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Abstract. Digital signature schemes based on a general one-way func-
tion without trapdoor offer two potential advantages over digital sig-
nature schemes based on trapdoor one-way functions such as the RSA
system: higher efficiency and much more freedom in choosing a cryp-
tographic function to base the security on. Such a scheme is charac-
terized by a directed acyclic computation graph and an antichain in a
certain partially ordered set defined by the graph. Several results on the
achievable efficiency of such schemes are proved, where the efficiency of
a scheme is defined as the ratio of the size of messages that can be signed
and the number of one-way function evaluations needed for setting up
the system. For instance, the maximal achievable efficiency for trees is
shown to be equal to a constant v ~ 0.4161426 and a family of general
graphs with substantially greater efficiency 0.476 is demonstrated. This
construction appears to be close to optimal.
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1 Introduction

One can distinguish between three types of digital signature schemes. The first
type of scheme was proposed by Lamport [7] and generalized in [8], [9], [5],
[14] and [1]. Once it is set up, it can only be used for signing a predetermined
number (e.g. one) of messages from a certain message space. The second type of
schemes, the first realization of which was the RSA system [11], can be used an
unlimited number of times. In contrast to the first type of scheme, the second
requires strong mathematical structure in the underlying one-way function. A
third type of scheme was proposed by Rompel [12] based on work by Naor and
Yung [10]. The security of these schemes can provably be based on an arbitrary
one-way function, but they are inefficient. The purpose of this paper is to discuss
the design and analysis of schemes of the first type, where the emphasis is on
efficiency and freedom in the choice of the cryptographic function on which the
system is based. In contrast to Rompel’s work, our goal is not to prove rigorously
that the security is equivalent to the security of the one-way function(s).



There are two different motivations for investigating and possibly using the
first type of schemes despite their limited number of uses. First, they can be based
on virtually every cryptographic one-way function® (OWF), a very general cryp-
tographic primitive, whereas the few schemes of the second type proposed so far
are based on OWFs with a very strong mathematical structure. The diversity of
conjectured difficult problems (such as the integer factoring problem [11] or the
discrete logarithm problem in certain finite groups [13]) on which their security
can be based is thus severely limited. While such mathematical structure is ap-
pealing to the designer and the users of a system, it could for an adversary just
as well be the key to breaking the system if he is able to exploit the structure in
a way not foreseen by the designer. Second, the first type of scheme is potentially
more efficient because a general OWF, which for this purpose not even needs to
be collision-free, can be realized much more efficiently than OWF's with appro-
priate structure. Moreover, these schemes have applications in efficiency-critical
smartcard applications [6], in on-line/off-line signatures [5] and in the signature
schemes of [3].

The general concept of a digital signature schemes of the first type was for-
malized in [1]. The purpose of this paper is to discuss constructions for such
schemes and to prove several results on the achievable efficiency, in particular
for computation graphs that are trees. The outline of the paper is as follows.
To make the paper reasonably self-contained, the basic ideas underlying [1] are
briefly discussed in Section 2, and the definitions are summarized in Section 3.
In Section 4 several types of graphs and constructions are analyzed and lower
and upper bound results on their efficiency are derived. The special case of trees
is discussed in Section 5 and the best known general graph construction is pre-
sented in Section 6.

2 One-time Digital Signature Schemes

The general idea of a one-time signature scheme is that the secret key is used
as the input to a sequence of OWF evaluations which results in a sequence of
intermediate results and finally in the public key. The one-wayness of the func-
tions implies that it is infeasible to compute the secret key, or any intermediate
result of the computation, from the public key.

A signature for a given message consists of a subset of the intermediate results
of this computation, where the message to be signed determines which particular
subset is revealed as the corresponding signature. There exist two important

3 A one-way function f is a function that is easy to compute but computationally
infeasible to invert, for suitable definitions of “easy” and “infeasible”. It is not difficult
to define a function that appears to be one-way. However, not even the existence of
one-way functions, for a suitable definition, has been proved. To be secure in the
context of this paper, one-way functions with certain very special properties should
be avoided. For instance, a one-way function f(z,y) with two arguments should
satisfy f(z,y) = f(y,x) for x # y only with negligible probability. It is an open
problem to characterize when a function is secure in our context.



requirements on these signatures. First, every signature must be verifiable, i.e.,
the public key must be computable from it. Second, in order to prevent forgery
of signatures, the set of signatures (for the messages in the message space) must
be compatible in the sense that no signature can be computed from the signature
for a different message, without inverting a one-way function.

Let B be a suitable large set (e.g., the set of 64, 96 or 128-bit strings) which
is the range of the OWFs. The input to each OWF evaluation consists of one or
several elements of B. The secret key consists of one or a list of elements of B.
Without loss of essential generality only schemes are considered for which the
public key consists of only one element of B.

The structure of the computation leading from the secret key components to
the public key can be represented as a directed acyclic graph G = (V, E) with
vertex set V and edge set E, where the vertices correspond to the secret key,
the intermediate results, and the public key and where a directed edge (v;,v;)
in FE indicates that v; is an input to the OWF computation resulting in v; (see
Figure 1, left side).

The graph G characterizing a one-time signature scheme is assumed to be
known publicly, as is the mapping from messages to subsets of vertices (signature
patterns), and can be used by all users. A user’s signature for a given message
consists of the values (for that user’s secret key) corresponding to the vertices
in the signature pattern for that message, when the computation according to
G is performed for that user’s secret key. A toy example of a signature scheme
is shown in Figure 1.

In this paper we are interested in the design of efficient signature schemes
based on graphs, where the size of the message space should be maximized while
the size of the graph should be minimized. Because messages to be signed can
first be hashed by a collision-free hash function to a short string (e.g., of 128
bits), it is sufficient that the message space of our schemes corresponds to the
range of such a hash function (e.g., has size 2!28).

3 Definitions and Preliminaries

This section summarizes the relevant definitions from [1] and introduces the
concept of efficiency. Throughout the paper, vertices and sets of vertices of a
graph are denoted by small and capital letters, respectively, and graphs, posets
as well as sets of sets of vertices are denoted by calligraphic letters.

Let C,, denote the DAG consisting of a single path connecting m vertices,
i.e., a chain of length m. For k DAGs Gi,..., G, let Gy ---Gi denote the graph
consisting of unconnected copies of Gi, ..., k. If each of the graphs Gi,...,G¢
has only one vertex of out-degree 0 (corresponding to the public key in our
context), let G =[Gy - - - Gi] be the DAG obtained from Gj - - - Gy, by introducing
a new vertex v and directed edges from these k distinguished vertices to v.

We now define a one-time signature scheme based on a DAG G = (V, E). The
secret key pattern S(G) C V and the public key pattern P(G) C V are defined as
the sets of vertices with in-degree 0 and out-degree 0, respectively. Let X be a
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Fig.1. A toy example of a one-time signature scheme. The secret key consists of
the 3 vertices: 8,10 and 11. One signature pattern (the set {3,4,7,11}) is indicated
on the right-hand side. The associated poset of this graph contains 29 signature
patterns, but the maximal number of compatible signature patterns is 9. One max-
imal antichain consists of the sets {2,5,8,11}, {2,6,7,11}, {2,6,9,10}, {3,4,7,11},
{3,4,9,10}, {3,5,8,10}, {4,5,8,9}, {4,6,7,9}, and {5, 6,7,8}. All these signature pat-
terns have size 4, but in general they have different sizes. The efficiency of this scheme
is (log, 9)/12 = 0.264, which is better than Lamport’s scheme with efficiency 1/6.

subset of V. A vertex v is defined recursively to be computable from X if either
v € X or if v has at least one predecessor and all predecessors are computable
from X. A set Y is computable from X if every element of Y is computable from
X. Note that V and hence every subset of V' is computable from the secret key
S(G).

A set of vertices X C V is called verifiable (with respect to the public key)
if P(G) is computable from X. Note that a set X is verifiable if and only if
every maximal path (in the sense that it cannot be extended to a longer path
or, equivalently, a path from a vertex in S(G) to a vertex in P(G) ) contains
at least one element in X. A verifiable set X is minimal if no subset of X is
verifiable. Two minimal verifiable sets X and Y are compatible if neither X is
computable from Y nor Y is computable from X. A set of minimal verifiable
sets is compatible if they are pairwise compatible.

The computability relation on the set of minimal verifiable sets of a graph
is transitive, antisymmetric and reflexive, and hence the set of minimal verifi-
able sets of a graph G, denoted G*, forms a partially ordered set (G*, <) with
computability as the order relation, i.e., we have X <Y for X,Y € G* if and
only if X is computable from Y. Note that two minimal verifiable sets of G are
compatible if and only if they are incomparable in (G*, <).

Definition 1. Minimal verifiable sets will in the following be called signature
patterns. The associated poset of DAG G, denoted G*, is the poset (G*,<) of
signature patterns of G. A one-time signature scheme I" for G is an antichain of
the associated poset G*, and the maximal size of an anti-chain in G is denoted
by w(G).

A small example of a signature scheme is shown in Figure 1 and is discussed
in the figure caption.

The important parameters of a one-time signature scheme I" for a graph



G = (V,E) are the number |V| of vertices which is equal to the number of
function evaluations required for computing the public key from the secret key*,
the number |I'| of signatures (which is at least equal to the size of the message
space), and the maximal size of signatures, maxyer |U].

This motivates the following problems. First, for a given graph G to find a
large (ideally a maximal-sized) antichain in the associated poset. Second, for a
given size of the message space to find a graph with few (ideally the minimal
number of) vertices allowing the construction of a one-time signature scheme.
Third, both problems should be treated with an additional constraint on the
maximal size of signatures.

For a poset Z = (Z,<), a function r : Z — N is called a representation
function of Z if for all distinct z,y € Z, x < y implies r(z) < r(y). Therefore
r(z) = r(y) implies that = and y are incomparable and hence for any represen-
tation function r of the associated poset (G*, <) of a given DAG G and for any
integer k, the set

{UeqG :r(U)=k}

is a one-time signature scheme.

In order to find good signature schemes for a given graph, we need to find a
good representation function. For U € G* for a given DAG G, let Cg(U) be the
set of vertices of G that are computable from U but are not contained in U:

Cg(U) ={v:v ¢ U and v is computable from U}.

Let ¢g : G* = N be the function defined by

cg(U) = |Cg(U)-
The following theorem was stated in [1] without proof.

Theorem 1. For any DAG G the function cg is a representation function of the
associated poset G*.

Proof. Let Uy and U be distinct signature patterns with U; < U,. We must prove
that |Cg(Uy)| < |Cg(Uz)|. Let v be any element in Cg(U;). All predecessors of v
are computable from U; by definition. Since Uy is computable from U, any vertex
that is computable from U; is computable from Us. Therefore all predecessors of
v are computable from Us. If v were in Uy then Us; would not be minimal. Thus
v € Cg(U2) and we have Cg(U1) C Cg(Us). Moreover, Uy is not a subset of Us
because U, is minimal. Hence there exists a vertex s € Uy with s ¢ U, which is
computable from U, because U; is computable from Us. Therefore s € Cg(Us)
and s ¢ Cg(Uy) and thus we have Cg(Uy) # Cg(Us). Hence Cg(Uy) is a proper
subset of Cg(Us) which implies that |Cg(Us)| < |Cg(Uz)|. O

A natural implementation of a one-way function with ¢ arguments is to ap-
ply a one-way function with two arguments repeatedly ¢ — 1 times, each time

4 Here we have assumed that a secret key consisting of several components is gener-
ated from a single component by applying, for each component, a different one-way
function to the secret key.



combining the previous result with a new argument. This computation can be
represented as a binary tree. Without much loss of generality we therefore re-
strict the discussion in this paper to graphs with a maximal in-degree of 2,
counting OWF evaluations with 1 or 2 arguments equaly. Furthermore, because
a public key consisting of several components can be hashed to a single value,
we restrict the discussion to graphs with a single vertex of out-degree 0 (whose
value corresponds to the public key).

The efficiency of a signature scheme I" for a graph G can be defined as the
number of message bits, log, |I'|, that can be signed per vertex of the graph.
However, the results on efficiency can be stated more nicely when the number
of vertices is increased by one in the following definition.

Definition 2. The efficiency of a one-time signature scheme I" for a graph G
with n vertices, denoted 7n(I"), is defined by

log, | I’

n+1"

For example, the graph corresponding to Lamport’s scheme for signing a
k-bit message contains 6k — 1 vertices when all the public-key components are
hashed in a binary tree to result in a single public-key component. Hence the
efficiency of the Lamport scheme is 1/6.

In the sequel we discuss the problem of maximizing the number of signature
patterns for a given number n of vertices under the restriction of maximal in-
degree 2. Let v(n) be the maximal number of signature patterns for graphs with
n vertices and let u(n) be the maximal number of compatible signature patterns
for graphs with n vertices, i.e., let

v(n) =max{|G*| : G = (V, E) with |[V| =n}
and  p(n) = max{w(G*) : G = (V, E) with |V| =n},

where vertices in G have fan-in at most 2 and G has a public key of size 1. The
size of signatures is also an important efficiency parameter and schemes requiring
only short signatures will be discussed in Section 4.3.

A simple relation between v(n) and u(n) is that for all n > 1,

v(m) > () > "0 1)

The left inequality follows directly from the definition. To prove the right

inequality, let G be a DAG with n vertices satisfying |G*| = v(n). Since the

range of cg is a subset of {0,...,n — 1} there exists an ¢ € {0,...,n — 1} such

that [{U € G* : ¢g(U) = i}| > v(n)/n. According to Theorem 1, this set is a
one-time signature scheme.

4 FEfficient Constructions and Bounds on the Efficiency

In this section we investigate several constructions of one-time signature schemes,
each of which leads to relations between the functions p and v.



4.1 Repetition of Graphs

The signature patterns of an unconnected collection G ---Gr of DAGs are the
lists [S1,. .., Sk], where each S; ranges over the signature patterns of G;. In other
words (G -+-Gr)* = Gf x --- x G and hence (G ---Gi)*| = [I5, |G¢]. When
the G; are graphs with |G;| = n; and |G| = v(n;) for 1 < i < k, the total number
of signature patterns is Hle v(n;). Thus we have proved the following theorem,
where the term k£ — 1 is needed because according to our convention that graphs
have only one vertex with out-degree 0, the k public key vertices of G, ..., Gk
must be combined by a binary tree with &k — 1 vertices.

Theorem 2. For every list ny,...,n, of k positive integers,
k k
v() ni+k-1) > [[v). (2)
=1 i=1

In particular, v((n + 1)k — 1) > v(n)*.

4.2 Separate Representation Function Encoding

Generally it can be considerably easier to design a mapping from the message
space to an arbitrary subset of the signature patterns of a graph G; rather than to
a subset of compatible signature patterns. The compatibility can be guaranteed
by introducing a small additional graph Gs. The graph G, is used to compensate
for the fact that the values of cg, vary over a wide range for all signature patterns
of Gi. (See the proof for a precise definition of the construction, a special case
of which is actually used in smartcard applications [6].)

Theorem 3. Let G; and Gy be graphs with ni and ny vertices, respectively,
such that |G| > n1. Then the graph [G1G2] has at least |Gf| compatible signature
patterns, i.e., w([G1G2]*) > |Gi|. In particular, for all s and n satisfying v(s) > n
we have

u(s +n+1) >v(n).

Proof. Let G; and Gy be DAGs with s and n vertices, respectively, satisfying
|G| = v(s) > n and |G3| = v(n). For every partially ordered set with ¢ elements
one can number these elements from 0 to ¢ — 1 such that their order is preserved.
Hence there exists a representation function r; for G; assigning the integers
0,...,v(s)—1 to the signature patterns of G;. (Note that for instance the public
key is assigned the value 0.) Let r be a representation function for the graph
G = [G1G2] defined by r(U) = ¢g, (Us2) +7r1(U1)+ 1 if the signature pattern S of G
is defined by U = Uy U Us where U1 C G1 and Us C G» are signature patterns of
G and G,, respectively. Note that r is indeed a representation function because
r(U; UUy) < r(Uj UU,) implies that either U] is not computable from U; or U,
is not computable from U,. O



4.3 Schemes with Short Signatures

The size of a graph corresponding to a one-time signature scheme determines the
computational effort for computing the public key from the secret key and is an
important efficiency parameter. There are two additional requirements for mak-
ing a scheme practical. First, as mentioned above, the mapping from the message
space to the signature patterns must be simple and efficiently computable and
second, signatures should be short. In this section we therefore discuss schemes
with signature patterns consisting of at most [ vertices. Let u(n,l) and v(n,l)
be the maximal number of signature patterns of size at most [ for a graph with
n vertices, when the signature patterns are compatible, or not necessarily com-
patible, respectively.

! times
’_/H . . .
Let Riy = Ci---Ci be the forest consisting of I chains of length k whose
vertices will be denoted by v;1,...,v; for the ith chain. In a practical imple-

mentation of such a scheme, the public key consisting of the [ top elements of
the chains would of course be hashed cryptographically to a single public-key
component, i.e., the chains would be connected to a rake-shaped tree.

The poset R}, ; of signature patterns of Ry, consists of all I-tuples (vi,qy, -,
Ul,a,) With 1 < a; < k. In the poset (not the graph) terminology, it is equal to
the product of ! chains of length k and has |Rj, ;| = k' elements. Interestingly, it
has been shown [4] that a poset consisting of a product of chains has the Sperner
property. This implies that the maximal number of signature patterns can be
obtained by using the representation function cg, , defined in Section 3. The
proof of the following theorem is omitted because of space limitations. It shows
that for a fixed [, w(R} ;) can be written as a polynomial in k of degree [ — 1
which is by a factor k£ smaller than the total number of signature patterns.

Theorem 4. The number w( Z,l) of compatible signature patterns for the graph
R, satisfies
w(Riy) = k™" + O(k'7?),

where a; = (1711)! 2}20‘1)/“ (—l)j(;.)(l/2 — )Y and where lim;_,o apV/1 =
6/m.
We conjecture that the graph Ry is asymptotically optimal in the sense that
llim pw(n, DV (n/1)t = . (3)
—00

However, there do exist graphs that are better than Ry in the coeflicient of the
second term k!—2.

Rather than using a signature scheme for the graph Ry, for which the
mapping from the message space to the compatible signature patterns is not
trivial, it is simpler to combine two rake graphs Gi = Ry, 1, and Go = Ry, 4,
by the construction of Section 3.2. The number kéﬁ of signature patterns of the
second graph must be at least as large as the number k;l; of vertices of the first
graphs. We therefore have

kily <k2 = plky+ ko + 1,0 + 1) > kb



Ezample. For instance, one can use k; = 2'© = 1024, [; = 13, ky = 116 and
Iy = 2. This scheme with signatures of size 15 allows to sign 130-bit messages
which is compatible with the use of a cryptographically-secure hash function for
hashing arbitrary messages to 128 bits prior to signing.

More generally, if in the construction of Section 3.2 the maximal size of sig-
nature patterns in Gy and G, are l; and [l», respectively, then the maximal size
of signatures in the combined scheme is I; + l2. The following corollary follows
immediately.

Corollary 5. For any l1, k1,12 and ko satisfying v(na,l2) > n1 we have

p(ng +ne+ 1,04 + 1) > v(ng, ).

5 Optimal Trees

In this section we only consider trees. The single node with out-degree 0 is called
the root. Note that in contrast to most scenarios in computer science, our di-
rected trees are directed from the leaves to the root. Let ¥(n) be the maximal
number of signature patterns obtainable for a tree with n vertices and fi(n) the
maximal number of compatible signature patterns for a tree with n vertices. In
analogy to the proof of (1) one can show that

>

n)

(4)

Let A and B be two trees. Recall that [AB] denotes the tree obtained from
two A and B by introducing a new vertex v and connecting the roots of A and
B to v. The following theorem from [2] characterizes the form of optimal trees.

?(n) > fi(n) >

*|

Theorem 6. For n < 5 the chain C,, of length n is an optimal tree in the sense
that (n) = |C}| = n. For n > 5 all optimal trees are of the form [AB], where
A and B are optimal trees. Hence no optimal tree can contain an edge from a
vertex with in-degree 2 to a verter with in-degree 1. For n > 5 we have

v(in)=1+ 15%2173(_2{19(@')19(71 -1-9)}.

We now consider a tree construction which connects the roots of 2™ identical
trees with a full binary tree of depth n.
Definition 3. Let 7,(7) for n > 0 be defined recursively by 70(7) := T and
Tng1(T) := [12(T)7n(T)]. Let further the function p : Z2 — Z be defined by
p(0,m) :=m and p(n+1,m) := p(n,m)?+1, and let the tree efficiency constant
~ be defined by
1
= hrn OgZ p(“) 3)

n—00 on+2

Finally, let the function g be defined by g(7) := log, |T*|/(|T| + 1).

~ 0.41614263726.
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Fig. 2. The graph construction with the best known efficiency which converges asymp-
totically to 0.476 when the number of 12-vertex blocks (indicated by shaded areas) is
increased. One particular signature pattern of size 9 is indicated.

Theorem 7. The efficiency of every tree-based one-time signature scheme I is
at most vy, i.e. n(I") <. Moreover,
20m
i(n) > —
Aln) > -
and thus for every § < ~y there exists a tree-based one-time signature scheme I’
with n(I') > 4.
The proof of Theorem 7 is given in the Appendix. Several results on the
construction of optimal trees are proved in [2].

6 The Best Known Graph Construction

Figure 2 shows the one-time signature scheme with the currently best known
efficiency. We consider graphs H,, consisting of n blocks of 12 vertices. Each
block consists of 3 chains of length 4 and is connected to the next block in a
periodic manner as illustrated in Figure 2, where H, is shown as an example.
The graphs Hs, Ha, ... are similar to H2 but contain more blocks. The bottom
layer of 3 vertices could be omitted and is shown only for reasons of symmetry.

A large (though not maximal) set of signature patterns for H,, can be de-
scribed as follows. The bottom three vertices belong to each signature pattern.
Each signature pattern contains one vertex of each of the three chains of each
block. This would result in 64 combinations, but 13 of these must be excluded



because the resulting signature pattern would not be minimal. The reason is that
in these cases, not all vertices at lower layers would be needed for the verification.
Thus H,, has at least 51" signature patterns.

The efficiency of the corresponding signature scheme I3, is lower bounded by

log,(51™/(12n + 5))
12n 4+ 6

n(In) >
and, asymptotically, by

lim n(Il,) >

n—oo

logs 51 0.473
. AT73.

A more careful analysis involving Markov chains shows that the achievable ef-
ficiency for H, converges to log,(w)/12 where w is the maximal root of z* —
5622 + 173z — 54. This value is 0.476.

7 Concluding Remarks

We suggest as a challenging open problem to find one-time signature schemes
with higher efficiency than that of Section 6, or to prove an upper bound on
the efficiency of all such schemes. We conjecture that no scheme has efficiency
greater than 1/2. Another open problem is to prove or disprove equation (3).
Using Merkle’s authentication tree [8] one can extend every one-time signature
scheme to one that can be used a predetermined number of times rather than
only once. However, this construction is known to be not optimal, and a further
interesting problem is to design such schemes that are better than Merkle’s
construction applied to an optimal one-time signature scheme.

Appendix

The proof of Theorem 7 is divided into several steps, summarized in the
following three lemmas. Recall that the functions p and g are defined in Defini-
tion 3.

Lemma 8. For alln >0,
p(n,ab+1)> < p(n +1,a)p(n + 1,b). (5)

Moreover, for every fized m € N, the function N — N:n — 2-"log, p(n,m) is
monotonically increasing, and the function N — N: n — 27" log,(p(n,m) + 1)
is monotonically decreasing.

Proof. For n = 0 equation (5) follows from p(1,a)p(1,b) — p(0,ab+ 1)? = (a® +
1)(b% + 1) — (ab + 1)2 = (a — b)? > 0. The lemma follows by induction on n;
assuming (5) is satisfied for n — 1 implies that the difference of the right and the
left side of (5) is positive:

p(n+1,a)p(n+1,b) — p(n,ab+1)* = (p(n,a)® +1)(p(n,b)* + 1)
—(p(n —1,ab+1)% +1)2



> (p(n,a)” +1)(p(n, b)* + 1)
—(p(n, a’)p(na b) + 1)2
= (p(naa) - p(nab))2 > 0.

To prove the second part of the lemma we note that
27" og, (p(n + 1,m)) > 27" log,y(p(n,m)*) = 27" logy(p(n,m)).

This implies that the first function is monotonically increasing. On the other
hand,

27" logy (p(n,m) + 1) = 27" logy((p(n,m) + 1))
> 27" ogy(p(n + 1,m) + 1)

implies that the second function is monotonically decreasing. O
Lemma 9. Let A and B be trees with |A*| = a and |B*| =b. Then

(1) [mn(A)] = 27(JA] +1) - 1.

(1) [1a(A)*] = p(n, a).
(iii) For all trees 7,([AB]) we have g(7,([AB])) < max(g9(7n+1(4)), 9(Tnt1(B))).
(v) For every tree T there exist m and n such that 9(7,(Cm)) > 9(T).

Proof.

(i) This follows by induction on n from |79(A4)| = |A| and |7n41(A)| = 2|7, (4) |+
1

(ii) This follows by induction on n from |7 (A)*

| = aand
g1 (A)*] = [T (A) 7 (A)]*] = [0 (A)*? + L.
(iii) Assuming the contrary and using (i) and (ii) would imply that

log, p(n,ab+1) _ logy p(n +1,a)
(1Al +[B|+2)2» = (JA] + 1)2+!
log, p(n,ab+ 1) S log, p(n +1,b)
(1Al +[B[+2)2» = (|B|+1)2nH!

Multiplying these equations by (|A|+1)2"*+! and (|B|+1)2"*!, respectively,
and adding them gives 2log, p(n,ab+ 1) > log, p(n + 1, a) +log, p(n + 1,b),
which is equivalent to p(n,ab+1)? > p(n+ 1,a)p(n + 1,b). This contradicts
Lemma 8.

(iv) It suffices to consider only a tree 7 with a maximal number |7*| of signature
patterns. By Theorem 6 no such tree can contain an edge from a vertex
with in-degree 2 to a vertex with in-degree 1. Therefore 7 is either fully
symmetric in the sense that every subtree is a chain or has two identical
subtrees, i.e., it is of the form 7,,(C,,) for some m and n, or it is symmetric
down to a certain level [ and is asymmetric below. In the latter case, T
is of the form 7;,([AB]) for some [ > 0 where A and B are different trees.



In the first case we are done. In the second case we can find a tree 73, by
using (iii), such that g(7) < ¢(7z). By applying (iii) repeatedly we find a
sequence of trees T = 7([AB]), T2 = 71,([A2B2]), Ts = 71, ([A3Bs]), - .. such
that g(T) < g(T2) < ¢(T3) < ..., where the sequence [,ls,l3 is strictly
increasing and therefore this process must stop. Note that the depth of T;
cannot be greater than the depth of 7. Thus we can find some tree 7,,(Cp,)

such that g(7) < g(7n(Cm)). O

Lemma 10. For alln > 2
p(n) > 2771 (6)

Proof. Let r = (n — 2) mod 4 and let T = {iy,is,...,ix} C Z be the set of
positions in the binary representation of (n — 2 — r)/4 that are 1. i.e., (n — 2 —
r)/4 =Y, 2" A tree T with w(7*) > 27! can be obtained by connecting
the trees C,y2 and 74, (C3),7,(C3), ... in a binary tree, i.e.,

T = [Cra2)[7i1 (C3)[7i (C3) - - - [Tir 1 (C3) 7, (C3)]]]]-

We have |T| =742+, ,(1+|7:(C3)|) = n. It follows from Lemma 8 and from
Lemma 9 (ii) that |7, (C3)| > 22"

T > (r+ 2)H I7:(C3)| = (r + 2)1—[(272&2 .

— 1. Moreover we have

iel iel
42 2i+2 1 n 1
227(+)H27 H(l—m)zz’yl—[(l—w):
il iel iel

where we have used the fact that 7 +2 > 27+2) for 0 <r < 3. Let g = 27%.
Then

I (1 ) =TI (-) 2101 20

iel iel ji>1

We can now prove Theorem 7. It follows from Lemma 9 (iv) that it is suffi-
cient to prove g(7) < «y for trees of the form 7,,(C,,). According to Lemma 8 we
have to find m € N which maximizes lim,,_,, log,(p(n,m))/2™(m + 1). This is
the case for m = 3 as will be shown below. By Lemma 8 it is sufficient to show
that for each m # 3 there exists some n such that log, (p(n,m)+1)/((m+1)2™) <
7. For m > 6 we have log,(p(1,m) +1)/(2(m + 1)) < logy((m +1)?)/2(m +1) =
logs(m +1)/(m+1) < 0.41 < « and for the remaining m it can be checked that
log,(p(2,m)+1)/4(m+1) < 0.41 < . This shows that for every tree T we have

|T* < 27UTI+1)

and therefore n(I") < +y for the one-time signature scheme I" given by a maximal
antichain of 7.

From equation (4) and Lemma, 10 it follows that fi(n) > % Thus for all n
satisfying n > 2 + log,(n)/(y — 6) we have ji(n) > 2°("+1). Hence for all § <
there exists a one-time signature scheme with efficiency 4. O
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