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Abstract—Proofs in simulation-based frameworks have the
greatest rigor when they are machine checked. But the level
of details in these proofs surpasses what the formal-methods
community can handle with existing tools. Existing formal results
consider streamlined versions of simulation-based frameworks
to cope with this complexity. Hence, a central question is how
to abstract details from composability results and enable their
formal verification.

In this paper, we focus on the modeling of system communica-
tion in composable security statements. Existing formal models
consider fixed communication patterns to reduce the complexity
of their proofs. However, as we will show, this can affect
the reusability of security statements. We propose an abstract
approach to modeling system communication in Constructive
Cryptography that avoids this problem. Our approach is suitable
for mechanized verification and we use CryptHOL, a framework
for developing mechanized cryptography proofs, to implement it
in the Isabelle/HOL theorem prover. As a case study, we formalize
the construction of a secure channel using Diffie-Hellman key
exchange and a one-time-pad.

I. INTRODUCTION

A. Problem Context

Simulation-based frameworks [1], [7], [11], [13], also
called composability frameworks, pave the way for modular
reasoning about cryptographic constructs independently of
their application context. They follow the Ideal-world—Real-
world [9] paradigm to security proofs, where a distributed
protocol’s security is defined by comparing its execution, i.e.,
the real world, to an idealized specification that intrinsically
satisfies the desired properties.

Devising rigorous security statements in these frameworks is
very challenging. The way that notions of algorithms, runtime,
corruptions, and the like are baked into composability theorems
in frameworks such as Universal Composability (UC) [7] intro-
duces considerable details into composable security statements.
The resulting complexity is beyond what the current scientific
review processes can afford. The formal-methods community
has not been able to alleviate the situation either. The level
of details in simulation-based frameworks surpasses what the
existing formal-methods tools can reasonably handle.

Simulation-based frameworks’ approach to modeling system
communication is one of the main reasons for the complexity
of their resulting proofs. In these frameworks, components
communicate via network tapes and a central scheduler
called the adversary. This concrete approach increases the

complexity of ideal specifications and makes the security
arguments intricate [6]. As such, existing formal results such as
EasyUC [8] consider a simplified version of these frameworks
with restricted communication capabilities between components.
However, as we will show in Section III-A, such simplifications
affect the reusability of security statements.

Constructive Cryptography (CC) [17], [18], [19] proposes
a fundamental shift in how security statements are made and
proved. It introduces an abstract approach to composable
security arguments that allows one to focus on a particular
aspect of security proofs without being distracted by other
details. This makes composable security statements manageable
for protocol designers. However, the existing CC results [12],
[16] do not delve into the details of system communication.

B. Our Solution

We propose an abstract approach to modeling system
communication in composable security statements by means
of generic ideal functionalities. We follow CC’s methodology
whereby specifications (and implementations) are sets of ideal
(or real respectively) functionalities. This is in contrast to
UC-style frameworks that define such functionalities as single
objects and enables us to model system communication without
introducing a centralized adversary machine.

First, we propose a semantic domain called Fused Resource
Templates (FRT) that abstracts over the system communication
patterns. FRTs are suitable for mechanizing composable
security proofs, and we formalize all the results presented in this
paper using CryptHOL [3], [14], a framework for mechanizing
cryptographic proofs in the proof assistant Isabelle/HOL [20].
Second, we show how FRTs constitute an instantiation of
the CC framework. We formalize operators that enable us to
compose FRTs and thereby define complex FRTs in terms
of simpler ones. We then introduce the notion of secure
constructions using FRTs and provide composition theorems
for such constructions. Finally, we demonstrate the practicality
of our approach in a case study. We formalize the construction
of a secure channel by composing Diffie-Hellman key exchange
with one-time-pad encryption.

Our result is based on Lochbihler et al.’s formalization of
CC [16]. To keep this paper self contained and preserve its
presentation flow, we recap this work in various parts of the
paper. We provide a detailed comparison in Section VI.



C. Contributions

The results presented in this paper contribute to both the cryp-
tography and the formal-methods communities. Our approach to
capturing communication patterns increases the abstraction of
ideal functionalities and makes composable security arguments
amenable to mechanized verification. In detail:
• We propose the first CC instantiation that explicates the

details of system communication. The role of system
communication models has not been studied in the CC
literature, although we show that the reusability and
modularity of CC proofs depend on it (cf. Section III-A).
We propose an abstract approach to capturing system
communication patterns in CC proofs.

• We formalize our approach in a theorem prover and
thereby enable the mechanized verification of composable
security arguments. By abstracting over system communi-
cation patterns, we allow protocol designers to focus on
the main security concerns while ensuring the reusability
and modularity of security statements. We provide proof
rules that enable modular reasoning about concrete (and
asymptotic) security statements. We use these rules to
formalize Diffie-Hellman key exchange and the one-time-
pad that are comparatively simpler and shorter than any
existing formalization.

D. Structure

We start with a short recap of simulation-based frameworks
and CC in Section II. In Section III, we explain the importance
of precise system communication modeling for the modularity
and reusability of security proofs. We then present our
formalization of FRTs and their operators. In Section IV, we
define concrete security in terms of FRT constructions and
provide theorems for composing security proofs. In Section V,
we present our case study, which demonstrates our approach’s
applicability. Finally, in Sections VI and VII, we compare with
related work and draw conclusions.

All results presented in this paper are formalized using
Isabelle/HOL. Appendix A explains the structure of the
formalization source, which is available on the Archive of
Formal Proofs [15].

II. PRELIMINARIES

This section introduces background that is used in the rest of
the paper. We review the composability of security proofs and
how it its treatment in simulation-based frameworks and CC.
We focus on system communication modeling in composable
security arguments. In each subsection, we use the notation
that is common in the research community for the topic under
discussion. The paper-specific notation, which is indexed in
Appendix B, will be presented when formally introduced.

A. Composable Security Arguments

The ideal-world—real-world [9] approach to security en-
ables modular reasoning about security statements. In this
approach, a protocol’s security is defined by comparing its
execution, i.e., the real world, to an idealized specification

that satisfies the desired properties by definition: a protocol
π realizes (or implements) an idealized functionality F if
there exists a simulator that can simulate π’s behavior (in
an adversarial environment) by interacting with F . The so
called Composability Theorems extend the above idea to an
arbitrary application context. Consider a protocol ρ|F , where
the | operator denotes protocol composition, that realizes an
ideal functionality G; then the protocol ρ|π also realizes G if
the protocol π realizes the ideal functionality F .

The composability of security proofs depends on how generic
their communication modeling is. To enable security proofs
to be reused, ideal functionalities must be independent of
concrete setups. For instance, suppose that F can be realized
by the protocols π, α|β, and γ|δ|H. Then, F should abstractly
represent all of these protocols by capturing their essential
properties. In particular, F must be independent of the number
of sub-protocols and their interactions, i.e., the semantics of the
| operator, in its realizations. Tying an ideal functionality to a
particular execution flow essentially prevents all the realizations
that do not follow this flow.

B. UC-style Frameworks

In simulation-based frameworks [1], [7], [11], [13], (sub-)
protocols are modeled using interactive Turing machines with
network tapes and unique identifiers. At each point of a
protocol’s execution, only one of these machines is active and
the others wait for new inputs. A special Turing machine, called
the adversary, schedules the activation of protocol components:
it is activated after each non-adversary machine halts and
determines the next Turing machine to activate. The adversary
plays the role of a mediator too. When two machines wish
to communicate, the sender informs the adversary about the
message1 content and destination, i.e., the receiving Turing
machine’s identifier, and the adversary forwards the message
according to its underlying corruption model.

The generality of the communication model in simulation-
based frameworks stems from the central adversary Turing
machine that is universally quantified in security definitions.
Consider the compound protocol ρ|F , and interpret | according
to the execution model explained above. When ρ calls F as a
subroutine, two message broadcasts are used to transfer control
between ρ and F : the first message carries the “request” details
and the second one conveys the “response” information. These
messages need not be passed consecutively; therefore, each of
ρ’s subroutine calls may correspond to an arbitrary sequence
of Turing machine activations starting with ρ’s “request”
message and ending with F’s (or any of its realization’s)
“response” message. As such, F ’s semantics abstractly captures
the execution of an arbitrary number (and order) of Turing
machines realizing it.

The simulation-based frameworks’ concrete approach to
modeling can affect the rigor of their resulting proofs. As
Camenisch et al. put it [6], protocol descriptions in simulation-
based frameworks include meta-level and model-specific

1A message can be any information transferred between protocol components,
including meta-level information, subroutine calls, or protocol-specific data.
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information that makes them unnecessarily complicated; but,
ignoring such details can lead to ill-defined specifications,
sketchy proofs, and flawed results. The existing formal methods
tools have not been able to resolve this conundrum. The level
of detail in simulation-based frameworks surpasses what the
formal-methods community can reasonably handle with existing
techniques. As such, the existing formalization results consider
stripped-down versions of simulation-based frameworks by
restricting the communication and corruption models [8].
Hence, they are only applicable in a limited range of scenarios.

C. Constructive Cryptography

Constructive Cryptography (CC) [17], [18], [19] is an
abstract paradigm for developing a theory of cryptography.
Rather than focusing on concrete systems and proving their
properties, CC studies the shared behavior of similar systems,
and their transformations. As such, the notions of runtime,
algorithms, and complexity are not intrinsic parts of every
definition and proof in CC; they are just means for abstracting
over the details of similar systems.

Modular reasoning about systems is based on the concepts of
Resources and Converters. Every aspect of individual systems,
including the adversary’s capabilities and information leakage is
made explicit as a resource with named input/output interfaces.
Specifications are sets of resources and represent systems that
share a common behavior. Parties can change a resource’s
behavior by attaching converters to their designated interfaces
on that resource. It is possible to access multiple resources
simultaneously and attach many converters. For example,
xayb � [R,S] denotes the attachment of converters x and
y to resources R and S, where a and b are injective mappings
between converter and resource interfaces and [_, _] denotes the
parallel access to two resources.2 One can combine converters
and interface attachments into a single Protocol3 π and use the
notation π[R,S] instead. Let πR = {πR | R ∈ R} denote the
lifting of a protocol’s attachment to specifications and define
the Cartesian product [R,S] = {[R,S] | R ∈ R ∧ S ∈ S}.
According to CC’s terminology, π constructs the specification
S from R if and only if πR ⊆ S. In the ideal-world—real-
world terminology, πR and S play the role of the real-world
implementation and the ideal functionality respectively. The
following composability properties hold for any protocols π
and π′ and arbitrary specifications R, S, and T :

1) If πR ⊆ S and π′S ⊆ T , then π′πR ⊆ T .
2) If πR ⊆ S , then π[R, T ] ⊆ [S, T ].
Common security notions are expressed as particular forms

of specifications. For example, consider the simulator-based
notion of information-theoretic security. Using a simulator
σ corresponds to specifications of the form σS, where the
simulator is defined in terms of a converter that only attaches
to the adversary interfaces. Indistinguishability is analysed by
relaxing specifications as Rε = {S | R ∈ R ∧ d(R,S ) ≤ ε},

2The order of resources is unimportant in this notation; however, one can
reorder converters only if they attach to disjoint sets of interfaces.

3The meaning of the term “protocol” here is different from UC-style
frameworks, where it refers to one or more Turing machines working together.
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Fig. 1: Alice, Bob, and Eve are the interface names. E and
D denote the encryption and decryption functions, respectively.
Each gray rectangle represents the resource built from the
resources and converters in its interior.

where d(R,S ) is the least upper bound on the advantages
of all distinguishers in distinguishing the resources R and S .
To define information-theoretic security, we combine these
two forms: in a two-party setting with parties A and B and
the adversary E, the construction of a specification S from
R using the protocol π = xAyB is information-theoretically
secure iff there exist a simulator σ = zE, i.e., a converter z
attached to interface E, such that πR ⊆ (σS)ε. Computational
security is defined analogously using a similar relaxation that
considers computationally bounded distinguishers. In the above
definition, note that we are using party names as a placeholder
for interface mappings. Henceforth we drop the distinction
between simulators and the converter that they attach and refer
to both σ and z as the simulator.

To better understand the above concepts, consider the
following example. A secure communication channel between
two parties Alice and Bob can be established using a shared
key and an authenticated channel: the parties use the key
to encrypt their message and transmit the ciphertext via the
authenticated channel. Figure 1a depicts such a scenario in
CC. The protocol π consists of the encryption converter Enc
and the decryption converter Dec. Alice and Bob attach Enc
and Dec to their sides respectively. The adversary Eve controls
the communication network but does not have access to the
pre-shared keys. This is modeled using the adversary interface
on resources: the authenticated channel resource Auth allows
the adversary to look at (but not edit) the channel’s content
and drop or delay messages; however, the key resource Key
does not leak any information through its adversary interface.

Security is expressed using specifications. Let Rauth−key
denote the specification that only contains the parallel compo-
sition of the Auth and Key resources and let Ssec denote the
singleton set that contains the ideal secure channel Sec. Here,
Sec is a resource that is similar to Auth except that it leaks the
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length of the channel’s content. The encryption scheme used
by the converters Enc and Dec is information-theoretically
secure if there exists a simulator σ, represented as the Sim
converter in the diagram, for which πRauth−key ⊆ (σSsec)ε.
So, to prove the encryption scheme secure, it suffices to prove
the indistinguishability of the two composed resources (the
grey rectangles) in Figures 1a and 1b.

III. A NEW CC SEMANTIC DOMAIN

We propose Fused Resource Templates (FRT) as a class of
CC specifications that allow us to abstract over the communica-
tion patterns in security proofs and is suitable for mechanized
verification. To motivate our proposal, we show that composi-
tional security statements should not be tied to a fixed commu-
nication pattern, as is the case in the existing CC case studies.

A. Motivation

It is common to simplify the presentation of security
proofs by omitting details that are considered somehow trivial;
however, leaving out such details sometimes does more harm
than good. Consider the construction example in Section II-C.
There, we limit the extent of our proofs’ reusability by defining
the specifications Rauth−key and RSec as singleton sets. That
is, the security of the protocol π, representing the Enc and
Dec converters, is only guaranteed in contexts that use the
concrete resources Auth, Key, and Sec. But is it possible
to ignore this limitation and interpret the aforementioned
resources as placeholders for arbitrary keys and channels? Such
simplifications are omnipresent in the existing CC case studies:
proofs are carried out in a concrete (and usually underspecified)
context and readers are left to generalize them. In this section,
we will show that singleton specifications do not suffice for
composable security proofs.

We start by considering the impact of singleton specifications
on the modularity and reusability of security proofs. The point
of composability is that the realization of a specification can
be decomposed into small and easy-to-understand steps, which
can then be combined modularly. For example, in Figure 1, we
may combine π with various key-exchange protocols to obtain
different realizations of a secure channel; however, we want to
prove π’s security only once. That is, we do want to abstract
away from the details of the key-exchange protocol in π’s proof.

This cannot be achieved if we start from a specification
with just a single resource like Key , because different key
exchange protocols have different activation patterns for the
parties. This is how the problem with generic communication
modeling, which we explained in Section II-A, arises in CC
proofs. For example, in a three-round Diffie-Hellman protocol
π3dh, Alice asks for Bob’s half-key and sends her half-key
back after receiving Bob’s answer. So before Alice puts her
message on Auth , the execution of π3dh would lead to the
sequence Alice→ Bob→ Alice of party activations. Hence,
Key would already have to already model this activation
sequence so that π3dh can securely construct Key and be
composed with π. Clearly, the security proof for π should
not need to deal with this particular sequence of activations

(and all the possible failed executions of the key exchange
protocol). Even worse, another key-exchange protocol may lead
to a different activation sequence. For example, a two-round
Diffie-Hellman key exchange π2dh yields either the activation
sequences Alice → Bob → Alice or Bob → Alice before
Alice sends her message on the authenticated channel. Those
activation sequences cannot be added to the single Key resource
as each key exchange protocol would then have to support all
these activation sequences. So, the security argument for the
secure channel construction is entangled with a specific key
exchange protocol. This hinders the modular composition of
protocols.

Varying party activations is not the only problem of singleton
specifications. The information that the resource Key should
leak to Eve also depends on the key exchange protocol. For
example, the two-phase Diffie-Hellman protocol π2dh uses two
authenticated channels to transport the half-keys from Alice
to Bob and vice versa. Those channels expose Eve interfaces;
queries on those interfaces will be rejected until a message
has been entered into the channel. The simulator in π2dh’s
security proof must account for this behavior. Yet this is not
possible when Eve’s interface of the ideal resource Key leaks
no information to the simulator. What must be leaked depends
on the particular key exchange protocol, e.g. adapting the key
specification’s leakage to π2dh becomes problematic in π3dh’s
security proof that utilizes three authenticated channels.

These two problems can be avoided if specifications contain
many resources. For example, the specification for keys would
contain one resource for each type of key-exchange protocols:
one that is suitable for constructions with two authenticated
channels, another one for constructions with three authenticated
channels, and so forth. However, the security proofs must treat
all resources in such a specification uniformly; otherwise we
would again need a separate proof for each protocol. So, we
need a semantic domain that defines each specification by
describing the common aspects of the resources that it contains.

B. Fused Resource Templates

We define FRTs in terms of Lochbihler et al.’s formalization
of resources [16]. Each FRT describes a parametrized resource:
all instances share a common behavior while each instance
exhibits a particular party-activation pattern.

1) A Short Recap of Resources: In CC [12], probabilistic
reactive systems are called resources. Consider a bit string that
is sampled uniformly from the set of bit strings of length n.
One can model such a random bit string as a probabilistic
reactive system that gets an integer n as input and outputs
n random bits. In general, each system output may depend
on its previous inputs and outputs, e.g. a random oracle that
answers repeated queries with the same output. It is therefore
convenient to model resources by a transition function and an
initial state: for a state s and an input x, the transition function
tr(s, x) returns a probability distribution over the successor
state and the output.

Lochbihler et al. [16] hide the internal state of resources
to simplify the proofs and definitions. The resource type
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existentially quantifies over the state type in the pair of the
transition function and the initial state:

R(q, r) = ∃s. (s⇒ q⇒ D(r× s))× s, (1)

where q represents the type of inputs (queries), r the type of
outputs (responses), × the product type, ⇒ the function space,
and D(a) probability distributions over a. The Isabelle/HOL for-
malization uses co-inductive datatypes [4], in short co-datatypes,
instead of existential types, following the co-algebraic approach
to modeling transition systems [21]. Starting from the initial
state, the co-algebraic approach unfolds the transition func-
tions into a possibly unbounded probabilistic tree, where the
successor state is replaced by the subtree of its behavior. The
following co-datatype formalizes such trees in Isabelle/HOL:

codatatype R(q, r) = Resource (q⇒ D(r× R(q, r))).

The constructor Resource takes a family of probability
distributions as argument, one for each possible query q. Each
distribution contains the responses r and the corresponding
subtree R(q, r) that captures the resource’s behavior after the
query-response interaction. This unfolding of the transition
function identifies a state s with its unfolding under tr. This
way, we need not represent the internal state of the resource
and thus emulate the state hiding in (1).

The identification of states with its unfoldings can be seen
in the transition function run on resources: run : R(q, r)⇒q⇒
D(r×R(q, r)), where e : t denotes that expression e has type t.
This type is the same as for s⇒q⇒D(r×s) except that the state
type s is replaced by the tree R(q, r). Formally, the co-datatype
definition is the final co-algebra of such transition functions.
The final co-algebra identifies resources with bisimilar input-
output behaviour. No context can therefore distinguish bisimilar
resources and we can thus replace one by the other without
having to discharge preconditions.

The existing formalizations [3], [16] introduce two more
components that facilitate defining resources with multiple
interfaces. First, CryptHOL’s oracle composition operator +O
interleaves two transition functions tri : s⇒qi⇒D(ri×s) (for
i = 1, 2) operating on a shared state of type s into one transition
function tr1 +O tr2 : s⇒ q1 + q2⇒ D((r1 + r2)× s), where
q+ r denotes the disjoint union of the types q and r. Following
the CryptHOL terminology, we use the terms “oracle” and
“probabilistic transition function” interchangeably in this paper.
Second, the function RES converts an oracle into a resource,
i.e., it unfolds the transition function into a tree and thereby
introduces the existential type quantifier and hides the state.
RES(tr, s0) is the co-inductive counterpart of a probabilistic
transition system where the state is explicit, represented using
the transition function tr and the initial state s0.

2) Fused Resources: FRT instances correspond to particular
members of a resource family. But how do we know if an
instance belongs to a family? Remember that family members
share a common behavior while each member exhibits a
particular behavior too. FRTs only focus on the common
behaviors and treat the particular ones abstractly as a parameter
in their description. Nevertheless, we must ensure that every

instantiation of such parameter will not affect the “common
behavior”. For example, consider the specification for secure
channels. The common behavior of every resource in the family
of secure channels is that they would at most leak the length of
the transmitted messages. So, the FRT describing this family
must prohibit any instantiation that can leak more information.

Each FRT consists of a Core part, describing the common
behavior, and a set of Remainder parts. When an FRT is
instantiated, the core part is fused with one of the remainder
parts and results in a special kind of resource, which we call a
Fused Resource, that enforces one-way information flow from
its remainder to core. In what follows, we explain how a fused
resource can be defined in terms of a Fusing function.

The core part is implemented as a record cr =
Lcinit := · · ·, cpoke := · · ·, cfunc := · · ·M with three fields: an
initial core state cinit : s, a probabilistic event handler
cpoke : s⇒ e⇒ D(s), and a probabilistic transition function
cfunc : s⇒qc⇒D(rc×s). The cpoke field is an event handler
that defines a notification mechanism: given the current core
state and an event, it defines a probability distribution on
the successor state. The cfunc field describes the input-output
behavior of the interfaces: given the current core state and an
input, it defines a probability distribution on the pair of the
output and the successor state.

The remainder part communicates with the core part via
poke events. They are defined in terms of a record rm =
Lrinit := · · ·, rfunc := · · ·M that consists of an initial remainder
state rinit : t and a probabilistic event-augmented transition
function rfunc : t⇒qr⇒D((rr×L(e))×t), where L(e) denotes
the type of events list. The cfunc field defines the input-output
behavior of remainder interfaces as well as the information
they leak to the core part: given the current remainder state and
an input, it defines a probability distribution on the output, the
successor remainder state, and a list of events that the fused
resource’s core part will be notified about.

Given a rm = Lrinit := ridef , rfunc := rf def M and a
cr = Lcinit := cidef , cpoke := cpdef , cfunc := cf def M with the
types defined above, the Fusing function fuse(cr , rm) outputs
a probabilistic transition function with type (s× t)⇒qc+qr⇒
D((rc+ rr)× (s× t)) that enforces a one-way information flow
from rm to cr by means of events. Here, + denotes disjoint
union and we write Left _ and Right _ for the injections. Let
trfuse and (s, t) denote the resulting oracle and its internal state
respectively. For a given query q, the output of trfuse((s, t), q)
is a probability distribution on the pair of the response r and the
successor state (s′, t′) that is determined in one of two ways:

1) If q is of the form Left q′, i.e., a query q′ to the core part,
then the response r = Left r′ and the core’s successor
state s′ are determined by cf def (s, x

′) and t′ = t.
2) If q is of the form Right q′, i.e., a query q′ to the

remainder part, then rf def (t, x
′) determines the response

r = Right r′, the remainder’s successor state t′, and a list
of events es from which we calculate the core’s successor
state s′ = foldl(cpdef , s, es).

The Fusing function provides a failure mechanism too. Every
probability distribution in this paper considers a sample space
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that provides a distinguished bottom element ⊥ for modeling
failures. By combining the probability and option monads, we
define the fuse function such that any failures in calls to cpdef ,
cf def , and rf def will fail the whole fused resource, i.e., all
subsequent queries to trfuse are answered with ⊥ independently
of which interface they are sent to.

We can combine all the aforementioned building blocks into
a one-liner using the technique explained in Section III-B1.
Let � denote the operator for accessing record fields. For
core and remainder records cr and rm mentioned above,
FUSE(cr , rm) = RES(fuse(cr , rm), (cr �cinit, rm�rinit)) is a
fused resource of type R(qc+ qr, rc+ rr). We denote the type
of such fused resource as F(qc, qr, rc, rr) to distinguish it from
arbitrary resources of the same type.

Core records suffice to describe the behavior that is common
to every instantiation of an FRT. Core and remainder records
have long type signatures, so let c and r respectively denote
the types of cr and rm records mentioned above. Given a core
cr : c , an FRT {|cr |} : r ⇒ F(qc, qr, rc, rr) is a function from
remainder records to fused resources such that

{|cr |}(rm) = FUSE(cr , rm). (2)

When essential (cf. the end of Sec. III), we specify the type
of suitable remainder records using a subscript {|cr |}r .

3) A Concrete Example: We now explain how FRTs enable
modeling specifications that include resources with arbitrary
interfaces and activation patterns. The main idea is to define
core such that it returns ⊥ when an unwanted sequence of
poke events has been received.

As an example, we formalize the ideal specification
for keys as the FRT {|key |}. It represents all realizations
in where two parties Alice and Bob execute a proto-
col to share a symmetric key. The core record key =
Lcinit := cikey, cpoke := cpkey, cfunc := cf keyM consists of
three fields. The state consists of a pair (kernel , shell). Here,
kernel is a value of the form Void or Hold k that indicates
whether the key has already been generated and shell ⊆
{Alice, Bob} keeps track of the enabled interfaces, where
"disabled" means the interface would return ⊥ if queried. The
initial state cikey is (Void, {}), which indicates that the key has
not been generated yet and both parties’ interfaces are disabled.

The probabilistic event handler cpkey keeps track of two
classes of events: the event Init updates the state to Hold k by
uniformly sampling k from the key’s domain and the events of
the form Open party will update the state by inserting party
in shell . Repeated events are not allowed and immediately
invoke the failure mechanism.

The probabilistic transition function cf key = trEve-k +O
trAlice-k +O trBob-k describes the interfaces for the adversary
Eve, Alice, and Bob, which are composed using the oracle
composition operator. The adversary interface’s functionality
trEve-k leaks no information to Eve; it is a dummy oracle that
does not change the state and answers every input with a
unit value �. The interface functionality for Alice is defined
using trAlice-k, which outputs a key k upon a unit input � if
the state is a pair (Hold k, shell) such that Alice ∈ shell .

trEve-k

trAlice-k

trBob-k

...

(kernel,
shell)

cpkey

Events
triggered

Q
�

�
k

�
k

i1 in
i1 out

in in
in out

(a) Internal construction

key

Eve

Alice

Bob

i1, · · · , in

(b) Abstract representation

Fig. 2: Formalizing the ideal specification for keys. The
Remainder part is shown as a gray area that accepts various
instantiations. Remainder interfaces are shown using dashed
arrows. To simplify the diagrams, we often merge multiple
interfaces into a single arrow like i1, · · · , in above.

Queries to trAlice-k will invoke the failure mechanism if the
state does not satisfy the aforementioned conditions. Bob’s
interface functionality trBob-k is the same as Alice’s interface
except that it checks for Bob ∈ shell upon receiving queries.

Figure 2 depicts the ideal specification for keys. {|key |}
represents all fused resources that accept queries on Alice

and Bob interfaces after one or more queries to the i1, · · · , in
interfaces, which trigger the key generation event and enable
(at least) one of the parties’ interfaces. Either Alice or Bob
may attempt to receive the key first; it is important that their
corresponding interface has been enabled during one of the
event triggers.

C. Constructions Using FRTs

Defining complex systems in terms of simpler ones is
the essence of composable security statements. CC captures
this using the concepts of simultaneously-available resources
and converter attachments, which are lifted to specifications
as explained in Section II-C. That is, compound resources
describing complex probabilistic systems can be defined as
the attachment of simpler building blocks, i.e., converters
and simpler resources. We show how these concepts are
expressed using FRTs. Our formalization reuses the converters
and resources from Lochbihler et al. [16].

1) A Short Recap of Compound Resources: Converters are
probabilistic reactive systems that internally interact with other
reactive systems. A converter has two types (or classes) of
interfaces. First, the external interfaces are used to receive
inputs and send outputs. Second, computing an output may
invoke many interactions on the internal interfaces. A converter
appears like a resource when one of its external interfaces is
queried, however, such a query may invoke other converters and
resources prior to its response. A converter’s internal interface
is formalized as a CryptHOL [3] Generative Probabilistic
Value (GPV) G(a, q, r): a GPV produces answers of type a by
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Fig. 3: Attaching a converter to a resource.

interacting with arbitrary reactive systems that accept queries
of type q and produce responses of type r. Formally,

codatatype G(a, q, r) = GPV D(a+ (q× (r⇒G(a, q, r)))).

Like for resources, the co-datatype unfolds a transition function
tr : t⇒ D(a+ (q× (r⇒ t))) into a probabilistic tree starting
with some initial state t0 : t. The difference is that a GPV does
not wait for an input; it consists of a distribution over answers
and pairs of a query and a family of subtrees that capture the
reaction to the response.

A converter then is modeled using an initial state s0 : s and
a transition function tr : s⇒ i⇒G(o× s, q, r) that describes a
GPV on the output and the new state of the converter given its
current state and an input. Similar to resources, Lochbihler et
al. [16] provide an operator CNV(tr, s0) that hides a converter’s
internal state and represents it as a value of the following co-
datatype:

codatatype C(i, o, q, r) =
Converter (i⇒G(o× C(i, o, q, r), q, r)).

As shown in Figure 3, attaching C : C(i, o, q, r) to a resource
R : R(q, r), which means R responds to C’s internal queries,
creates a new resource C �R : R(i, o), which is represented
as the surrounding gray rectangle.

Lochbihler et al. model multiple interfaces i1, · · · , in, which
answer queries of types q1, · · · , qn with responses of types
r1, · · · , rn, using disjoint unions as a single interface with
inputs of type q1 + · · · + qn and outputs of type r1 + · · · +
rn. So interfaces are identified by their position in the sum
type. The attachment of (multiple) converters to a subset of
(simultaneously available) resources’ interfaces are defined in
terms of the following operators:
• Let R1 : R(q1, r1) and R2 : R(q2, r2) be resources. Their

parallel composition R1 ||R2 : R(q1 + q2, r1 + r2) directs
queries q1 to R1 and q2 to R2 and forwards the responses
accordingly.

• Let C1 : C(i1, o1, q1, r1) and C2 : C(i2, o2, q2, r2) be
two converters. Their parallel composition C1 | C2 :
C(i1+ i2, o1+ o2, q1+ q2, r1+ r2) makes both converters
available at the same time, analogous to parallel resource
composition.

• Let C1 : C(i, o,m, n) and C2 : C(m, n, q, r) be two con-
verters. Their sequential composition C1�C2 : C(i, o, q, r)
uses C2 to answer C1’s queries on C1’s internal interface.

• The identity converter 1 : C(q, r, q, r) simply forwards all
queries and responses from the external to the internal
interface and vice versa.

We provide an example to clarify how the above operators are
used. Consider resource R1 with one interface x, resource R2

cr

rm

(a)

Cfuse

cr

rm

(b)

Fig. 4: Fusing core and remainder resources. The two repre-
sentations of fused resources in 4a and 4b are the same.

with two interfaces y and z, and a converter C with an external
interface e and two internal interfaces a and b. The compound
resource ((1 |C)�CW)� (R1 ||R2) results from attaching a

and b to z and x respectively, where CW is defined in terms of
special converters called wirings [16] that transpose x+(y+z)
to y+ (z+ x)4. To avoid boilerplate notation and operators,
we often describe converter attachments using interface names
similar to Section II-C. Moreover, we will drop the distinction
between the terms "converter" and "protocol" from now on since
multiple converter and resource attachments are encoded as a
single attachment written in terms of composition operators.

2) Compound Fused Resources and FRTs: The aforemen-
tioned operators do not preserve the structure of fused resources.
For instance, given the fused resource F : F(qc, qr, rc, rr) and
the converter C : C(qr + qc, rr + rc, qc + qr, rc + rr) that
swaps interface positions, then C � F may be inexpressible
in terms of FUSE due to its inverted information flow. We
now show typical cases that do preserve the structure of fused
resources, and thus of FRTs. As we explain in Section IV-A,
these cases suffice for the step in the security proof that allows
us to abstract over the communication behavior and focus on
the common properties.

The core and remainder parts can be understood as resources
of their own: A core part cr is like an oracle with two
interfaces cr �cpoke+O cr �cfunc, where cr �cpoke conceptually
responds to every event with �. Similarly, rm�rfunc is the
oracle version of the remainder part rm . Both can be converted
into resources using RES. Under this view, we can compose
core and remainder parts in parallel (notations cr1‖ccr2 and
rm2‖rrm2 respectively) using the parallel composition of
resources. Similarly, we can attach a converter to a core and
remainder (notation �c and �r). Moreover, as Figure 4 depicts,
the fusing of cr and rm can be expressed by attaching a suitable
fuse converter Cfuse to the parallel composition of the core and
remainder resources.

The next four lemmas show how parallel composition
and converter attachment can be pushed through the fuse
function. The lemmas refer to the core records cr i : c i,
the remainder records rmi : r i, and the fused resources
Fi = FUSE(cr i, rmi) for i ∈ {1, 2}. The first lemma explains
the simultaneous access to fused resources. and is depicted in
Figure 5.

Lemma 1. For Fi : F(qic, qir, ric, rir), consider the fused
resource F : F(q1c+q2c , q

1
r+q2r, r

1
c+r2c , r

1
r+r2r) defined as F =

4The overloaded + operator on interface names is only used to indicate
that disjoint unions are not associative and wirings enable interface reordering.
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CF-PL

Cfuse
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cr 1

cr 2

rm1

rm2

C1
C2
R1
R2

C1

R1

C2

R2

e1

e2

(a)

Cfuse

cr 1

cr 2

rm1

rm2

C1
C2
R1
R2

e1 + e2

C1 + C2

R1 + R2

(b)

Fig. 5: Parallel composition of fused resources. The two
resources in 5a and 5b are equal. The rounded rectangle
surrounding cr1 and cr2 represents cr1‖ccr2 and the gray
area around rm1 and rm2 represents rm1‖rrm2.

Cc

Cr

Cfuse

cr 1

rm1

(a)

Cfuse

Cc

Cr

cr 1

rm1

(b)

Fig. 6: Attaching converters to core and remainder interfaces.
The two resources in 6a and 6b are equal. The rounded rectangle
surrounding Cc and cr1 represents cr2 and the gray area around
Cr and rm1 represents rm2.

FUSE(cr1‖ccr2, rm1‖rrm2). Then F = CF-PL � (F1 || F2),
where CF-PL is the wiring that groups the core and remainder
interfaces of F1 and F2 together.

Lemma 2. For F1 : F(qc, qr, rc, rr) and F2 : F(ic, ir, oc, or),
consider the converters Cc : C(ic, oc, qc, rc) and
Cr : C(ir, or, qr, rr). Then F2 = (Cc | Cr) � F1 if
cr2 = Cc �c cr1 and rm2 = Cr �r rm1, where �c attaches
a converter to the cfunc oracle of a core and �r does so for
the rfunc oracle of a remainder part.

Figure 6 depicts what is described in Lemma 2. In subfig-
ure 6a, the converters Cc and Cr attach to the core and remain-
der interfaces of the fused resource F1 = FUSE(cr1, rm1). In
subfigure 6b, the two converters Cc and Cr directly attach to
the core cr1 and remainder rm1, and the two resulting parts
are fused only thereafter using Cfuse; note that Cfuse sends the
events from the remainder rm1 directly to cr1, bypassing the
attached converters. Lemma 2 states that the two are equivalent.
So we can push converters of the core or remainder interfaces
through the fusing. In particular, we can set Cc or Cr to
the identity converter 1 if we have just one converter for the
remainder or core interface, respectively.

The next two lemmas determine if a converter’s simultaneous
attachment to core and remainder interfaces results in a new
fused resource. Using them, one may rewrite an arbitrary
converter C’s attachment to F2, i.e., C�F2, into (C�_)�F1,
where _ is filled with some wiring, and then (if possible) apply
the previous lemma. These lemmas stem from the one-way
information flow from remainder to core interfaces of fused
resources.

Lemma 3. For F1 : F(i+ qc, qr, o+ rc, rr), let I refer to the
left-most (w.l.o.g.) core interface. Assume that I’s o responses
do not depend on qc queries, and let cr2 and rm2 be the
records that result from removing I’s functionality from cr1
and adding it to rm1. Then (F2 : F(qc, i+ qr, rc, o+ rr)) =
CF-CR � F1, where CF-CR is the wiring converter that reorders
the interface positions accordingly.

Lemma 4. For F1 : F(qc, i+ qr, rc, o+ rr), let I refer to
the left-most (w.l.o.g.) remainder interface. Assume that rr re-
sponses do not depend on I’s i queries, and let rm2 and cr2 be
the records that result from removing I’s functionality from rm1

and adding it to cr1. Then (F2 : F(i+ qc, qr, o+ rc, rr)) =
CF-RC � F1, where CF-RC is the wiring converter that reorders
the interface positions accordingly.

While these lemmas refer to individual fused resources, they
naturally lift pointwise to FRTs. So these cases also preserve
the FRT structure. We write C{|cr |}r for the FRT that consists
of the fused resources C � {|cr |}(rm) for rm ∈ r . This
notation is analogous to Section II-C where πR represented
the attachment of the protocol π to the specification R.

For Lemma 1, the resulting FRT {|cr1‖ccr2|}r 1×r 2
is

indexed over r 1× r 2 = {rm1‖rrm2 | rs1 ∈ r 1∧rm2 ∈ r 2}.
This set does not include all remainder records that could be
fused to the parallel composition of the core records cr1 and
cr2. This is because the internal state of remainder records in
r 1 × r 2 can be split into two independent components, one
for each of the fixed remainder records rm1 and rm2; however
such a decomposition is not possible in general.

IV. SECURE CONSTRUCTIONS WITH FRTS

As explained in Section II-C, simulation-based security for
specifications R and S and a protocol π demands that there is
a simulator σ = zE, attaching a converter z to the adversary
interface E (short form of Eve), such that

∀R ∈ R. ∃S ∈ S. d(πR, σS) ≤ ε. (3)

Note that the same simulator σ must work for all R ∈ R.
Accordingly, a formal proof of simulation-based security must
also work for all R ∈ R. Hence, R must be expressed in such
a way that the properties relevant for the security proof are
explicit and the irrelevant details can be abstracted away. In
this section, we show that FRTs are well-suited for composable
simulation-based security: the core record captures the relevant
properties and the remainder record hides the details of the
party activation patterns.

First, we specialize (3) to the case where R and S are FRTs.
We only define the information-theoretic security here; the
computational security notion is defined analogously.

Definition 1 (Information-theoretic concrete security). Let
{|real|}rR

and {|ideal|}r I
be FRTs and let π be the protocol, i.e.,

a converter that attaches to the core user interface of {|real|}.
Then π{|real|} is an information-theoretically ε-secure realiza-
tion of the ideal specification {|ideal|} if there exist a simulator

8



σ that attaches to the adversary interface of core and remainder,
and a remainder embedding function f : rR⇒ r I such that

d(π � {|real|}(rm), σ � {|ideal|}(f(rm))) ≤ ε (4)

for all rm ∈ rR.

Note that the remainder embedding f in (4) skolemizes the
existential ∃S ∈ S in (3). This works thanks to the shape
of FRTs, namely both R and S are parametrized by the
remainder records.

We extend this notion to asymptotic security by introducing
a security parameter η and requiring that ε is negligible in
η. As is customary in CryptHOL [3], our formalization uses
Isabelle/HOL’s module system for that. Accordingly, we obtain
an asymptotic security statement for every concrete security
statement, essentially for free.

A. Proving a Protocol Secure

Proving a protocol π secure boils down to establishing a
bound on the advantage of a distinguisher. This is typically
done as a sequence of game transformations using the existing
tool set from CryptHOL [3], [14], similar to Lochbihler et al.’s
formalization of CC [16]. We now explain the common pattern
for FRTs.

Lochbihler et al. [16] have already formalized the dis-
tinguishability bound d(R,S) on two concrete resources R
and S using explicit distinguishers. Formally, a distinguisher
D : G(B, q, r) is a GPV that returns a Boolean B after having
interacted with a resource through queries q and responses r.
We write D�R : D(B) for the resulting probability distribution
over Booleans B. D’s advantage adv(D,R, S) of distinguishing
R and S is then given by

adv(D,R, S) =
∣∣Pr(D�R)[True]− Pr(D�S)[True]

∣∣,
where Prp[x] denotes the probability that the distribution
p assigns to the elementary event x. Then d(R,S) ≤ ε
iff adv(D,R,R′) ≤ ε for all distinguishers D. Here, D
ranges over all distinguishers in the information-theoretic
setting and over computationally-bounded distinguishers in
the computational setting.

The proof of (4) must work for all rm ∈ rR. It should
therefore concentrate on the cores real and ideal of the fused
resources {|real|}(rm) and {|ideal|}(f(rm)). The first step is
therefore to pretend that the fusing is part of the distinguisher.
For comparison, this step corresponds to applying the dummy
adversary lemma in UC.

On the real side π � {|real|}(rm), Lemma 2 shows that the
converter π can be attached directly to real rather than the fused
resource, because π attaches only to the core interface. This
transformed core real′ yields a transformed FRT {|real′|}rR

.
On the ideal side, however, we cannot directly use Lemma 2

to push the simulator σ through fuse because σ attaches to
the adversary core and remainder interfaces. This way, the
simulator can create a flow of information from the core part
ideal to the remainder part f(rm), which cannot happen in a
fused resource. We now exploit that the simulator must work for

all rm in the same way, in particular for the remainder record
that does not provide any interfaces at all. Accordingly, σ uses
only the interfaces that f adds on top of rm’s. By a similar
argument, f(rm) answers queries on these additional interfaces
without consulting rm itself. Moreover, f may translate poke
events from rm to poke events for the ideal core and this
translation is independent of rm’s state.5 So we can move
these additional interfaces to ideal by Lemma 4. Then σ only
attaches to core interfaces and can thus be integrated into the
core by Lemma 2. This new core ideal′ yields a new FRT
{|ideal′|}rR

.
In summary, it suffices to prove

adv(D, {|real′|}(rm), {|ideal′|}(rm)) ≤ ε

for all D. Now the fused resources {|real′|}(rm) and
{|ideal′|}(rm) use the same remainder record rm . Since the
core and remainder in a fused resource operate on separate
states, we can understand a core record as a resource of its
own, with the poke events as an additional interface that returns
only dummy responses �. Accordingly, we have

adv(D, {|real′|}(rm), {|ideal′|}(rm)) = adv(D′, real′, ideal′)

for some D′. This key proof step abstracts over the party
activation patterns: from now on, the security proof can focus
on the cores real′ and ideal′. Since these are like resources,
this proof can be approached as described in the literature [16].

B. Trace Equivalence Up-To

When proving indistinguishability between resources, we
frequently must transform the resource into a particular shape,
e.g., to prepare for the application of a reduction argument.
Lochbihler et al. [16] found that these steps can often
be justified by trace equivalence. They gave the following
bisimulation-style proof rule for establishing trace equivalence
of resources. We now provide a new up-to proof rule for trace
equivalence and explain how it simplifies such proofs.

Let dirac(x) be the one-point distribution on x, and run(p, a)
denote the weighted combination of running a resource from
the distribution p of resources with query a, and p�x condition
a distribution p over pairs a× b on the elementary event x : a.

Theorem 1 ( [16, Thm. 1]). Two resources R and S are trace
equivalent iff there exists a relation X between distributions
of resources such that

1) X relates dirac(R) to dirac(S); and
2) Whenever (p, q) ∈ X , then for all queries a, run(p, a)

and run(q, a) have the same marginal distribution on

5This argument can be made precise in the computational setting: The
skolemization f in (4) of the existential ∃S ∈ S in (3) ensures that f chooses
the remainder records in {|ideal|} uniformly. Uniformity can be captured by f
being relationally parametric in the queries and responses of rm . So we can
decompose f(rm) into two parts with disjoint state: (i) rm and (ii) additional
independent interfaces and a translator for poke events coming from rm .

In the information-theoretic setting, this uniformity argument does not apply
and the argument therefore need not hold in pathological cases. We have not
yet encountered such a case in practice though. We have not formalized the
above parametricity argument in Isabelle/HOL because CryptHOL uses HOL’s
function space, which does not have a computational interpretation.
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Fig. 7: Two trace-equivalent resources that respond with a fair
coin flip (H or T) if the second query is A.

responses and (run(p, a)�b, run(q, a)�b) ∈ X for each
possible response b to the query a.

The distributions in the relation X capture the so-far
unobserved probabilistic choices of the resources. For example,
suppose that one resource R eagerly samples a random value at
the start whereas the other resource S delays the probabilistic
choice until it is actually needed. So there is a time interval
when R has already sampled the value, but not S, i.e., the
chosen value has not yet been observed through the interactions
with R. During this time, the relation X conserves this
unobserved randomness in a distribution on S’s side. When S
finally samples the value and uses it to compute a response,
this conserved randomness is used in the proof to justify the
indistinguishability of the responses.

Figure 7 shows two such resources R (left) and S (right)
with initial states r1 and s1, respectively. The arrows denote
the transitions upon a query (A or B; before the dot) and the
responses (H , T , or ∗; after the dot) along with the probability
mass of the response; a probability mass of 1 is omitted. Both
resources accept the query sequences A,A,A and A,B,A
and B,A,A and B,B,A. When the second query is A, they
respond with a fair coin flip (H and T for heads and tails). All
other queries are merely acknowledged using the response ∗.
The resource S flips the coin lazily upon the second query
whereas R eagerly flips the coin upon the first query and
remembers the outcome in the states r2 and r′2. The two
resources are thus not bisimilar as no single state in R can
mimick s2’s behavior of responding to an A query with H or
L uniformly at random.

A suitable (and minimal) relation X for Thm. 1 can be
found as follows:

1) Initialize X to relate the one-point distributions dirac(r1)
and dirac(s1) for the initial states.

2) For each pair (p, q) ∈ X and every possible query a and
response b, add (run(p, a)�b, run(q, a)�b) to X . Repeat
this step until no new pairs are added to X .

Table I illustrates this process for the resources in Fig. 7,
where we use the initial states to refer to the resources.
The notation #i: a • b in the last column means that this
Row is added by Step 2 for query a and response b due

row r1 r2 r′2 r3 r′3 r4 r′4 s1 s2 s3 s′3 s4 justification

#1 1 1 initialization
#2 1⁄2 1⁄2 1 #1: A,B • ∗
#3 1 1 #2: A •H
#4 1 1 #2: A • T
#5 1⁄2 1⁄2 1 #2: B • ∗
#6 1 1 #3: A • ∗
#7 1 1 #4: A • ∗
#8 1⁄2 1⁄2 1 #5: A • ∗
#9 invalid query

#10 1 1 strengthening

TABLE I: The smallest relation X (rows #1 to #9 only) to
prove the resources in Fig. 7 trace-equivalent using Thm. 1.
Every row describes two subprobability distributions, one over
r1, . . . , r

′
4 and one over s1, . . . , s4, and X relates the former

to the latter. Empty cells contain the probability mass 0.

to X already containing the Row #i. Row #1 represents
the initialization Step 1. Row #2 originates from Row #1
through the queries A or B with response ∗. The uniform
distribution over r2 and r′2 in #2 conserves the eager coin
flip’s unobserved randomness, so that the next A query’s
marginal distribution on responses is uniform over H and
T , as required by Thm. 1(2). Conditioning on each response
of this query exposes the conserved randomness and leads to
the Rows #3 and #4. The query B in Row #2 produces only
a single response ∗, which does not expose the randomness.
Accordingly, #5 contains the uniform distribution over r3 and
r′3. In Rows #3 to #5, a query A yields the response ∗, which
adds Rows #6 to #8. The query B is invalid in states r3, r′3, s3,
and s′3, i.e., Rows #3 to #5; technically, such a query results
in a failure, which we represent by the empty subprobability
distribution in #9. No queries are valid in Rows #6 to #9 and
X already contains Row #9 for such failures. So we have
found a minimal relation X for Thm. 1, given by Rows #1
to #9. We discuss Row #10 later in this section.

As the B query in Row #2 shows, conserved randomness
may not be exposed in some interactions with a resource.
We frequently experienced such situations in our case studies,
especially when the adversary interferes or a failure event
happens. Yet, the closure condition on X in Thm. 1 requires
that X contains all reachable combinations of distributions
in such cases, even though we know that there is no point
in conserving the randomness in this branch of the proof
(Row #5). In practice, this adds considerable bloat to the
definition of X and to the trace equivalence proof because
condition (2) must hold for every pair of distributions in X ,
which may require even further pairs in X , and so on. In some
examples, these “unnecessary” cases significantly outnumbered
the relevant cases.

To counter this case explosion, we introduce a closure
operator JXK on X and generalize the above theorem to an up-
to proof rule. The resulting up-to trace equivalence proof rule
is similar to Sangiorgi’s bisimulation up-to rules [22], except
that our rule is about trace equivalence. The closure JXK of a
relation X of distributions is defined inductively as follows,
where p>>= f denotes the p-weighted combination of a family
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f of distributions, i.e., Pr(p>>=f)[x] =
∑
y Prp[y] · Prf(y)[x].

1) Whenever (p, q) ∈ X , then (p, q) ∈ JXK.
2) Let f , g be two families of distributions over the same

countable index set I and p be a distribution over I . If
(f(i), g(i)) ∈ JXK for all i in p’s support, then (p >>= f,
p >>= g) ∈ JXK.

We can now show the up-to version of the trace equivalence
proof rule. It differs from Thm. 1 only in the closure JXK
instead of X in Condition 2.

Theorem 2 (Trace equivalence up-to). Two resources R and
S are trace equivalent iff there exists a relation X between
distributions of resources such that

1) X relates dirac(R) to dirac(S).
2) Whenever (p, q) ∈ X , then for all queries a, run(p, a)

and run(q, a) have the same marginal distribution on
responses and (run(p, a)�b, run(q, a)�b) ∈ JXK for each
possible response b to the query a.

For a trace equivalence proof, this theorem can significantly
reduce the number of cases in the relation X . For the resources
in Fig. 7, Row #8 in Table I is a weighted combination of
Rows #6 and #7. Similarly, Row #9 is the 0-weight scaling of
any other Row and thus redundant too. So these two Rows are
redundant because the closure operator JXK adds them for free.

Moreover, the closure operator J_K allows us to simplify
some cases by strengthening them. In Table I, Row #5 requires
us to prove that the uniform distribution over resources r3
and r′3 is trace equivalent to s′3. Yet, using our knowledge
of the system, the stronger statement holds that the resources
r3 and r′3 each are trace equivalent to s′3, as expressed by
Rows #4 and #10. So we can deliberately add Row #10 to our
relation X . Row #5 then is a weighted combination of Rows #4
and #10 and therefore obsolete by the up-to closure. Row #10
simplifies the proof compared to Row #5 in two ways. First,
reasoning about the one-point distribution dirac(r3) is simpler
than about the uniform distribution over r3 and r′3. Second,
applying Step 2 to Row #10 directly yields Row #7 for query
A and response ∗. So Row #8 is never added to X in the first
place, i.e., no redundancy argument is needed.

In summary, Rows #1 to #4, #6, #7, and either #10 or #5
suffice for proving trace equivalence using Thm. 2. In this arti-
ficial example, the savings are modest because Rows #7 to #9
do not incur further pairs in X and no queries are valid in those
Rows. The savings are much higher in our case studies though.

C. Composability

We now show that our security definition 1 yields com-
posable security statements. In CC, a protocol π typically
uses multiple resources R1, . . . , Rn to create a resource
π � (R1‖ . . . ‖Rn), which should be hard to distinguish
from a simulated ideal resource σ � S. Similarly, another
protocol ρ may use S and possibly other resources to achieve
another ideal resource T . To abstract over the party activation
patterns of these resources, we consider FRTs rather than
individual resources. This ensures that the security proof for ρ

is independent of the patterns that we need for Ri during the
composition.

We first give composability theorems for concrete security
statements of individual resources and then use them to
establish composability for FRTs. As before, we focus on
the information-theoretic setting; the computational setting
is analogous by restricting the class of distinguishers to
computationally bounded ones.

Definition 2 (Concrete security for individual resources). A
resource R ε-securely realizes a resource S if there is a
converter σ that attaches to S’s adversary interfaces such that

adv(D,R, σ � S) ≤ ε

for all distinguishers D.

Clearly, if π{|real|}rR
ε-securely realizes the FRT {|ideal|}r I

(Def. 1), then π � {|real|}(rm) ε-securely realizes the fused
resource {|ideal|}(f(rm)) in the sense of Def. 2 for all rm ∈
rR as witnessed by the simulator σ.

Secure realization between individual instances is composi-
tional. The theorem below generalizes the asymptotic security
statements from [16] to the concrete setting.

Theorem 3 (Composability for individual resources).
1) Every resource R 0-securely realizes itself.
2) If R1 ε1-securely realizes S1 as witnessed by σ1 and R2

ε2-securely realizes S2 as witnessed by σ2, then R1‖R2

(ε1 + ε2)-securely realizes S1‖S2 as witnessed by σ1|σ2.
3) If R ε-securely realizes S as witnessed by σ and S ε′-

securely realizes T as witnessed by τ , then R (ε + ε′)-
securely realizes T as witnessed by τ � σ.

4) If R ε-securely realizes S as witnessed by σ and C is a
converter that attaches to R’s user interface, then C �R
ε-securely realizes C � S as witnessed by σ.

These composability results suffice to show that secure
realization between FRTs is also compositional. As a FRT
{|cr |}r is a family of fused resources {|cr |}(rm) for rm ∈ r ,
we obtain composability by lifting Thm. 3 pointwise to
specifications. Note that the simulator and the remainder
embeddings remain independent of the chosen fused resources,
as required by Def. 1.

Theorem 4 (Composability for FRTs).
1) The identity protocol 1 applied to a FRT {|cr |}r 0-securely

realizes the FRT {|cr |}r ′ for r ′ ⊇ r with the simulator
being the identity converter and the remainder embedding
being the identity function.

2) Let πi{|reali|}rRi

εi-securely realizes the FRT {|ideali|}r Ii

with simulator σi and remainder embedding fi for i = 1, 2.
The parallel composition

(π1 | π2){|real1‖creal2|}rR1
×rR2

(ε1 + ε2)-securely realizes

{|ideal1‖cideal2|}r I1
×r I2
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with simulator σ1|σ2 and remainder embedding
f(rm1, rm2) = (f1(rm1), f2(rm2)).

3) Let π{|real|}rR
ε-securely realize the FRT {|middle|}rM

with simulator σ and remainder embedding f and let
ρ{|middle|}r ′

M
ε′-securely realize {|ideal|}r I

with simula-
tor τ and remainder embedding g such that rM ⊆ r ′M .
Then, π{|real|}rR

(ε+ε′)-securely realizes {|ideal|}r I
with

simulator τ � σ and remainder embedding g ◦ f .
4) If π{|real|}rR

ε-securely realizes the FRT {|ideal|}r I
and

C is a converter that attaches to the core user interface,
then Cπ{|real|}rR

ε-securely realize C{|ideal|}r I
with the

same simulator and remainder embedding.

V. CASE STUDIES

We now use our framework to formalize the construction of
a secure channel using three authenticated channels. For brevity,
we only provide a high-level overview and use diagrams to
present the main steps of our formalization [15]. We start
by describing the proof’s main building blocks and steps in
Section V-A. We then delve into the details of each step in
Sections V-B to V-D.

We apply the following conventions in diagrams in Figure 8.
Fused resources are depicted on the right; we use subscripted
R as short names for them, e.g. Raut1 corresponds to the
FRT {|aut1|} that is instantiated with the remainder record
rm1 in Figure 1a. Converters’ attachment to fused Resources
is represented using arrows, where solid and dashed arrows
represent the attachment to core and remainder interfaces
respectively. Such an attachment results in new fused resources
that are presented using rounded rectangles with different colors
or borders. Fused resources or converters that are in the same
column are composed in parallel using ‖ or | respectively. The
left-most interfaces of every diagram belong to Eve, Alice,
Bob, and "remainder" from top to bottom. For simplicity, we
merge multiple remainder or adversary interfaces into a single
arrow and mark their meeting point using a black circle. The
interfaces are preserved among all the diagrams, so we name
them only in some of the subfigures.

A. Proof’s Building Blocks and High-level Overview

Our example construction combines two cryptographic
primitives in Figure 8a. First, the Diffie-Hellman key exchange
protocol with the converters CdhA and CdhB is used to construct
a key Rkey from two of the authenticated channels, i.e., Raut1
and Raut2 that are in the opposite directions. Second, we use the
one-time-pad in the converters Cenc and Cdec to construct a se-
cure channel Rsec from the key Rr1, which is the result of Diffie-
Hellman key exchange, and the last authenticated channel Raut3.

The aforementioned components behave as their name
suggests. The key and channel resources are defined as we have
explained in Section III-B3. The Cenc and Cdec converters are
stateless and each provide a single external interface for Alice
and Bob respectively. When the Cenc converter is queried with
a message m, it fetches a key k via its internal interface that
is attached to CdhA and forwards m⊕ k, where ⊕ is the xor
operator for bit-strings, to its internal interface that is connected

to the authenticated channel Raut3. The Cdec converter works
analogously to decrypt the ciphertext that it fetches from Raut3.

The CdhA and CdhB are more involved. We describe CdhA as
a representative of these converters since they are like duals.
CdhA is a stateful converter with two external interfaces. The
first external interface, which is placed at the top and redirected
to Rr1’s remainder part, stores a half-key x in its state upon
receiving a unit query � and puts gx into the authenticated
channel Raut1, where g is the cyclic group’s generator. The
second external interface, which is attached to Cdec, can only
get queried after the query to the first interface; otherwise
the failure mechanism is triggered. It fetches the half-key gx,
which is sent by the other party, from the authenticated channel
Raut2 and stores (gx)y in its state.

The proof has three central steps depicted in Fig. 8:
1) Corresponding to the dotted area in Figures 8e and 8f, we

show in Section V-B that the specification Rr2, i.e., the
fused resource that is presented using dashed borders and
results from attaching Cenc and Cdec converters to Rkey and
Raut3, securely realizes the secure channel specification
Rsec.

2) Corresponding to the steps from Figure 8a to 8e, we prove
in Section V-C that the specification Rr1 securely realizes
the key specification Rkey.

3) Justifying the steps from Figure 8a to 8f, the two con-
structions are combined using the composition theorems
in Section V-D.

B. Proving the One-time-pad Construction Secure

We begin with the secure realization of Rsec using Rr2. We
want to show that the dotted area in Figure 8e securely realizes
the dotted area in Figure 8f. We achieve this by proving the
trace equivalence of the aforementioned constructions, which
implies a 0-secure realization.

We prove that Rr2 is trace equivalent to the fused resource
resulting from attaching Csim2 to Rsec. The simulator Csim2

does not need to communicate with Rsec’s remainder part. Upon
receiving a look query on Eve3, it queries Evesec with a look
query to get the length of Rsec’s content and outputs a uniformly
sampled bit string of the same length; the output is stored in
Csim2’s state to answer future look queries. The remainder of
the adversary queries to Csim2, e.g. forward or drop queries, are
simply forwarded to Rsec. The remainder embedding Eotp keeps
track of the events that are received on Rkey and Raut3’s remain-
der interfaces to trigger the corresponding events on Rsec’s core.

C. Proving the Diffie-Hellman Construction Secure

The secure realization of Rkey using Rr1 requires a proof
with three major steps. These steps essentially capture the
reduction to the Decisional Diffie-Hellman (DDH) game that
is represented in Figures 8a to 8e.

First, going from Figure 8a to Figure 8b, we make our key-
exchange protocol lazy. That is, we prove that Rr1 is trace
equivalent to a fused resource Rlzr that postpones the half-key
samplings until one of the parties requires the key. Note that the
aforementioned fused resources provide the same interfaces to
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Fig. 8: Composing two security statements.

the outside world. We call CdhA and CdhB’s top interface ActkA
and ActkB respectively; furthermore, we call Raut1 and Raut2’s
adversary interfaces Eve1 and Eve2. In the fused resource Rr1,
the Diffie-Hellman half-keys x and y are sampled separately
upon the queries to ActkA and ActkB respectively. However, Rlzr
samples the pair (x, y) when it receives a query on any of ActkA,
ActkB, Eve1, or Eve2. This proof step utilizes Lemma 2 to
reason about the attachment of Diffie-Hellman converters to the
authenticated channels and Lemma 3 to move the protocol ini-
tiation queries, i.e., ActkA and ActkB, to Rlzr’s remainder part.

Second, corresponding to the backwards steps from Figure 8e
to Figure 8c, we apply a similar procedure to make the ideal
specification Rkey lazy. That is, Ri1 is trace equivalent to a FRT
Rlzi that samples the outputs of the adversary and user interfaces
at the same time. Therefore, instead of sampling x, y, and z
separately upon the queries to ActkA, ActkB, and either of Eve1

or Eve2 respectively, Rlzi samples the triple (x, y, z) whenever
any of the aforementioned interfaces are queried. Furthermore,
Rlzi resembles the combined behavior of Csim1 and Edh using
the remainder embedding E1: it keeps track of Eve1 and Eve2’s
forward queries and the events received on the remainder
interfaces, e.g. ActkA and ActkB, to trigger appropriate events
on its core part. The proof step from Figure 8e to Figure 8d
uses a corollary of Lemma 4 to move Edh to Rmvk’s core part;
and the proof step to Figure 8c uses Lemma 2 to reason about
the attachment of the resulting specification to Csim1. Note
that Csim1 is not connected to Rkey’s core adversary interface
that answers all queries with �. We use an unconnected arrow
to signify that Csim1’s behavior does not depend on the input
on that interface.

Third, corresponding to the step between Figures 8b and
8c, we prove an arbitrary distinguisher D’s advantage in
distinguishing Rlzr and Rlzi is bounded by D’s advantage in
the decisional Diffie-Hellman game, in short ddh. This proof
step is based on a reduction in which Rlzr and Rlzi query
an external oracle to receive the triples (gx, gy, g(x∗y)) and
(gx, gy, gz) respectively, which are used to answer all the user
and adversary queries.

D. Putting It All Together

We use Theorem 4 to compose the security statements in
the previous sections. This enables us to replace the dotted
areas in their surrounding context in Figures 8e and 8f.

In summary, we obtain the following security results. Let ε
denote the distinguishing advantage for the decisional Diffie-
Hellman game and consider the protocol π = 1|((Cenc�CdhA)|
(Cdec�CdhB)). Then, π{|(aut1‖caut2)‖caut3|} ε-securely real-
izes the specification {|sec|} with the simulator (Csim1 |Csim2) |1
and the remainder embedding Eotp(Edh(rm1‖rrm2)‖rrm3).

As is standard, the above results depend on the correctness of
the Isabelle infrastructure. Namely the correctness of Isabelle’s
small kernel and the ML compiler that produces its binary.
Furthermore, one should examine all the definitions to ensure
they match with the security claim.

VI. DISCUSSION AND RELATED WORK

In this section, we discuss how our formalization relates to
the existing approaches to composable security arguments and
compare it with relevant formalization results.

Our result is an instance of CC. As mentioned in Section II-C,
CC is a theory that enables the modular reasoning about
system classes, i.e., the shared behavior of similar systems.
FRTs introduce a formal approach to abstract over the system
communication patterns in a family of systems that exhibit
similar behavior.

Our work is the first that formulates requirements for system
communication modeling and provides a rigorous solution as an
instance of CC. In Section III-A, we explained the importance
of such a solution for the reusability of security proofs. The pen-
and-paper presentations of existing CC results [12], [17], [18],
[19] do not necessitate providing details on the communication
model and, by eliding them, they must be understood as just a
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high-level overview of security proofs and their composition.
However, in our approach, security proofs are mathematical
objects and leaving out any details would invalidate them.

In comparison to the simulation-based frameworks [1], [7],
[11], [13], we consider a less intricate type of system communi-
cation. Nevertheless, there are scenarios in which our approach
excels. In simulation-based frameworks, the adversary Turing
machine controls the communication between all protocol com-
ponents. The composition theorems in these frameworks fix the
corruption model but consider arbitrary adversary machines be-
sides that. This resembles the role that the FRTs’ remainder part
plays in our definition of secure constructions and their compo-
sition. We provide composition theorems that consider arbitrary
remainders; however, we only consider a one-way information
flow from the remainder to the core part, which corresponds to
the non-adversary components in the simulation-based frame-
works. But note that we allow multiple remainders in our model,
e.g. when two FRTs are composed in parallel. This is convenient
for modeling scenarios where parties are not corrupted by the
same adversary, which would be challenging in simulation-
based frameworks since they use a central adversary machine.

We build on an existing formalization of CC in
CryptHOL [16], which we refer to as CCHOL in this section.
We reuse large parts of CCHOL’s formalization of resources,
converters, distinguishers, and various composition operators
that were briefly recapped in the paper. Overall, our formaliza-
tion required 9.7K lines of lemmas and definitions, where the
case study constitutes 3.5k lines and the remainder form a li-
brary of reusable resource definitions and proof rules that can be
used for modelling and reasoning about other security protocols.

We compare our result with CCHOL in four respects. First,
the limitations mentioned in Section III-A apply to CCHOL
proofs since it focuses on individual resources rather than
specifications. For example, CCHOL’s one-time-pad case study
cannot be composed with a Diffie-Hellman key exchange
like in Section V because CCHOL’s notion of ideal key has
a fixed communication pattern and does not allow for the
activations that are needed to exchange the half-keys. Second,
trace-equivalence proofs in our result are shorter and less
complicated than those in CCHOL using the up-to proof rule for
trace equivalence (Thm. 2). Third, CCHOL only comes with an
asymptotic security definition whereas we provide both concrete
and asymptotic statements and composition theorems. Finally,
CCHOL’s asymptotic security notion is too strong: in addition
to d(π �R, σ � S) being negligible in the security parameter,
CCHOL requires a notion of functional correctness, which
guarantees that the real resource provides the distinguisher
with at least the same capabilities as the ideal resource. This
hinders composability even further. For example, a secure
channel does not securely realize an authenticated channel
because the adversary cannot learn the contents of the channel.
So one cannot use a secure channel when only an authenticated
channel is needed.

There are few results on formalizing simulation-based proofs.
Most of them [5], [10] focus on individual (or classes of)
protocols and hence they do not offer composition theorems

that can be applied in arbitrary context. EasyUC [8], which is
the most similar to our work, does support the composition of
security proofs. It uses EasyCrypt [2] to formalize a simplified
version of the Universal Composability framework with a
restricted adversary machine. Such simplifications are essential
since the formalization of Universal Composability in its most
general form is challenging, even with a state-of-the-art formal-
methods tool like EasyCrypt.

We compare EasyUC with our result in two respects. First,
EasyUC’s restriction on the adversary machine affects the
reusability of security proofs, as explained in Section III-A,
since it leads to a fixed communication pattern among the non-
adversary machines. Second, formalizing security statements
in EasyUC is more difficult. This stems from CC’s abstract
approach to cryptography, where we do not need to delve
into concrete details that are intrinsic part of every security
statement in UC-style frameworks. For instance, the EasyUC
formalization that constructs a secure channel using Diffie-
Hellman key exchange and a one-time-pad constitutes 18K
lines of proofs and definitions, where 12K lines are devoted
to composing the concrete security statement alone.

VII. CONCLUSION AND FUTURE WORK

We have presented an abstract approach to communication
modeling in Constructive Cryptography that is suitable for
mechanized verification. We highlight the importance of system
communication patterns on the reusability of security proofs
and offer a rigorous approach that allows protocol designers
to abstractly capture it. We explain the limitations of existing
formalized composability results, which do not model system
communications to the full extent. By lifting such limitations,
we support the modular formalization of a wider range of
scenarios than existing formal-methods tools support. Carrying
out further case studies and enhancing automation support is
left as future work.
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APPENDIX

A. Guide to the Source Theory Files

All the definitions and lemmas in this paper are formalized
and verified in the Isabelle/HOL proof assistant. In what
follows, we provide a guide for the reader to navigate the
source theories, which are available online [15].

The root directory consists of multiple theory files, the
Specifications folder that contains the ideal specifica-
tions for keys and channels, and the Constructions folder
that stores our case study’s formalization. The theory files

in the root directory contain the lemmas and definitions that
correspond to their names:
• Fold_Spmf.thy and Goodies.thy formalize the

probabilistic fold function and a series of auxiliary lemmas
that are used in the other theory files.

• More_CC.thy and State_Isomorphism.thy for-
malize our extensions to the theory of resources and
converters. The lemmas and definitions in this theory
file are not specific to fused resources only.

• Observe_Failure.thy formalizes the indistinguisha-
bility of resources when a bottom element ⊥ is added to
every distribution’s sample space to model failures.

• Fused_Resource.thy formalizes fused resources,
their trace equivalence, and various operators on core
and remainder records. In particular, the proposition
trace’_eq_simI_upto proves the Theorem 2 for
fused resources.

• Construction_Utility.thy formalizes common
building blocks for defining compound fused resources. In
particular, the propositions parallel_oracle_fuse
and attach_parallel_fuse’ prove the Lemmas 1
and 2; and the propositions fuse_ishift_core_to_-
rest and move_simulator_interface prove the
Lemmas 3 and 4 respectively.

• Concrete_Security.thy formalizes the notion of
information-theoretic concrete security. In particular,
the propositions constructive_security_-
obsf_trivial, parallel_constructive_-
security_obsf, constructive_security_-
obsf_composability, and constructive_-
security_obsf_lifting_usr prove the four
claims of Theorem 3.

• Asymptotic_Security.thy extends the above to
asymptotic notion of security.

The Specifications folder provides the ideal specifi-
cations for keys and channels. We explained the details of
Key.thy in Section III-B3.

Our case study has three main theory files, which are stored
in the folder Constructions.
• One_Time_Pad.thy formalizes the construction of a

secure channel from a key and an authenticated channel
using one-time-pad encryption.

• Diffie_Hellman.thy constitutes the formal con-
struction of a key from two authenticated channels using
the Diffie-Hellman key exchange.

• DH_OTP.thy stores the final lemma that states the
security of the aforementioned constructions’ composition.

B. Notation Index

In Table II, we provide a list of all symbols that are used in
the paper. For each symbol, we provide a short explanation and
a reference to the section in which that symbol is introduced
for the first time.
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Intro-
Symbol duced Meaning
e : t III-B1 Expression e has type t.
a, b, c, . . . III-B1 Type variables.
e III-B2 Type variable for events.
i III-C1 Type variable for inputs.
o III-C1 Type variable for outputs.
q III-B1 Type variable for queries.
r III-B1 Type variable for responses.
s, t III-B1 Type variable for states.
A,B,C, . . . III-B1 Type constructors.
⇒,×,+ III-B1 Infix type constructors for function space, pairs, and disjoint union.
C(i, o, q, r) III-C1 Type of converters that take inputs of type i and produce outputs of type o by interacting with an oracle through queries of

type q and responses of type r.
D(a) III-B1 Type of probability distributions over elementary events of type a.
G(a, q, r) III-C1 Type of generative probabilistic values that produce answers of type a by interacting with an oracle through queries of type q

and responses of type r.
R(q, r) III-B1 Type of resources that accepts queries of type q and produces responses of type r.
R III-B1 A resource.
R,S II-C A specification, i.e., a set of resources.
C III-C1 A converter.
Cfuse III-C2 The fuse function as a converter.
D IV-A A distinguisher.
F III-B2 A fused resource.
tr III-B1 A probabilistic transition function, i.e., an oracle.
cr III-C2 Short name for FRTs’ core.
rm III-C2 Short name for FRTs’ remainder.
fuse, FUSE III-B2 The fuse function on core-remainder parts and on FRTs.
{|name|} III-B2 An FRT defined in terms of name core.
c III-B2 Place holder for cores’ type.
r III-B2 Place holder for remainder’s type.
+O III-B1 CryptHOL’s plus-oracle operator.
‖ III-C1 Parallel composition of resources.
�, | III-C1 Sequential and parallel composition of converters.
� III-C1 Attaching a converter to a resource.
� IV-A Connecting a distinguisher to a resource.
�c, ‖c III-C2 Attachment and parallel composition of cores.
�r, ‖r III-C2 Attachment and parallel composition of remainders.
adv(D,R1, R2) IV-B Advantage of the distinguisher D to distinguish between R1 and R2.
dirac(x) IV-B One-point distribution on x.
>>= IV-B Weighted combination of a family of probability distributions.
run(p, a) IV-B The weighted combination of running a resource from the distribution p of resources with query a.
p�x IV-B Conditioning of the distribution p over pairs a× b on the elementary event x : a.
X IV-B Relation between subdistributions of resource for the trace equivalence proof rule.
J_K IV-B Up-to closure operator for the trace equivalence up-to proof rule.
comm III-B1 Isabelle/HOL specific commands.
NAME III-B1 Definitions like RES, CNV, and FUSE.
name III-B3 Artificial entities like interface names.

TABLE II: Notation index.
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