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Abstract. Motivated by the wide adoption of authenticated encryption
and TLS, we suggest a basic channel abstraction, an augmented secure
channel (ASC), that allows a sender to send a receiver messages consisting
of two parts, where one is privacy-protected and both are authenticity-
protected. Working in the tradition of constructive cryptography, we
formalize this idea and provide a construction of this kind of channel
using the lower-level tool authenticated-encryption.
We look at recent proposals on TLS 1.3 and suggest that the criterion by
which their security can be judged is quite simple: do they construct an
ASC? Due to this precisely defined goal, we are able to give a natural
construction that comes with a rigorous security proof and directly leads
to a proposal on TLS 1.3 that is provably secure.

1 Introduction

This paper defines and investigates a new abstraction of a secure channel. We call
it an augmented secure channel, or ASC. Like most types of channels, an ASC
lets a sender Alice send messages to a receiver Bob. But unlike more conventional
types of channels, each message has designated private and non-private parts. An
active adversary Eve occupies the system, but is limited to seeing the length of the
private portion and the contents of the non-private portion of each message—and
to entirely shutting down the channel. In particular, the adversary cannot inject
messages or induce out-of-order message delivery. Additionally, the non-private
portion can contain an implicit part, already known to the receiver, that is not
transmitted but still authenticated, e.g., to bind the message to a given context.

The service an ASC provides is motivated by the ascendancy of both TLS
and authenticated encryption. We take the rise of these tools, and what they
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deliver, as an indication that customary conceptualizations of secure channels
may not have been rich enough to deliver the service that protocol designers
routinely need.

Authenticated encryption. While ASCs are closely related to schemes for
authenticated encryption (AE) and authenticated encryption with associated
data (AEAD), an ASC and an AE/AEAD-scheme are very different things. An
ASC is a reasonably high-level object: an abstract resource that parties can
employ, getting compositional guarantees when they do. Our formulation of
ASCs will be in the tradition of constructive cryptography [16,17]. In contrast, an
AEAD-scheme is a comparatively low-level primitive: it is a tuple of algorithms
that is “good” in some particular, complexity-theoretic sense.

The AEAD notion emerged over a sequence of works [2,3,12,13,22,23,24]
having two distinct purposes: to minimize the misuse of symmetric encryption
primitives and to gain efficiency advantages over generic composition schemes
(i.e., traditional ways to meld privacy-only encryption schemes and message-
authentication codes). But in moving from conventional encryption to AEAD,
the basic conception of what symmetric encryption is was thoroughly revamped:
authenticity became an intrinsic part of the goal; so too did the allowance of (non-
private) associated data A; while probabilism, formerly seen as indispensable,
was surfaced and subsumed by a nonce N . Roughly said, an AEAD-scheme
would nowadays be defined as a triple of algorithms Π = (K, E ,D) where a
computationally-reasonable adversary A has poor advantage at distinguishing
encryption and decryption oracles (EK(N,A,M),DK(N,A,C)) from a pair of
oracles ($(N,A,M),⊥(N,A,C)), where K is generated by K, the $(N,A,M)
oracle returns an appropriate number of random bits, the ⊥(N,A,C) oracle
always returns ⊥, the adversary repeats no nonce N in queries to its first oracle,
and queries that would result in trivial wins are disallowed.

The new conceptualization for symmetric encryption gained surprisingly
rapid acceptance. The IEEE, IETF, ISO, and NIST all stepped in to standardize
AEAD-schemes (e.g., in NIST SP 800-38C and SP 800-38D, IEEE 802.11i, ISO
19772, and IETF RFC 3610, 5116, 5288, 5297, and 7253). Methods that had been
previously embedded in widely-deployed systems and standards, (e.g., SSH, and
SSL) were recognized as attempts—sometimes rather clumsy ones—to achieve
AE/AEAD. Revisions to widely-used protocols started to deploy the ready-built
solutions to AEAD rather than the ad hoc and error-prone mechanisms that
had provided no real abstraction boundaries other that of block ciphers, hash
functions, or MACs.

Understanding the goal of TLS. A long line of work analyzes the security
of TLS (mainly versions prior to 1.3) [8,9,11,14,15,19,20,25]. Several recent pa-
pers [11,15] use a security notion called Authenticated and Confidential Channel
Establishment (ACCE), a game-based definition that models both the handshake
and the record layer, as TLS versions prior to 1.3 could formally not be proved as
the composition of the two sub-protocols. Motivated by the adoption of AEAD



Augmented Secure Channels and the Goal of the TLS 1.3 Record Layer 3

as well as the better separation of the two sub-protocols in TLS 1.3, we give a
novel interpretation for the goal of the TLS record layer: constructing a specific
instantiation of an ASC, from insecure communication and a shared secret key
constructed by the handshake sub-protocol. Indeed, messages in the TLS record
protocol consist of private and non-private parts, which are both authenticated.

We show how a generic ASC construction directly leads to this specific
instantiation of an ASC. We thereby obtain a provably secure TLS record
protocol. Our proposal differs from the current draft for TLS 1.3 by slightly
reducing the size of transmitted records and the number of elements in the
authenticated data, as well as a different choice of the nonces.

The gap between a scheme’s security properties and its use. Classical
cryptographic definitions, including the AEAD definition reviewed above, do not
capture in which contexts a scheme satisfying them can securely be used. They
consider a specific attack model and give certain capabilities to an adversary that
tries to win some game, but it is not a priori clear which capabilities an adversary
has in a particular application, or even what her final goal is. To illustrate
our point, consider the standard notions for encryption schemes, IND-CPA and
IND-CCA. While IND-CCA is stronger, it is not obvious in which applications
an IND-CCA encryption scheme is needed and where IND-CPA would suffice.
These considerations are highly security-relevant. For complex protocols like TLS
or IPSec, one has to make sure that any overall attack can be translated to an
attack against the CPA or CCA game or another hardness assumption; only then
the protocol is sound. But such analyses are complex and cannot be reused for
the analysis of other protocols or attack models.

To solve this problem, we divide a complex protocol into several less complex
construction steps. Each step specifies precisely what is assumed and what is
achieved. Following the tradition of constructive cryptography4 (CC) [16,17], we
model guarantees and expectations as resources that provide a specified service
to each party. Every party possesses an interface to the resources via which it
can request that service. We consider resources with three interfaces, labeled A
(for Alice), B (for Bob) and E (for Eve). The construction notion of CC provides
the following compositional guarantee: a constructed resource can be used in any
other construction as an assumed resource. We obtain modularity in the sense
that the overall security follows automatically from individual security proofs.

The approach has already been applied successfully in many other contexts.
For example, the results in [5,6] shed new light on the definitions of public-key
encryption schemes and even led to a new security definition.

2 Preliminaries

Notation. We describe our systems with pseudocode using the following con-
ventions: We write x ← y for assigning the value y to the variable x. For a
4 We suspect that alternative definitional frameworks, like treating ASCs in the
UC framework [4] or RSIM [1,21], would yield closely related findings.
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Initialization
K � K

Oracle Enc

Input: (N,A,M) ∈ N ×A×M
C ← E(K,N,A,M)
return C

Oracle Dec

Input: (N,A,C) ∈ N ×A× C
M ← D(K,N,A,C)
return M

RealΠ

Initialization
K � K

Oracle Enc

Input: (N,A,M) ∈ N ×A×M
C′ ← E(K,N,A,M)

C � Σ|C
′|

return C

Oracle Dec

Input: (N,A,C) ∈ N ×A× C
return ⊥

IdealΠ

Fig. 1. Real and ideal security game for AEAD-schemes.

distribution D over some set, x � D denotes sampling x according to D. For
a finite set X, x � X denotes assigning to x a uniformly random value in X.
Typically queries to systems consist of a suggestive keyword and a list of argu-
ments (e.g., (send,M) to send the message M). We ignore keywords in writing
the domains of arguments, e.g., (send,M) ∈M indicates that M ∈M.

AEAD. Let Σ be an alphabet (a finite nonempty set). Typically an element of
Σ is a bit (Σ = {0, 1}) or a byte (Σ = {0, 1}8). For a string x ∈ Σ∗, |x| denotes
its length. We define the syntax of a scheme for authenticated encryption with
associated data (AEAD) following [22].

Definition 1. An AEAD-scheme Π is a triple of algorithms Π = (K, E ,D),
where K is a randomized algorithm that samples a key K ∈ Σ∗, E is a determin-
istic algorithm that maps a key K ∈ Σ∗, a nonce N ∈ N , additional data A ∈ A,
and a message M ∈ M to a ciphertext C ∈ C, and D is a deterministic algo-
rithm that maps (K,N,A,C) ∈ Σ∗ ×N ×A × C to M∪ {⊥}. We assume the
domains N , A,M, and C are equal to Σ∗ and require for all K,N,A,M ∈ Σ∗
that D

(
K,N,A, E(K,N,A,M)

)
=M . We further require the length of a cipher-

text |E(K,N,A,M)| only depend on the length of the corresponding message |M |.

We define the security game for AEAD-schemes using the all-in-one formula-
tion from [10]. A scheme is considered secure if all valid and efficient adversaries A
have poor advantage according to the following definition.

Definition 2. We define the advantage of an adversary A as the difference in
the probability that it outputs 1 in the real and ideal games defined in Fig. 1:

Advae
Π (A) := Pr

[
ARealΠ = 1

]
− Pr

[
AIdealΠ = 1

]
.

An adversary is valid if it does not repeat Enc or Dec queries, does not ask queries
Enc(N,A,M) and Enc(N,A′,M ′) (i.e., does not repeat nonces), and does not ask
a query Dec(N,A,C) where C was returned by a preceding query Enc(N,A,M).
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3 Revisiting the Functionality and Modeling of
Communication Channels

In constructive cryptography, communication channels are modeled as resources
with three interfaces: Interface A for sender Alice, interface B for receiver Bob,
and interface E for adversary Eve. Different types of such channels have been
studied that differ in the capabilities of the adversary Eve [6,16,18].

In the following paragraphs, we present a formalization of secure and insecure
channels and argue why in many applications users might need more services
than provided by either. To resolve this mismatch, we introduce a new type of
channel, which we call augmented secure channel (ASC), that provides those
missing functionalities.

3.1 Existing Formalizations

Insecure channel. The insecure channel IC allows messages to be input re-
peatedly at interface A. Each message is subsequently leaked at the E-interface.
At interface E, arbitrary messages (including those that were previously input
at interface A) can be injected such that they are delivered to B. This channel
does not give any security guarantees to Alice and Bob. A formal description is
provided in Fig. 2.

Initialization
Q ← empty FIFO queue

Interface A

Input: (send,M) ∈ Σ∗
Q.enqueue(M)
output M at interface E

Interface E

Input: deliver
if |Q| > 0 then

M ← Q.dequeue()
output M at interface B

Input: (inject,M) ∈ Σ∗
output M at interface B

Resource IC

Fig. 2. The insecure channel resource.

Secure channel. The typical formalization of a secure channel follows the same
basic structure as an insecure channel but where the ability of the adversary is
limited to seeing the length of the transmitted messages and to deliver messages
input at interface A. In particular, the adversary cannot inject new messages or
induce out-of-order message delivery. A description of the secure channel can be
derived from Fig. 2 by omitting the inject-query and by restricting the leakage at
interface E to |M | on inputs (send,M) at interface A.
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3.2 What Service Should a Secure Channel Provide?

In many relevant security protocols, like TLS, transmitted data packets are
usually divided into a header part and a payload part. While both are required
to be authentic, only the payload has to remain confidential.

We further observe that the header often contains context information since
binding a message to a given context is good security-engineering practice.
Moreover, parts of the context are already known to the receiver. This part
does not have to be transmitted but should still be authenticated. This suggests
splitting the header into two parts: an explicit part and an implicit part that
describe the unknown and known parts of the header, respectively.

We conclude that there is a need for an abstract functionality that allows one
to transmit a message together with the explicit part of a header such that the
message remains private and the message as well as both the explicit and the
implicit part of the header are authenticated.

Augmented secure channel. We now present the channel abstraction that
formalizes the desired service. The augmented secure channel ASC is described
in Fig. 3: The sender can provide a triple consisting of the explicit part of a
header E ∈ HE, the implicit part of the header I ∈ HI, and a message M ∈M.
The message remains confidential and the explicit part of the header is leaked at
the adversarial interface. If the receiver knows the implicit part of the header, he
can recover the message using the query (fetch, I) and verify the authenticity of
the message and both parts of the header. If the verification fails, the system stops
delivering messages and signals an error by outputting ⊥. The adversary has the
ability to deliver messages and to inject a special element that will terminate
the channel at the receiver’s side once fetched. Delivering a message notifies the
receiver of the new message and provides him with the explicit part of the header.

4 Constructing an Augmented Secure Channel via
Authenticated Encryption

After motivating the need for the new channel ASC, we now show how to
construct it using an AEAD-scheme. We first introduce the assumed resources
from which we construct ASC and describe the protocol that achieves this
construction. We finally prove the security of our construction.

4.1 Assumed Resources

We construct the augmented secure channel from an insecure channel IC and
a shared secret key. We introduce a shared key resource SKK for some key
distribution K that initially chooses a key according to K and on input getKey
at interface A or B, outputs this key at the corresponding interface; interface E
remains inactive. See Fig. 4 for pseudocode. We denote by [SKK, IC] the resource
that provides at each interface access to the corresponding interface of both the
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Initialization
S ← empty FIFO queue
R ← empty FIFO queue
halt← 0

Interface A

Input: (send, E, I,M) ∈ HE ×HI ×M
S.enqueue((E, I,M))
output (E, |M |) at interface E

Interface B

Input: (fetch, I) ∈ HI

if |R| > 0 and halt = 0 then
(E′, I′,M ′)← R.dequeue()
if I′ = I 6= ⊥ then

output M ′ at interface B
else

halt← 1
output ⊥ at interface B

Interface E

Input: deliver
if |S| > 0 and halt = 0 then

(E, I,M)← S.dequeue()
R.enqueue((E, I,M))
output (newMsg, E) at interface B

Input: (injectStop, E) ∈ HE

if halt = 0 then
R.enqueue((⊥,⊥,⊥))
output (newMsg, E) at interface B

Resource ASC

Fig. 3. Description of ASC, an augmented secure channel.

key and the channel. The resource SKK can be constructed by some key exchange
protocol, e.g., during the TLS handshake.

Initialization
k � K

Interface A

Input: getKey
output k at A.

Interface B

Input: getKey
output k at B.

Resource SKK

Fig. 4. The shared secret key resource.

4.2 Protocol

A protocol is modeled in constructive cryptography as a pair of converters that
specify the actions of both honest parties Alice and Bob. A converter is a system
with two interfaces: the inner interface in is connected to an interface of a resource
and the outer interface out becomes the new connection point of that resource
towards the environment. Attaching a converter to an interface changes the local
behavior at that interface and hence yields a new resource.5

5 For example, the resource encΠ
AdecΠ

B [SKK, IC] is obtained by attaching Alice’s
converter encΠ at interface A and Bob’s converter decΠ at interface B of [SKK, IC],
where the interfaces are indicated by superscripts.
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For an AEAD-scheme Π = (K, E ,D), we present the protocol (encΠ , decΠ) as
pseudocode in Fig. 5. The converter for the sender, encΠ , accepts inputs of the
form (send, E, I,M) at its outer interface and encrypts the message M using E .
The nonce is implemented as a counter, the additional data6 is A = (E, I) and the
key is provided by the key-resource SKK. An encoding of the resulting ciphertext
and the explicit part of the header is output to the insecure channel IC.

The receiver converter decΠ receives inputs from IC and queues the header-
ciphertext pairs internally in a queue Q. For each newly arrived message a
notification is output at the outer interface. The next ciphertext C in the queue
is decrypted if decΠ is invoked with the implicit part of the corresponding header.
The parameters for decryption are again the header as the additional data, the
counter as the nonce and the shared key. On success, the corresponding plaintext
is output at the outer interface. If decryption fails, the converter stops and signals
an error by outputting ⊥.

Initialization
N ← 0
output getKey to SKK
let K be returned value from SKK

Interface out

Input: (send, E, I,M) ∈ HE×HI×M
A← (E, I)
C ← E(K,N,A,M)
N ← N + 1
output (send, (E,C)) to IC

Converter encΠ

Initialization
Q ← empty FIFO queue
N ← 0
halt← 0
output getKey to SKK
let K be returned value from SKK

Interface in

Input: (E,C) ∈ HE × C from IC
if halt = 0 then
Q.enqueue((E,C))
output (newMsg, E) at out

Interface out

Input: (fetch, I) ∈ HI

if |Q| > 0 and halt = 0 then
(E,C)← Q.dequeue()
A← (E, I)
M ← D(K,N,A,C)
N ← N + 1
if M = ⊥ then halt← 1
else output M at out

Converter decΠ

Fig. 5. The protocol converters for the sender (left) and the receiver (right) that
construct ASC via an AEAD-scheme Π = (K, E ,D).

4.3 The Construction Notion

In order to show that the protocol (encΠ , decΠ) constructs ASC from [SKK, IC]
in the sense of constructive cryptography, we have to prove the availability
6 Here, (E, I) ∈ HE×HI denotes an encoding of that pair as an element in A. Abusing
notation, we generally do not distinguish between a tuple and its encoding as an
element in Σ∗.
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condition and the security condition that are derived from the general construction
notion in [16].

Random experiments. Both conditions make statements about random exper-
iments DR in which a distinguisher D plays the role of an interactive environment
for some resource R. The distinguisher D is a system that provides inputs to the
connected resource and receives the outputs generated by the resource. For ex-
ample, D

(
encΠ

AdecΠ
B [SKK, IC]

)
is the experiment that captures “the protocol

in action” in the environment provided by D. More concretely, in each step of
these experiments, the distinguisher provides an input to one of the interfaces A,
B, or E and observes the output that is generated in reaction to that input. This
process continues iteratively by having D providing adaptively the next input
and receiving the next output. The experiment ends by D outputting a bit 0
or 1 that indicates its guess to which system it is connected. The distinguishing
advantage of D for two resources R and S is defined as

∆D (R,S) = Pr [DR = 1]− Pr [DS = 1] .

Availability condition. The first condition captures the situation when no
attacker interferes with the protocol execution. We require that in this case, the
intended functionality is available to the honest parties. This condition can be
seen as a correctness condition for the protocol.

No attacker being present is formalized by a special converter dlv that is
attached at interface E and always ensures the delivery of messages. Concretely,
on any input at its inner interface, dlv outputs deliver to the channel connected to
its inner interface and does not provide any service at its outer interface. Formally,
the availability condition places a bound on the advantage in distinguishing the
systems encΠAdecΠ

BdlvE [SKK, IC] and dlvE ASC, i.e., a bound on

∆D
(
encΠ

AdecΠ
BdlvE [SKK, IC], dlvE ASC

)
= Pr

[
D
(
encΠ

AdecΠ
BdlvE [SKK, IC]

)
= 1
]
− Pr

[
D
(
dlvE ASC

)
= 1
]

for any distinguisher D.

Security condition. The second condition captures the situation where an
adversary attacks the protocol execution using its capabilities at interface E. The
effects of such an attack have to be indistinguishable from the effects in the
system corresponding to the constructed resource with some simulator attached
at the adversarial interface. This captures that all attacks on the protocol can be
translated by a simulator to an attack on the constructed resource. Turned around,
if the constructed resource is secure by definition, there is no successful attack
on the protocol. More concretely, the security condition places a bound on the
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advantage in distinguishing the systems encΠAdecΠ
B [SKK, IC] and simE

ASC ASC
for some simulator simASC, i.e., a bound on

∆D
(
encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC
)

= Pr
[
D
(
encΠ

AdecΠ
B [SKK, IC]

)
= 1
]
− Pr

[
D
(
simE

ASC ASC
)
= 1
]

for any distinguisher D.

4.4 Proof of the Construction

The following two lemmata relate the AEAD-security game to the distinguish-
ing advantage in the availability and security condition, respectively. Note that
the availability condition does not follow directly from the correctness of the
AEAD-scheme. This is because it is not excluded that a ciphertext gets decrypted
to some message M 6= ⊥ if the wrong additional data is supplied, while the
system dlvE ASC always returns ⊥ if the wrong value for I is input at inter-
face B. We need the security of the AEAD-scheme to conclude that such invalid
decryptions can only occur with small probability.

Lemma 1. There is an (efficient) transformation ρ described in the proof that
maps distinguishers D for two resources to valid adversaries A = ρ(D) for the
AEAD-security game such that

∆D
(
encΠ

AdecΠ
BdlvE [SKK, IC], dlvE ASC

)
≤ Advae

Π (ρ(D)).

Proof. In encΠ
AdecΠ

BdlvE [SKK, IC], the converter dlv is attached at interface E
and answers any output produced by IC with the input deliver. This essentially
converts IC into a reliable transmission channel: whatever pair (E,C) is input by
converter encΠ , it is immediately delivered to decΠ that outputs a notification
(newMsg, E) at its outer interface. Furthermore, if the ith input at interface A is
(send, Ei, Ii,Mi), and the ith input at interface B is (fetch, Ii), then the output at
interface B is Mi. The same holds for system dlvEASC. Only if the ith input at
interface B is (fetch, I ′i) for I ′i 6= Ii, then the behavior of the two systems can differ:
While dlvEASC always returns ⊥ in this case, for encΠAdecΠ

BdlvE [SKK, IC] it
is possible that a message M 6= ⊥ is returned. Since this is the only difference
between the two systems, we can upper bound the distinguishing advantage
by the probability that D can provoke such an output at interface B when
interacting with encΠ

AdecΠ
BdlvE [SKK, IC]. It remains to bound the probability

of this event, subsequently denoted by F .
Note that F occurs exactly if the decryption algorithm of the AEAD-scheme

returns a message M 6= ⊥ on input a different additional data than used for
encryption. Based on this observation, we build an adversary A that emulates
a view towards distinguisher D that is identical to an interaction of D with
encΠ

AdecΠ
BdlvE [SKK, IC] if A gets access to its real oracles. The probability of

provoking event F is preserved in this case. In contrast, if A gets access to the
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ideal oracles, the condition for event F cannot be satisfied as we argue below.
This is a suitable distinguishing criterion.

More formally, the reduction ρ is defined as follows: The adversary A = ρ(D)
initially sets NA, NB ← 0, initializes an empty FIFO queue Q, and then emulates
an execution to D as follows. When D inputs (send, E, I,M) at interface A,
A ask the query (NA, (I, E),M) to the oracle Enc to receive the answer C. It
then executes NA ← NA + 1 and Q.enqueue((E, I,M,C)), and emulates the
output (newMsg, E) at interface B for D. Inputs (fetch, I ′) at interface B are
ignored if Q is empty. Otherwise, A executes (E, I,M,C) ← Q.dequeue(). If
I ′ = I, it sets M ′ = M ; if I ′ 6= I, it asks the query (NB , (I

′, E), C) to the
oracle Dec to receive the answer M ′. It then sets NB ← NB + 1 and emulates
the output M ′ at interface B for D.

If M ′ 6= ⊥ and I ′ 6= I (i.e., the event F occurs), A stops and returns 1. If
M ′ = ⊥, A ignores subsequent inputs at interface B. When D outputs a bit
and F has not occurred, A returns 0. Observe that if A gets access to the ideal
oracles, the conditions of event F cannot be met. We conclude the proof by
noting that A is a valid adversary and Advae

Π (ρ(D)) equals the probability of
the event F . ut

The next lemma implies the security condition of the construction:

Lemma 2. For the simulator simASC defined in Fig. 6, there is an (efficient)
transformation ρ′ described in the proof that maps distinguishers D for two
resources to valid adversaries A = ρ′(D) for the AEAD-security game such that

∆D
(
encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC
)
≤ Advae

Π (ρ′(D)).

Initialization
Q1,Q2 ← empty FIFO queues
let K̂ ∈ K, N̂ ∈ N , Â ∈ A be arbitrary

Interface in

Input: (E, `) ∈ HE × N
choose M` ∈ M with |M`| = `

C` ← E(K̂, N̂, Â,M`)

C � Σ|C`|

Q1.enqueue((E,C))
Q2.enqueue((E,C))
output (E,C) at out

Interface out

Input: deliver
if |Q1| > 0 then

(E,C)← Q1.dequeue()
execute commands for (inject, (E,C))

Input: (inject, (E,C)) ∈ HE × C
if |Q2| = 0 then

output (injectStop, E) at in
else

(E′, C′)← Q2.dequeue()
if E = E′ and C = C′ then

output deliver at in
else

output (injectStop, E) at in

Converter simASC

Fig. 6. The simulator for the security condition of the construction of ASC.
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Proof. Let D be a distinguisher for encΠAdecΠ
B[SKK, IC] and simE

ASCASC. We
define an adversary A = ρ′(D) for the AEAD-security game as follows. The
adversary A initially sets NA, NB , flag← 0, initializes an empty FIFO queue S
and two empty lists7 L andR, and then emulates an execution of D by translating
inputs of the distinguisher to oracle queries as well as answers from the oracles
to outputs of the resource for D. There are four types of inputs D can make:

(send, E, I,M) at interface A: If R contains strictly less than NA+1 elements,
A asks the query (NA, (E, I),M) to the oracle Enc and receives the answer C.
It then stores (NA, E, I,M,C) in the list L, emulates the output (E,C) at
interface E for D, sets NA ← NA + 1, and executes S.enqueue((E,C)).
If R contains at least NA + 1 elements, there is a pair R[NA] = (E,C). A
asks the query (NA, (E, I), C) to the oracle Dec to receive the plaintext M . If
M 6= ⊥, A sets flag← 1, returns 1 as its decision and halts. If M = ⊥, the
tuple (NA, E, I,⊥, C) is stored in L and A asks the query (NA, (E, I),M) to
the oracle Enc, receives the answer C and stores (NA, E, I,M,C) in the list L.
Finally, A emulates the output (E,C) at interface E for D, sets NA ← NA+1,
and executes S.enqueue((E,C)).

deliver at interface E: If |S| > 0, A executes (E,C) ← S.dequeue() followed
by R ← R ‖ (E,C). If ⊥ has not been output at interface B, A emulates the
output (newMsg, E) at interface B.

(inject, (E,C)) at interface E: The adversary A executes R ← R ‖ (E,C). If
⊥ has not been output at interface B, A emulates the output (newMsg, E)
at interface B.

(fetch, I) at interface B: If R is empty, the input is ignored. Otherwise, A exe-
cutes (E,C)← R[NB ]. If (NB , E, I,⊥, C) is in L, A emulates the output ⊥
at interface B and ignores subsequent inputs at interface B. If (NB , E, I,M,C)
is in L for some M ∈M, A emulates the output M at interface B for D and
sets NB ← NB + 1. Otherwise, A asks the query (NB , (E, I), C) to the ora-
cle Dec to receive the plaintext M . The output M is emulated at interface B
and the counter NB is incremented. If M = ⊥, A ignores subsequent inputs
at interface B.

When D outputs a bit b and if flag = 0, A returns b and halts. Note that A is a
valid adversary since it asks at most one Enc and Dec query for each nonce (and
therefore does not repeat queries) and never asks a query to the oracle Dec for a
ciphertext that has been returned by a query to Enc for the same parameters
(because for such ciphertext, the corresponding tuple is in the list L). To analyze
the success probability of A, let F be the random variable that takes on the value
of flag at the end of the random experiment between A and RealΠ.

We claim that the view of D when connected to simE
ASCASC is identical to

the view emulated by A with access to the ideal oracles. Additionally, the view of
D when connected to encΠ

AdecΠ
B [SKK, IC] is identical to the view emulated by

7 For a list L, we denote by L ‖ x the list L with x appended. Furthermore, the ith
element of a list L with n elements is denoted by L[i] for i ∈ {0, . . . , n− 1}.
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A with access to the real oracles as long as flag = 0. This implies the statement
of the lemma:

Advae
Π (A) = Pr

[
ARealΠ = 1

]
− Pr

[
AIdealΠ = 1

]
= Pr[F = 1] + Pr[F = 0] · Pr

[
ARealΠ = 1 | F = 0

]︸ ︷︷ ︸
= Pr[D(encΠAdecΠB [SKK,IC])=1]

− Pr
[
AIdealΠ = 1

]
≥ Pr

[
D
(
encΠ

AdecΠ
B [SKK, IC]

)
= 1
]
− Pr

[
D
(
simE

ASC ASC
)
= 1
]

= ∆D
(
encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC
)
.

To prove this claim, we distinguish the possible inputs by D and compare
the resulting outputs:

(send, E, I,M) at interface A: In system encΠ
AdecΠ

B [SKK, IC], the converter
encΠ evaluates C ← E(K,N, (E, I),M), where N is the number of sent
messages before this input. The explicit part E of the header is sent together
with C over IC, which outputs the pair (E,C) at interface E. The same
output is emulated by A in the real game since the oracle Enc in this case
also evaluates the algorithm E .
In the system simE

ASC ASC, the triple (E, I,M) is inserted into the senders
queue of ASC and the pair (E, |M |) is output to the simulator simASC, which
in turn generates a uniformly random ciphertext C of the same length as
ciphertexts for M . Note that by Definition 1, the length of ciphertexts only
depend on the length of the message, so the values of K̂, N̂ , and Â used by
simASC to determine this length are irrelevant. The simulator then stores
(E,C) in its own queue for later reference and outputs this pair at interface E.
Note that Enc in IdealΠ generates ciphertexts with the same distribution,
so the view emulated by A is identical.

deliver at interface E: If the sender’s queue it non-empty, the next element
(E,C) is dequeued from it and D receives the output (newMsg, E) from
interface B if there has not been an output ⊥ in both systems and in the
emulated view.

(inject, (E,C)) at interface E: In encΠ
AdecΠ

B [SKK, IC], the injected pair is
inserted into the receiver’s queue of the converter decΠ and the notification
(newMsg, E) is output at interface B.
In simE

ASC ASC, the simulator checks whether the injected pair is equal
to the top-element (E′, C ′) of its queue Q2. If this is the case, the sim-
ulator outputs deliver with the effect that the notification (newMsg, E) is
output at interface B. If (E,C) 6= (E′, C ′), simASC injects a stop element
by (injectStop, E), which also yields the output (newMsg, E) at interface B.
Note that by definition of ASC, this element is guaranteed to yield ⊥ when
fetched at interface B.
We see that in the emulation by A, D receives (newMsg, E) from interface B
if there has not been an output ⊥ before at interface B. The same holds
for both systems encΠAdecΠ

B [SKK, IC] and simE
ASC ASC in an interaction

with D.
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(fetch, I) at interface B: Assume this is the ith input at interface B, there
have been at least i inputs deliver or inject at interface E, and there has
not been an output ⊥ so far (otherwise the input is always ignored). In the
system encΠ

AdecΠ
B [SKK, IC], the converter decΠ retrieves the top element

of its queue. This value is equal to the ith delivered or injected pair (E,C) at
interface E. The converter decΠ then computes M ← D(K, i− 1, (E, I), C)
and outputs M .
In the view emulated by A in the real game, (E,C) also corresponds to the
ith delivered or injected pair. If the tuple (i − 1, E, I,M,C) is found in L
for some M ∈ M, M is output at interface B. By the correctness of the
AEAD-scheme, M is then equal to the output of the algorithm D for the
corresponding parameters. If no such tuple is in L, A decrypts C with the
corresponding parameters using the oracle Dec and also outputs the resulting
message at interface B. Since the real oracle Dec evaluates D, we conclude
that the views are identical in this case.
In simE

ASC ASC, the resource checks whether I = I ′, where (E′, I ′,M ′) is the
next element in the queue R. If this is the case, it outputs M ′ at interface B,
otherwise it outputs ⊥. Furthermore, only those elements can be successfully
fetched that do not correspond to stop-elements (⊥,⊥,⊥). By construction
of the simulator, the ith element of the sender’s queue is only delivered if
the ith injected pair (E,C) at interface E matches the simulated pair output
at interface E in reaction to the ith input (send, E′, I ′,M ′) at interface A. In
any other case, a stop-element is injected into the receiver’s queue.
To determine whether the values of the ith injection match the simulated
values for the ith input at interface A, simASC maintains the queue Q2 such
that its top element, after i injections, stores exactly these values. Note that
the queue Q1 on the other hand is only needed to simulate the queue of the
insecure channel IC in the real world and to figure out the next message in
the simulation of a deliver-request.
In the view emulated by A in the ideal game, the list L ensures that the
same message M ′ is output at interface B if all the values match as above.
Furthermore, if there is not a match, the output is ⊥ because the ideal
oracle Dec always returns⊥. In particular, the condition that the ith simulated
pair correspond to the ith injected pair is equivalent to requiring that the
tuple (i− 1, E, I,M,C), for some message M , is an element of L.
Hence, the views for D are also identical in this case.

This concludes the proof of the claim and thus of the lemma. ut

The following theorem summarizes the results from Lemma 1 and Lemma 2.

Theorem 1. The protocol (encΠ , decΠ) constructs ASC from [SKK, IC]. More
specifically, we have for the simulator simASC in Fig. 6 and for all distinguishers D

∆D
(
encΠ

AdecΠ
BdlvE [SKK, IC], dlvE ASC

)
≤ Advae

Π (ρ(D))

and ∆D
(
encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC
)
≤ Advae

Π (ρ′(D)),
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where ρ and ρ′ are the reductions defined in the proofs of Lemma 1 and Lemma 2,
respectively.

5 The Goal of the TLS 1.3 Record Layer

Version 1.3 of TLS is currently in draft state at the IETF.8 Unlike TLS 1.2, the
new version of the record payload protection protocol mandates AEAD ciphers9
and the format of the authenticated data has changed. More specifically, in the
current draft, the authenticated data in TLS 1.3 consists of the sequence number
of the current fragment, the protocol version, and the message type, e.g., whether
it is an “alert,” a “handshake,” or an “application” message. The nonce of the
AEAD cipher is chosen in a specific way based on the sequence number.10 This
section treats the record protocol and assumes that a shared key has been derived
in the TLS handshake.

5.1 Formalizing the Goal of TLS Record Payload Protection

What does it mean for the TLS record layer to be secure? We propose a simple
answer to this question in the form of a new channel abstraction. Each packet in
the TLS record layer contains a payload and specifies its associated type. While
the entire packet is authenticated, only the content of the packet has to be private
and hidden from the attacker. This resembles a specific type of channel: a secure
channel where messages are tagged with a non-private type-flag from the set of
types T := {0, . . . , 255}. The TLS record payload protection can be considered
secure if it provably constructs this secure channel. We formalize this channel as
the resource SECTLS and provide a formal description thereof in Fig. 7.11

Note that in contrast to ASC, the channel SECTLS does not contain an
implicit part of the header and messages are directly delivered to Bob without
the need to fetch them. Therefore, SECTLS does not allow the authentication
of data without sending it. One can thus view SECTLS as an augmented secure
channel that is more restricted than ASC but also simpler to use.

5.2 Achieving the Goal

In this section, we present a construction of the channel SECTLS from ASC. To
this end, we introduce the protocol (tlsSnd, tlsRcv), which is described in Fig. 8
8 We refer to the most recent draft (retrieved on August 28, 2015) that is available for
download at https://tools.ietf.org/html/draft-ietf-tls-tls13-08.

9 Previous versions of TLS supported MAC-then-Encrypt modes.
10 Until draft 5, which was the reference for an earlier version of this paper, the choice

of the nonce was not specified, and it was transmitted together with the ciphertext.
11 While applications usually provide data to TLS as a sequence of multi-byte strings,

TLS only guarantees that the same stream of bytes, as the concatenation of the indi-
vidual strings, is delivered. TLS does not guarantee that the boundaries between the
multi-byte strings are preserved as chosen by the application, cf. [7]. The message M
in Fig. 7 is to be understood as the multi-byte string used within the TLS protocol,
which is not necessarily the same as chosen by the higher-level application.

https://tools.ietf.org/html/draft-ietf-tls-tls13-08
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Initialization
S ← empty FIFO queue
halt← 0

Interface A

Input: (send, T,M) ∈ T ×M
S.enqueue((T,M))
output (T, |M |) at interface E

Interface E

Input: deliver
if |S| > 0 and halt = 0 then

(T,M)← S.dequeue()
output (T,M) at interface B

Input: terminate
if halt = 0 then

halt← 1
output ⊥ at interface B

Resource SECTLS

Fig. 7. Description of the channel SECTLS.

and manages the usage of the resource ASC. We adhere closely to the current
TLS specification in setting the corresponding values. The implicit part I of
the header consists of the protocol version V (which corresponds to {3, 4} and
consists of two bytes12) and the explicit part E consists of the message type T
(one byte).

Initialization
V ← {3, 4}

Interface out

Input: (send, T,M) ∈ T ×M
output (send, T, V,M) to ASC

Converter tlsSnd

Initialization
V ← {3, 4}

Interface in

Input: (newMsg, T ) ∈ T
if halt = 0 then

output (fetch, V ) to ASC
let M be returned value from ASC
if M 6= ⊥ then

output (T,M) at out
else

halt← 1
output ⊥ at out

Converter tlsRcv

Fig. 8. The protocol converters for the sender (left) and the receiver (right) that
construct SECTLS from ASC.

Theorem 2. The protocol (tlsSnd, tlsRcv) constructs SECTLS from ASC. More
specifically, we have for the simulator simTLS defined in Fig. 9 and for all distin-
guishers D

∆D
(
tlsSndAtlsRcvBdlvEASC, dlvESECTLS

)
= 0 (1)

and ∆D
(
tlsSndAtlsRcvBASC, simE

TLSSECTLS

)
= 0. (2)

12 The value {3, 4} corresponds to TLS version 1.3. The reason for this value is that
the version of TLS 1.0, as the successor of SSL 3.0, is encoded as the value {3, 1}.
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Interface in

Input: (T, `) ∈ T × N
output (T, `) at out

Interface out

Input: deliver
output deliver at in

Input: (injectStop, T ) ∈ T
output terminate at in

Converter simTLS

Fig. 9. The simulator for the security condition of the construction of SECTLS.

Proof. The availability condition (1) is easy to verify: On input (send, T,M)
at interface A, the system dlvESECTLS directly outputs (T,M) at interface B.
The same holds for system tlsSndAtlsRcvBdlvEASC: On input (send, T,M), the
converter tlsSnd inputs (send, T, V,M) to ASC. The converter tlsRcv then obtains
the notification (newMsg, T ) and queries (fetch, V ) to ASC, which results in the
outputM fromASC, which in turn triggers tlsRcv to output (T,M). Since the two
systems behave identically, every distinguisher has advantage 0 in distinguishing
them, i.e., (1) follows.

To verify the security condition (2), we distinguish the possible inputs to the
system:

Input (send, T,M) at interface A: In the system tlsSndAtlsRcvBASC, this in-
put results in the converter tlsSnd inputting (send, T, V,M) to ASC, which
yields the output (T, |M |) at interface E of ASC. In simE

TLSSECTLS, the
values (T, |M |) are given to the simulator, which then outputs (T, |M |) at its
outer interface.

Input deliver at interface E: In tlsSndAtlsRcvBASC, if the queue S in ASC
is empty, nothing happens. Otherwise, the converter tlsRcv receives the
notification (newMsg, T ). Then, tlsRcv inputs (fetch, V ) to ASC if it has not
already halted. In this case, there have been only inputs deliver at interface E
and therefore the verification within ASC succeeds. Thus, tlsRcv obtains the
message M and outputs (T,M).
In simE

TLSSECTLS, the simulator inputs deliver to SECTLS. If S in SECTLS

is empty, nothing happens. Otherwise, the next tuple (T,M) in S is output
at interface B if the channel has not halted before.

Input (injectStop, T ) at interface E: In the system tlsSndAtlsRcvBASC, the
notification (newMsg, T ) is output to tlsRcv. The converter tlsRcv then out-
puts (fetch, V ) to ASC and since the element is an inserted empty element,
the verification within ASC fails and tlsRcv outputs ⊥ and stops by setting
halt← 1.
In simE

TLSSECTLS, simTLS terminates the session, which causes the output ⊥
at interface B and results in no further messages being processed by Bob.

To see that the two described systems behave identically, we only have to observe
that they both terminate the session if an empty message is injected into the
channel and that all inputs are delivered in order until termination. We again
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conclude that every distinguisher has advantage 0 in distinguishing these systems,
i.e., we obtain (2). This completes the proof. ut

5.3 Using the Protocol in TLS 1.3

We have shown that (tlsSnd, tlsRcv) constructs SECTLS from ASC. Since by
Theorem 1, the protocol (encΠ , decΠ) constructs the channel ASC from a shared
secret key and an insecure channel, we can invoke the composition theorem of
constructive cryptography to conclude that the composition of both protocols
constructs SECTLS from a shared key SKK and an insecure channel IC. See
Fig. 10 for a graphical illustration of the composed protocol (tlsA, tlsB).

encΠtlsSnd

SKK

IC

A

E

tlsRcvdecΠ B

tlsA tlsB

Fig. 10. Illustration of the composed protocol (tlsA, tlsB). For a secure AEAD-scheme,
the resource encΠ

AdecΠ
B [SKK, IC] inside the dashed box in the center is indistinguish-

able from simE
ASCASC.

The protocol for the sender tlsA works as follows: On input (send, T,M), the
message M is encrypted with a call to the AEAD-scheme as C ← E(K,N,A,M),
where K is the shared key retrieved from SKK, N is the internal counter and
A = (T, V ) is the additional data. Finally, the pair (T,C) is sent over the insecure
channel.

The protocol for the receiver tlsB works analogously: On input a new pair
(T,C) from IC, the ciphertext is decrypted to M ← D(K,N,A,C), where N
is the internal counter, A is the additional data, and K is the shared key as
above. Note that the implicit part of the header is fixed and provided by tlsRcv
immediately after receiving the notification (newMsg, T ) from decΠ .

In summary, the protocol (tlsA, tlsB) provably achieves the goal of the TLS
record layer. Note that the key resource SKK is constructed by the handshake
protocol if both parties are authenticated. In [14], the authors consider the more
general case where only one party is authenticated, which yields a weaker key
resource. We have chosen the setting where both sides are authenticated to
simplify the presentation, but we point out that our result can be generalized to
the more general setting straightforwardly.

Our proposal. Our results shown in this paper suggest minor modifications to
the current draft of TLS 1.3:
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1. The nonce of the AEAD scheme can be set to the counter value left-padded
with zeros to be of the appropriate length.

2. The sequence number can be removed from the additional data part.
3. After the handshake, the version number does not need to be transmitted

explicitly as part of the TLS record. However, it should still be part of the
additional data.

Our proposal comes with a rigorous security proof, which guarantees that our
choice of parameters is adequate. For example, this clarifies that the nonce need
not be unpredictable or derived from other values, which is a priori unclear.

We are aware that item 3 would require a new structure of TLS fragments
and hence there might be objections against this change. However, we stress that
only respecting item 1 and item 2 of our proposal is also secure (i.e., constructs
SECTLS). The proof for the case where the version number is moved to the
explicit part of the header is essentially identical to the one presented in Sect. 5.2.
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