contrast to prior reductions, this time the reduction does
not have, for each party Bj , both sk0 and sk1. However, since the scheme itself
discards one of the secret keys, namely skb̄ (with b̄ := 1− b, b being the bit in
the party’s secret key), the reduction can still handle OSK queries by generating
itself the key-pair (pkb, skb) of each party and relying on the underlying oracle
ΠPKE-OPK to generate public key pkb̄. This means the reduction can still handle
queries to OSK . Regarding queries to OD, the reduction relies on the secret key
skpp corresponding to the public parameters public key as before. Regarding OE

queries, note that although the reduction now has to prove NIZK statements that
it either does not have a witness for (in G6

β) or are even false (in G7
β), since the

NIZK’s crs is a simulated one generated by the reduction, the reduction holds
the crs trapdoor τ that allows it to simulate NIZK proofs without a witness.
Finally, noting that the reduction only queries the underlying ΠPKE IND-CPA
security game on at most n ≤ nPKE different parties and queries ΠPKE-OE

at most dE ≤ qEPKE times, it follows from Equation B.19 that no adversary
(εPKE-IND-CPA, tPKE)-breaks ΠPKE’s (nPKE, qEPKE)-IND-CPA security, implying∣∣Pr[AG7

β = win]− Pr[AG6
β = win]

∣∣ ≤ εPKE-IND-CPA.
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G7
β ⇝ G8

β: One can reduce distinguishing games G8
β and G7

β to breaking the IK-

CPA security of ΠPKE in a very similar way to the previous step (i.e. G6
β ⇝ G7

β).
The only difference is in how to handle OE queries: since now we have to swap
the public key used for encryption, we cannot simply swap it with another party’s
public key: on one hand it is crucial the reduction has each party’s secret key in
order to handle OSK queries as before—and thus the reduction cannot simply
rely on ΠPKE-OPK to create all public keys—and on the other hand, note that
when reducing to the IK-CPA security of the underlying ΠPKE scheme, if two
parties, say Bj and Bj

′ have, respectively, bits bj and bj
′ in their secret keys, and

these bits are such that bj ̸= bj
′, then the reduction cannot simply change the

encryption public key of a ΠPKE ciphertext from Bj ’s public key pkb̄j to Bj
′’s

public key pkb̄j ′ . To avoid this issue we instead use two additional public keys, pk0
and pk1 in the reduction, that are generated by the underlying ΠPKE-OPK oracle
and which become the new encryption keys. Since the reduction queries on at
most n ≤ nPKE − 2 different parties and queries ΠPKE-OE at most dE ≤ qEPKE

times, it follows from Equation B.19 that no adversary∣∣Pr[AG8
β = win]− Pr[AG7

β = win]
∣∣ ≤ εPKE-IK-CPA.

G8
β ⇝ G9

β: Note that, for any party Bj , if the adversary makes a query

OE

(
(V⃗0,m0), (V⃗1,m1)

)
, where Bj ∈ Set(V⃗0) ∪ Set(V⃗1), then it cannot make

any query to OSK on Bj , implying the adversary can never learn the secret bit
in Bj ’s secret key. This implies that G9

β is perfectly indistinguishable from G8
β .

Hence ∣∣Pr[AG9
β = win]− Pr[AG8

β = win]
∣∣ = 0.

G9
β ⇝ G10

β : Analogous to G6
β ⇝ G7

β .

G10
β ⇝ G11

β : Analogous to G7
β ⇝ G8

β .

G11
β ⇝ G12

β : Note that one can reduce distinguishing these two games to breaking
the 1-IND-CPA security of the underlying ΠSKE scheme: since the reduction holds
exactly the same information as it did in the last few games, it can handle both
decryption oracle queries and secret key queries as before. Given that for each
query to OE the reduction queries ΠSKE-OE at most once, by Equation B.21 it
follows ∣∣Pr[AG12

β = win]− Pr[AG11
β = win]

∣∣ ≤ εSKE-1-IND-CPA.

G12
β ⇝ G13

β : Analogous to G6
β ⇝ G7

β .

G13
β ⇝ G14

β : Analogous to G7
β ⇝ G8

β .

G14
β ⇝ G15

β : Analogous to G8
β ⇝ G9

β .

G15
β ⇝ G16

β : Analogous to G6
β ⇝ G7

β .
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G16
β ⇝ G17

β : Analogous to G7
β ⇝ G8

β .

G17
β ⇝ G18

β : This step is similar to G4
β ⇝ G5

β , except that now the reduction
has to prove a false NIZK statement each time OE is queried. Although the
reduction does not have the trapdoor to the simulated crs, it can rely on the
ΠNIZK-OP oracle to obtain these proofs. As before, since the reduction holds the
secret key of every party, it can handle any oracle queries. Given the reduction
only has to generate one NIZK proof for each OE query, and only has to verify
one NIZK proof for each OD query, since there are at most qE ≤ qPNIZK queries
to OE and qD ≤ qV NIZK queries to OD, it follows by Equation B.20∣∣Pr[AG18

β = win]− Pr[AG17
β = win]

∣∣ ≤ εNIZK-SS.

G18
β ⇝ G19

β : Note that one can reduce distinguishingG19
β andG18

β to breaking the
IND-CPA security of ΠPKE. Noting that the reduction only queries the underlying
security game for one public key—namely pp.pk—and since the reduction queries
the underlying ΠPKE-OE oracle at most dE ≤ qEPKE times, it follows from
Equation B.19∣∣Pr[AG19

β = win]− Pr[AG18
β = win]

∣∣ ≤ εPKE-IND-CPA.

G19
β ⇝ G20

β : Analogous to G18
β ⇝ G19

β , except that the reduction only queries
the underlying ΠPKE-OE oracle at most qE ≤ qEPKE times.

To conclude the proof, note that each reduction simply has to emulate the
original game towards A—with a few tweaks that, apart from the generation of
a simulated crs and the generation of simulated NIZK proofs, do not affect the
time for emulating the game. Letting t(IND+IK)-CCA-2adap be the time to run Π’s

GCCA
β game experiment (with β ∈ {0, 1}), tSP

be the runtime of SP and tSG
be

the runtime of SG, it follows

tPKE, tSKE ≈ t+ t(IND+IK)-CCA-2adap + qE · tSP
+ tSG

,

tNIZK ≈ t+ t(IND+IK)-CCA-2adap .

⊓⊔
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Table 1: Sequence of hybrids for proving the (IND+ IK)-CCA-2 security of our scheme. The first row specifies, for β ∈ {0, 1}, GCCA
β ;

each of the following rows specifies a hybrid game Gi
β , with β ∈ {0, 1}. The ε column indicates, for each row, an upper bound in an

adversary’s advantage in distinguishing between that row’s game and the previous row’s game. The non-shaded cell of each row specifies
how the hybrid differs from the previous game (except for the first row, which specifies GCCA

β ). Columns: NIZK: indicates whether the crs
output by OPP and the proofs output by OE queries are real ones (Real) or simulated ones (Sim); OD: indicates how the game handles
decryption queries—csym indicates that the game handles decryption queries by following the normal decryption procedure, whereas cpp
indicates that the game handles decryption queries by following the alternative decryption procedure (see Algorithm 8); OE : indicates
how OE queries are handled—columns named Value indicate what value is encrypted (by the part of the ciphertext corresponding to
that column), and columns named pk indicate what public key is used (by the part of the ciphertext corresponding to that column);
Correctness: columns pp.pk, pkj .pk0 and pkj .pk1 indicate whether the ΠPKE key pairs (corresponding to the columns public key) are
correct; column ΠSKE indicates whether ΠSKE is assumed to be perfectly correct. In columns ci,b,1, ci,b̄,1, ci,b,2 and ci,b̄,2 under OE , b

denotes the bit of the secret key of Vβi, and b̄ denotes the complement of b, i.e. b̄ := 1− b. In the table, pk0 and pk1 are two ΠPKE public
keys that are (honestly) sampled independently from all parties’ public keys and independently from pp.pk; these public keys are only
used for the IK-CPA security reductions. Finally, all values 0 under columns Value are assumed to have appropriate length. For instance,
in G7

β the 0 is assumed to be of the same length as ksym, and in G12
β the 0 is assumed to be of the same length as (v⃗β ,mβ).

Hybrid NIZK OD

OE

(
(V⃗0,m0), (V⃗1,m1)

)
Correctness

εcpp csym ci,0 ci,b,1 ci,b̄,1 ci,b,2 ci,b̄,2
pp.pk ΠSKE pkj .pk0 pkj .pk1

Value Value Value Value pk Value pk Value pk Value pk

GCCA
β Real csym mβ (v⃗β ,mβ) vβi ri,0 vβi.pkb ri,0 vβi.pkb̄ ksym vβi.pkb ksym vβi.pkb̄ Normal Normal Normal Normal

G1
β Correct ≤ εPKE-Corr

G2
β Correct ≤ εPKE-Corr

G3
β Correct = 0

G4
β Correct ≤ εPKE-Corr

G5
β cpp ≤ εNIZK-Sound

G6
β Sim ≤ εNIZK-ZK

G7
β 0 ≤ εPKE-IND-CPA

G8
β pkb̄ ≤ εPKE-IK-CPA

G9
β 0 pkb ksym vβi.pkb̄ = 0

G10
β 0 ≤ εPKE-IND-CPA

G11
β pkb̄ ≤ εPKE-IK-CPA

G12
β 0 ≤

εSKE-1-IND-CPA

G13
β 0 ≤ εPKE-IND-CPA

G14
β pkb̄ ≤ εPKE-IK-CPA



G15
β 0 pkb ri,b̄,0 vβi.pkb̄ = 0

G16
β 0 ≤ εPKE-IND-CPA

G17
β pkb̄ ≤ εPKE-IK-CPA

G18
β csym ≤ εNIZK-SS

G19
β 0 ≤ εPKE-IND-CPA

G20
β 0 ≤ εPKE-IND-CPA



C Gaps in Security Proofs of Prior Work

In [6], Damg̊ard et al. introduce an intermediate type of scheme, Provably
Simulatable Designated Verifier Signature (PSDVS) schemes, from which they
then construct a full-fledged MDVS scheme (see [6, Construction 1]). In this
section we provide details on two proof gaps: one in the proof of [6, Theorem 2]—
the theorem establishing the security of their PSDVS-based MDVS construction—
and one in the proof of [6, Theorem 3]—the theorem establishing the security of
their PSDVS construction based on standard primitives.

Issue with Consistency Proof of MDVS Construction from Standard Primitives.
The Consistency security notion given in [6, Definition 2] provides adversaries with
access to a signature verification oracle. Unfortunately, in the proof of [6, Theorem
2]—the security proof establishing the security of their MDVS scheme construction
from PSDVS schemes (see [6, Construction 1])—it is not mentioned how the
reduction could handle signature verification queries. Furthermore, it is also not
clear how such queries could be handled, as the security notions for the PSDVS
scheme on which the consistency proof relies (see [6, Definitions 10, 13 and 15])
do not themselves provide an adversary with access to a verification oracle either.
Finally, we would like to note that it is desirable to provide the adversary with
access to such an oracle since signatures are not publicly verifiable; in particular,
the composable treatment of MDVS schemes given in [16] requires the consistency
game to provide access to a signature verification oracle.

Issue with Verifier Signature Simulation Indistinguishability Proof of the PSDVS
Construction from Standard Primitives. In the proof of [6, Theorem 3]—which
establishes the security of [6, Construction 2], the PSDVS construction from stan-
dard primitives—and in particular in paragraph “VerSigSim Indistinguishability,
(Definition 11)”, it is argued that verifier simulated signatures are indistinguish-
able from real signatures generated by the signer due to the pseudorandomness of
the PRF underlying their construction. Unfortunately, the PRF’s secret seed is
part of the verifier’s secret key, and, according to [6, Definition 11], the adversary
has access to the verifier’s secret key, making it unclear how one could actually
make a reduction to the pseudorandomness of the underlying PRF.
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