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Abstract. This paper introduces a new adversary model for Byzantine
agreement and broadcast among a set P of players in which the adversary
may perform two different types of player corruption: active (Byzantine)
corruption and fail-corruption (crash). As a strict generalization of the
results of Garay and Perry, who proved tight bounds on the maximal
number of actively and fail-corrupted players, the adversary’s capability
is characterized by a set Z of pairs (A, F) of subsets of P where the
adversary may select an arbitrary such pair (4;, F;) from Z and corrupt
the players in A; actively and fail-corrupt the players in F;.

For this model we prove that the exact condition on Z for which perfectly
secure agreement and broadcast are achievable is that for no three pairs
(A;, Fy), (Aj,Fj), and (Ag, F) in Z we have A; U AjUALU (F;n F; N
F}) = P. Achievability is demonstrated by efficient protocols. Moreover,
for a slightly stronger condition on Z, which covers the previous mixed
(active and fail-corruption) threshold condition and the previous purely-
active non-threshold condition, we demonstrate agreement and broadcast
protocols that are substantially more efficient than all previous protocols
for these two settings.

Key words. Broadcast, Byzantine agreement, unconditional security,
active adversary, fail-corruption.

1 Introduction

Byzantine agreement and broadcast are two closely related fundamental prob-
lems in distributed systems and cryptography, in particular in secure multi-party
computation. In this paper we consider Byzantine agreement (and broadcast)
protocols among a set of players in a standard model with a complete syn-
chronous network of pairwise authenticated channels among the players.

1.1 Player Corruption

We demand the protocols to be perfectly secure (i.e. unconditionally secure with
no probability of error) against an adversary that may corrupt players in two
different ways:

* Published in Distributed Computing — DISC ’99, Lecture Notes in Computer Sci-
ence, vol. 1693, Springer. Research supported by the Swiss National Science Foun-
dation (SNF), SPP project no. 5003-045293.



Active corruption: The adversary takes full control over the corrupted players
and makes them deviate from the protocol in an arbitrary way.

Fail-corruption: At an arbitrary time during the protocol, chosen by the ad-
versary, the communication from and to the corrupted player is stopped.

The players that are fail-corrupted or uncorrupted are called non-malicious
since they do not deviate from the protocol as long as they participate. A player
is called correct if he is non-malicious and has not failed yet at the described
point of time. Thus correctness describes a temporal property of the players and
only a player that is correct at the end of the protocol is actually uncorrupted.

For a fail-corrupted player to fail during some communication round means
that he is correct up to this point and, during this round, stops communicating
with at least one correct player.! The player sends no messages during any
subsequent round of the protocol.

1.2 Byzantine Agreement and Broadcast

A Byzantine agreement protocol is defined for a set of n players with every player
initially holding an input value and finally deciding on an output value such that
the following conditions are satisfied:

Agreement: All uncorrupted players decide on the same output value.

Validity: If all initially correct players hold the same input value v then all
uncorrupted players decide on v.

Termination: For all non-malicious players the protocol terminates after a fi-
nite number of rounds.

In contrast to agreement, broadcast is defined with respect to one particular
player called the dealer who initially inputs a value. Again, every player decides
on some output value. For broadcast the former agreement and termination
conditions are still required. The validity condition transforms into

Validity : If the dealer is uncorrupted then all uncorrupted players decide on
the dealer’s input value.

Note that it suffices to focus on bit-agreement (or bit-broadcast) protocols
where the domain of values is restricted to {0,1} since protocols for any fi-
nite domain with cardinality m can be easily obtained by applying [logm] bit-
protocols in parallel. This does not change the round complexity and increases
the communication complexity only by a factor [logm].

1.3 Previous Work

In the threshold model with an active adversary, Lamport, Shostak and
Pease [PSL80,LSP82] proved that Byzantine agreement is achievable if and only

! Our model includes that in the round during which a player fails, some correct players
may still receive a valid message by this player whereas others may not. Hence the
correct players’ views about which players have failed can be inconsistent, and this
must be taken into account in the design and analysis of the protocols.



if less than one third of the players are actively corrupted (¢ < n/3). For this
model numerous protocols with optimal resilience have been proposed in the lit-
erature [DFF+82,BDDS87, TPS87,FM88,BGP89,CW92,GMI3], which all have
communication and computation complexities polynomial in the number n of
players. In the threshold model with an adversary that may only perform fail-
corruptions, Lamport and Fischer [LF82] proved that agreement is achievable
for any t < n.

These results have been unified in [GP92] for the threshold model where an
adversary is considered who may corrupt arbitrary ¢ players, but at most b < ¢
of them actively (the rest is only fail-corrupted). They proved that t+2b < n is a
tight bound on agreement to be achievable and proposed protocols with optimal
resilience and polynomial complexities.

In the more general context of secure multi-party computation, Hirt and Mau-
rer [HM97] introduced the concept of a general adversary that is characterized
by an adversary structure which is a set of subsets of the player set. The ad-
versary may corrupt the players of exactly one of these subsets. For the same
model, with respect to an active adversary, Fitzi and Maurer [FM98] proposed
optimally resilient broadcast protocols with computation complexity polynomial
in the size of the adversary structure and communication complexity polynomial
in the number n of players.

1.4 Contributions

This paper unifies the models of [GP92] and [FM98] to the new model with a
general adversary that may simultaneously corrupt some players actively and
some other players to fail. For this model a tight condition on the adversary
structure is proven for Byzantine agreement to be achievable. Efficient protocols
are proposed for every structure that meets this condition. This condition for
example guarantees that, quite surprisingly, agreement is possible among four
players pi, p2, p3, and ps if any player p; is actively corrupted and all the
remaining players except p((i+1) mod 4) are fail-corrupted.

Furthermore we present a protocol that, when restricting this model to the
special cases of [GP92] and [FM98], is even more efficient than any protocol
previously known for these special cases.

Although all these results (tight condition and protocols) are only presented
for agreement they immediately hold for broadcast as well since, with only minor
modifications, a broadcast protocol can be easily obtained from any agreement
protocol and vice versa. Our proposed agreement protocols can even be turned
into a broadcast protocol with no loss of efficiency.

1.5 Definitions and Notation

The player setis denoted by P = {p1,...,p,} and its cardinality by n = |P|. The
adversary is defined by a general adversary structure Z which is a set of classes
(A, F) with A C P and F C P where the players of exactly one class (A4, F') may
be corrupted — actively corrupted for the players in A and corrupted to fail for
the players in F. Without loss of generality we demand A N F' = () since active
corruption is strictly more general than fail-corruption.



A class (A', F') is contained in a class (A, F) (written (A', F') C (A, F)) if
A" CAand F' C AUF, and a class (A", F') is strictly containedin a class (A, F)
if it is contained, and A"’ C A or F' C F (written (4', F') C (A4, F)).

The adversary structure Z is defined to be monotone with respect to inclusion,
ie.,

(A,F) € ZA (A F') C (A, F) = (A, F') € Z.

The basis Z of an adversary structure Z is the set of all maximal elements of Z
Z={(AF)ecZ| AAFYeZ:(AF)C (A F)}.

A set A is called an active set of an adversary structure Z if (4,0) € Z. A set
F is called a fail set of Z if (), F') € Z. The set of all active sets of an adversary
structure Z is denoted by Z4.

The following predicates Q (P, £) and R(P, Z) on adversary structures Z with
respect to a player set P will be needed later in this paper:

Q(P,Z) = V(Al,Fl),(AQ,FQ),(A3,F3) e Z:AUA, UA3 U Fi ;é P.

R(P,Z) = \V/(Al,Fl), (AQ,FQ), (A3,F3) €Z:A1UA, UA3U(F1 NFy ﬁF3) ;é P.

Note that Q(P, Z) implies R(P, Z) and that, because of symmetry, Q(P, Z) is
equivalent to R(P, Z) in the threshold case.

2 Necessary Condition

Given the tight bound of t4-2b < n for the threshold model? in [GP92] it might be
obvious to conclude that Q(P, Z) is a necessary condition for the general model,
i.e., for any three classes in Z the union of all active sets with one of the fail sets
must not cover the full player set P. However, as a consequence of the (generally)
asymmetric properties of general adversary structures, agreement can still be
achievable when this bound is violated since the failure of one particular player
may rule out certain classes of the structure to be selected by the adversary.
Thus only a weaker condition can be proven to be necessary which we prove to
be tight in the next section: R(P, Z), i.e., for any three classes in Z the union of
all active sets with the intersection of all fail sets must not cover the full player
set P.

Theorem 1. For a set P of n players and any adversary structure Z, R(P, Z)
is necessary for Byzantine agreement to be achievable.

Proof. For the sake of contradiction suppose that there is an agreement protocol
for some adversary structure Z violating R(P, Z). Hence there are three classes
(Al,Fl), (AQ,FQ), (A3,F3) € Z such that A; U A U A3 U (F1 NE N F3) = P.
Due to the monotonicity of the adversary structure we can assume without loss
of generality that F; = F, = F3 =: F and that the sets A;, A5, A3 and F are
pairwise disjoint. One possible strategy for the adversary is to make all players

2 i.e. three times the number of actively corrupted plus once the number of fail-
corrupted players must be less than n



in F fail at the beginning of the protocol. Hence this protocol can be easily
modified into a secure agreement protocol for the player set P’ = P\ F with
respect to Z restricted to the players in P’ since by assumption this protocol is
correct even if no player in F ever sends any message. Since A; U Ay U A3 = P’
this contradicts the result of [PSL80,HM97] that agreement is impossible in this
case. O

3 Optimally Resilient Protocols

This section describes protocols for any player set P and adversary structure Z
satisfying R(P, Z).

3.1 Protocol Elements and Code Notation

The protocols are constructed basically along the lines of the protocols of [GP92]
which are based on several subprotocols. The main idea of these subprotocols is
that every player enters them with his preferred value he inclines to decide on
and exits them with an updated (potentially different) preferred value such that
the following two conditions are satisfied

Persistence: If all correct players enter the subprotocol with the same pre-
ferred value then, after the execution of the subprotocol, all correct players®
still prefer this value. In other words, the subprotocol has no effect when
agreement had previously been achieved.

Consistence: In any case (also if the correct players enter the subprotocol with
distinct preferred values) the values preferred by the correct players at the
end of the subprotocol are consistent (in a way to be defined separately for
each particular subprotocol).

The effect of such subprotocols can be interpreted as getting the correct play-
ers closer to a state of agreement whereas, once achieved, agreement cannot be
reversed anymore by the corrupted players. In this paper, often a weaker form of
consistence is used that depends on whether some fail-corrupted (i.e. non-actively
corrupted) player fails during the execution of the according subprotocol.

Conditional consistence: Consistence provided that no fail-corrupted player
fails during the execution of the subprotocol in consideration.

All pseudo code descriptions of protocols are stated with respect to the lo-
cal view of one particular player. The complete protocols consist of all players
executing their local codes in parallel. Variables that have no subscript (e.g. v)
are stated with respect to an arbitrary player and variables with a subscript p
(e.g. vp) denote the corresponding variable of the particular player p. For every
player p, two global? variables are used throughout all subprotocols, v, and L,.
v, denotes the preferred value by player p. L, is a set in which player p collects
all players that he has detected to be corrupted (active or fail). L is initialized
to the empty set and (for a correct player) will never contain any correct player.

% i.e. all players who are still correct — remember the temporal definition of correct-
ness.
4 with respect to p’s scope



3.2 Value Unlification

This section describes the crucial subprotocol of the agreement protocol:
MakeUnique. It satisfies the persistence property according to Section 3.1 and
conditional consistence in a way that at the end no two correct players prefer
distinct values in {0, 1} if no fail-corrupted player fails during the execution of
the subprotocol. In order to achieve this the original bit domain is extended by
an invalidity value 2. However, the preferred value v is still required to be in
{0,1} before the execution of MakeUnique.

MakeUnique:
1. SendToAll(w); // i.e. send v to every other player
L:=LU {r € P | no value received from r or value outside {0, 1} };
Cc° = {TEP | r sent 0}\L;
ct :Z{TEP | rsentl}\L;
if (C',L) € Z then v:=0
elseif (C°,L) € Z then v := 1
else v :=2
fi;

e A

If, at the end of MakeUnique, a player p holds some value v, € {0,1} we say
that player p accepts value v,. On the other hand v, = 2 means that player p
rejects any value from {0,1}. More precisely, a correct player accepts a value
v € {0,1} exactly if, according to his view, agreement on v could have been
achieved before the execution of MakeUnique. For v € {0,1} we define T as
v:=1-—w.

Lemma 1 (Persistence of MakeUnique). If all correct players initially hold
the same value v € {0,1}, then after the execution of MakeUnique every correct
player p holds the value v, = v.

Proof. Let p be a player who is correct at the end of MakeUnique. Since all
correct players initially hold the same value v every such player either sends
this value to p or fails during this communication round. Hence v will only be
received from an actively corrupted player, and (Cg, L,) € Z holds. Hence also
(Cp,Ly) ¢ Z must hold since otherwise R(P, Z) would be violated (because

P=CruCyuU(L,NLy)). Thus v, = v after the execution of MakeUnique. 0O

Lemma 2 (Conditional Consistence of MakeUnique). If after the execution
of MakeUnique, two correct players p and q hold values v, # 2 and v, # 2,
respectively, then either v, = v, or at least one fail-corrupted player failed during
the execution of MakeUnique.

Proof. Suppose for the sake of contradiction that no fail-corrupted player fails
between sending his value to the players p and ¢ and that v, = v and v, =7
for some v € {0,1} and hence (C¥,L,) € Z and (CY,L,) € Z. We have P =

CYUCY UL, and hence P can be decomposed as

Cru(CyNCHUCI\CHU (Lp\ Lg) U(Lp N Ly) = P. (1)
Hr ~ ~ o
coy =:A



Since no fail-corrupted player failed during the execution of this protocol all
players in A = (C) \ C7) U (L, \ L;) must be actively corrupted and hence

(A,L, N Ly) € Z must hold. Thus we have (C},L,) € Z, (C¥,L,) € Z and
(A,L,NLy) € Z, and by Equation (1) C¥ UC? UAU (L, N L) = P, which
contradicts R(P, Z). o

3.3 Agreement Protocol

The agreement protocol consists of a loop over a sequence of statements where
one single iteration of the loop can be interpreted in the following way:

The players run the MakeUnique protocol in order to guarantee that no two
correct players continue with distinct values in {0,1}. In the next round all
players report their (unified) values to every other player. Then every player
accepts a value v € {0, 1} if, according to his view, at least one correct player re-
ported on v — otherwise he rejects by setting v := 2. Finally some distinguished
player, called the king, reports on his particular value v which is adopted ex-
actly by those players who know that at least one correct player rejected after
MakeUnique (which implies that agreement did not hold before this particular
iteration of the loop).

Agreement (VAR v) (Agreement Protocol 1):
1. L:=0;
2. for i :=1 to [logn]n do
3 k:=(((—1) mod n)+1; // Assign king
4 MakeUnique; // Communication Phase 1
5. SendToAll (v); // Communication Phase 2
6. L:=LU {7" epP | no value received from r or value outside {0, 1,2} };
7 D':={reP|rsenti}\L forie{0,1,2}
8 if (D°,L) ¢ Z then v:=0

9. elseif (D', L) ¢ Z then v:=1
10. else v :=2
11. fi;
12.  pi (only): SendToAll (v); // Communication Phase 3
13. w := value received by pr; // if no value is received then set w := 0
14.  if (D L) ¢ Z then v := min(1,w) fi;
15. od;

Every single iteration of the for-loop can be seen as a subprotocol with per-
sistence and conditional consistence properties according to Section 3.1. These
properties are stated in the next lemmas.

Lemma 3 (Conditional Consistence). At the end of any iteration of the
for-loop with a correct king py during which no fail-corrupted player fails, every
correct player p holds the same value v, = v.

Proof. Consider some k" iteration of the for-loop with pj being correct and
during which no fail-corrupted player fails. If all correct players replace their
values v by min(1,w), we are done since all correct players receive the same
value w from player py,.



Suppose now that at least one correct player p ignores the value sent by the
king since (Dz, L,) € Z holds. Hence v, # 2 since otherwise, according to the
Lines 8 to 10 of the protocol, also (D9, L,) € Z and (D}, L,) € Z would hold in
contradiction to R(P, Z). Let v := v,. (D), L,) ¢ Z (v # 2 and Lines 8 to 10)
implies that at least one correct player sent v during Communication Phase 2
and, due to the (conditional) consistence of MakeUnique, no correct player sent
o during the same phase. Hence, for every correct player ¢, Dg can only contain

actively corrupted players and hence (Dg, L,) € Z holds.
Suppose, for the sake of contradiction, that there is a correct player ¢ who
enters Communication Phase 3 with a value v, # v, ie., (Dy,L,) € Z. P =

DY U Dy U D2 U Ly can be decomposed as

Dy U (Dy\ Dy)U(DynDY)UD2U (L, \ Ly) U(L, N Ly) = P.
~ ~ ~ ~ W—/
=:Aq gD}I) =:As

All players in A = A; U A, are actively corrupted since they sent either ¥ or
distinct values to the players p and ¢ or failed® in p’s view but not in ¢’s view.
Hence (4,L, N L;) € Z which leads to a contradiction with condition R(P, Z)
since together with (D2, L,) € Z and (DY, L,) € Z we have D;UDYU AU (L, N
L,)=P.

! Thus every correct player ¢ enters Communication Phase 3 with (Dy, Ly) ¢ Z
and hence v, = v = v,,. Since especially the king py, is correct every player who
accepts pi’s value accepts vy, = v = vp. O

Lemma 4 (Persistence). If at the beginning of any iteration of the for-loop
every correct player p holds the same value v, = v # 2, then every correct player
holds v at the end of the iteration even if some fail-corrupted players fail.

Proof. Due to the persistence property of MakeUnique (Lemma 1) every correct
player p holds v, = v after MakeUnique and hence, after SendToAll, (Dg, L,) €
Z and (D}, L,) € Z. Because of the condition R(P, Z) also (DY, L,) ¢ Z must
hold. Thus every correct player p ignores the king in Communication Phase 3
and holds value v, = v at the end of the loop. a

The following theorem together with Theorem 1 shows that the condition
R(P, Z) is tight:

Theorem 2. For a set P of n players and an adversary structure Z perfectly
secure Byzantine agreement is achievable if R(P, Z2) is satisfied. For every struc-
ture Z satisfying R(P, Z) there is such a protocol with communication complexity
polynomial in n and computation complezity polynomial in |Z|.%

Proof. We first show by contradiction that, in Agreement Protocol 1, all uncor-
rupted players finally decide on the same value. Thus assume that two uncor-
rupted players decide on distinct values. Then, according to Lemma 3, there was

® note that we suppose no fail-corrupted player to fail during this loop

6 Under the natural assumption that there exists an algorithm polynomial in n to
decide whether a given class (A, F') is an element of the adversary structure Z, the
computation complexity is also polynomial in n.



no iteration of the for-loop with a correct king during which no fail-corrupted
player failed. Let C(0) = P and C(i) denote the set of players that are still cor-
rect at the end of iteration 7 of the for-loop, and let ¢(0) = n and ¢(i) = |C(i)].
We argue that during any n sequential iterations i = j,...,7 +n — 1 at least
¢(j — 1)/2 fail-corrupted players failed. The failure of one single fail-corrupted
player can prevent agreement for at most two iterations with a king from the set
C(j — 1) — one correct king’s iteration and his own one”. Hence at least half of
the players in C'(j — 1) must have failed. Hence, for any [ with 0 < I < [logn],
c(ln) < e((I — 1)n)/2 and c(In) < ¢(0)/2!, i.e. for [ = [logn] (after the last
iteration of the for-loop) we have

¢(Mlognn) < ¢(0)/21°8" < ¢(0)/n =1,

in contradiction to the fact that at least two players are uncorrupted and hence
¢([logn]n) > 1. Hence there is a first iteration of the for-loop with a correct
king during which no fail-corrupted player fails. After this iteration agreement
holds (Lemma 3) and due to Lemma 4 agreement holds also at the end of the
protocol.

The validity and termination properties are obviously satisfied. The efficiency
can be easily verified by code inspection. O

4 Efficiency Improvements by Early Stopping

A major disadvantage of Agreement Protocol 1 of Section 3 is that the play-
ers must continue to iterate the for-loop even if agreement on some value has
already been reached. The goal of this section is to derive a protocol that can
be terminated as soon as agreement is achieved, i.e., a protocol that terminates
early if only few players are corrupted. This is achieved by some modifications
of Agreement Protocol 1.

However, a full description and correctness proof of our early stopping pro-
tocols for condition R(P, Z) would exceed the limits of this extended abstract.
Instead, we give an early stopping protocol with respect to the stronger con-
dition Q(P, Z) which can be handled more easily.® Moreover these protocols,
when applied to the case of a mixed (active and fail-corruption) threshold ad-
versary [GP92] or a purely-active non-threshold adversary [FM98], are even more
efficient than any previously known protocols for these special cases.?

4.1 Protocol Modifications

As a consequence of the somewhat stronger condition Q(P, Z) on P and Z, ex-
plicit failure detection becomes unnecessary (i.e. L drops out of the algorithms).
The main idea is to achieve the following property which is important for the
correctness of the protocol:

7 after he has already failed during the correct player’s iteration

® Note that Q(P, Z) still implies the achievability bounds for [GP92,FM98].

% in contrast to our early stopping protocols for R(P, Z) (not described in this extended
abstract), which are less efficient than those of [GP92] for their special model.



Stop-Implication: A correct player (only) stops early if it is guaranteed that
every correct player already prefers the same value v and if it is guaranteed that
even after his early stopping v is preferred by every correct player.

Since the Stop-Implication is a property of the final agreement protocol its
correctness is proven only later, in the proof of Lemma 10. In order for the
subprotocols to still satisfy the persistence property, even if correct players stop
early, the following rule is introduced.

Substitution-Rule: Whenever, during any communication round, a player p
expects a value x to be sent by a player ¢ but does not receive any value,
then z is set to the value z, that has been sent by himself during the same
communication round.!°

This rule together with the Stop-Implication guarantees that, after a correct
player p has stopped early, every correct player ¢ replaces any future message
by p correctly as if p would still participate in the protocol.!!

4.2 Value Unification

Subprotocol MakeUnique of Section 3.2 can be simplified when condition Q(P, Z)
is satisfied. Since MakeUnique will be applied in two different contexts, we use
the variable parameter x in the following pseudo-code description.

MakeUnique (VAR z):

1. SendToAll(x);

Cl = {TEP | r sent 0};

ct :Z{TEP | rsentl};

if C' € Z4 then z:=0
elseif C° € Z4 then z:=1
else r := 2

ﬁ.

)

NS otk W

It is easy to see that together with the Substitution Rule, persistence (accord-
ing to Lemma 1) is still satisfied. In contrast to the conditional consistence in
Lemma 2 even unconditional consistence can be proven.

Lemma 5 (Consistence of MakeUnique). If, after the ezecution of
MakeUnique, two correct players p and q hold values v, # 2 and vy # 2, then
vp = vg.

Proof. Let p and g be two correct players and, for the sake of contradiction,
suppose that v, =v #2and v, =1—-v =7.

10 This substitution value is well-defined since communication is symmetric in the sense
that during any specific round all players report on their particular view of the same
variable or fact. The only exception is the king’s round wherein only the king sends
his preferred value. In this case simply the own preferred value is taken.

' Whenever it is argued that every correct player behaves in a certain way, only players
that have not stopped yet are considered.

10



Suppose that no correct player has stopped so far during the protocol and let
A (and F') be the sets of players that are actively corrupted (and fail corrupted),
and hence Cg € Za,C; € Z4 and (A, F) € Z. Since a correct player sends the
same value (in {0,1}) to both players p and ¢ we have C’g UC;UAUF =P in
contradiction to Q(P, Z).

On the other hand, if any correct player has stopped the protocol before then,
due to the Stop-Implication, the players p and ¢ hold the same value v, = v,
after MakeUnique because of the persistence property. O

4.3 Unicast

In order to enable a player to detect that all correct players prefer the same value
(and even will after he stops), Communication Phase 2 of Agreement Protocol 1
is replaced by the more powerful primitive Unicast. Note that the for-loop can
be parallelized into one communication round.

Unicast (VAR D°,D',D?):
1. SendToAll (v);

2. for l:=1tondo

3. R! := value received from py;
. Jo,if R € {0,1}

4 s '_{l,ile:Z

5 MakeUnique (S');

6. od;

7.D°:={peP|R =0AS"=0};
8. D':={peP|R =1A5"=0};
9. D> ={peP|R=278=1};
10. if D° ¢ Z4 then v:=0

11.  elseif D' ¢ Z4 then v:=1

12. else v:=2

13. fi;

We say that player p accepts value v € {0,1,2} from player ¢ or, as a short
hand, that p accepts (v, q) if ¢ € D). The following lemma follows directly from
the consistence and persistence properties of MakeUnique.

Lemma 6 (Consistence of Unicast). The value v sent by a correct player p
is accepted by every correct player q, i.e., p € D;. Moreover, if a correct player
p accepts (v,r) for v € {0,1} and r € P, then no correct player q accepts (2,r),
i.e., Dg C (P\ Dy) for any two correct players p and q.

Lemma 7 (Persistence of Unicast). If all correct players prefer the same
value v € {0,1} before the execution of Unicast then all players from which a
correct player p does not accept v are actively corrupted. In particular (P\DZ) €

Z4 (and hence D% € Z4), and v, = v at the end of Unicast.

Proof. According to Lemma 6 the value of every correct player is accepted. It
remains to show that even a value is accepted from every fail-corrupted player
pi: A correct player either does not receive a value from p; during SendToAll

11



and hence replaces this value by v or he still receives a value from p; but then
this value must be v since p; was correct until the execution of Unicast and
therefore preferred v by assumption. Hence S? = 0 for all correct players which
persists after MakeUnique according to the persistence property. O

4.4 Agreement Protocol

Agreement (VAR v) (Agreement Protocol 2):
1. for k:=1ton do

2. MakeUnique (v); // Communication Phase 1
3. Unicast(D°,D',D?); // Communication Phase 2
4. pi (only): SendToAll(v); // Communication Phase 3
5. w := value received from pg;

6. if (U =2V D¢ ZA) then v := min(1, w)

7. elseif (v #2 N P\D" € ZA) then stop

8. ;

9. od;

Persistence and consistence can be proven in a similar way as for Agreement,
Protocol 1 of Section 3. Moreover even unconditional consistence can be proven.

Lemma 8 (Persistence). If, at the beginning of some for-loop, all correct play-
ers prefer the same value v # 2 then they still do so at the end of the loop.

Proof. According to the persistence of MakeUnique and Unicast D) ¢ Za4, Dg €

Z4 and Df, € Z, are satisfied for every correct player p and hence v, = v and

the king’s value is ignored by p. O

The following two lemmas (Lemma 9 and 10) are needed for the proof of the
consistence property of Agreement Protocol 2. Lemma 10 assures that the Stop-
Implication indeed holds — a fact which also the previous proofs for MakeUnique
and Unicast rely on.

Lemma 9. If a correct player p ignores the king’s value according to Line 6 of
the protocol, then every correct player prefers the same value v, before Commu-
nication Phase 3.

Proof. Suppose that p ignores the king since v, = v # 2 (and hence D} ¢ Z4)
and DIQ, € Z4 hold. D) ¢ Z4 implies that at least one correct player entered
Unicast with value v and hence every correct player entered Unicast with value
v or 2.

For the sake of contradiction suppose that some correct player ¢ enters this
phase with some value v, # v. Due to Lemma 6 all values by correct players are
accepted. Hence, for some set A of actively corrupted players and some set F' of
fail-corrupted players, we can write the player set as P = DyUDSUD;UAUF
which can be decomposed as

Dy U(Dy\Dy)u(DyNDy)UD, UAUF =P
~N —— —,—
=A; =AsUFs gD;

where 4; U Ay C A and F> C F. Hence we get D) € Z, (since p ignores the
king), D} € Z4 (since vy # v) and (A, F') € Z in contradiction to Q(P, Z). O
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Lemma 10 (Stop-Implication). If a correct player stops early then every cor-
rect player already prefers the same value v and will do so during every subse-
quent communication round.

Proof. Consider the first iteration of the for-loop in which some correct players
stop. Let p be such a player and v = v, # 2 be his preferred value. Player p’s
stopping implies that the king’s value is ignored by p and hence every correct
player g prefers the same value v, = v by Lemma 9. Due to Lemma 6, Dg C
P\ Dy holds and since P \ Dy € Z4 by the stop condition for player p we
immediately get DZ € Z 4. Hence every correct player g ignores the king’s value
and v, = vy = v at the end of the loop. By Lemma 8 agreement on this value
persists for every further communication round. a

Lemma 11 (Consistence). At the end of any for-loop with a correct king all
correct players prefer the same value.

Proof. If any correct player has stopped so far then consistence follows by the
Lemmas 8 and 10. Hence suppose that no correct player has stopped so far, and
suppose some k" iteration of the for-loop with p; being correct. If all correct
players replace their values v := min(1,w) we are done. Suppose now that at
least one correct player p ignores the value sent by the king. Hence, by Lemma 9,
every correct player prefers the same value v, before Communication Phase 3.
Hence especially the king prefers v, and every correct player who replaces his
value replaces it with v,. a

Lemma 12. Let C be the set of players that are actively or fail-corrupted. Agree-
ment Protocol 2 achieves agreement and all correct players terminate the protocol
after at most |C| + 2 iterations of the for-loop.

Proof. That Agreement Protocol 2 achieves agreement follows immediately by
the Lemmas 8 and 11, and the fact that there is at least one iteration of the
for-loop with a correct king. It remains to show that, at the end of the first loop
which is entered by all correct players with the same value v # 2, all correct
players have stopped with value v. Suppose that all correct players enter some
loop with the same value v. Due to the persistence property of MakeUnique they
also enter Unicast with this value and hence, due to Lemma 7, they still hold
this value after Unicast and P\ D" € Z4. Hence every correct player stops
according to Line 7 of the protocol. O

4.5 Optimizations
Agreement Protocol 2 can be optimized in the following ways.

I. Depending on the concrete adversary structure Z the for-loop does not nec-
essarily have to run over all n possible kings since it is only required that at
least one of the kings be correct.

II. Every correct player may stop the protocol immediately after the loop in
which he plays the king because all correct players will start the next loop
with his value.
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III. In order to save one communication round in each loop, Communication
Phase 3 (i.e. king’s value distribution) can be integrated into Unicast by the
king already computing his distribution value in advance after the SendToA11l
round of Unicast:

L. D':={peP|R =i}forie{0,1,2}

0,if D° ¢ Z4
2. 0= 1,if D' ¢ Z4
2, else.
This value v can be sent by the king pj, already during the MakeUnique round
of Unicast without harming the protocol’s correctness. In order to see this
suppose the king to be correct.

— If all correct players consider the king then they all prefer the same value
at the end of this loop. The king is only considered if agreement did not
hold at the beginning of the loop and hence it does not matter which
value is sent by the king.

— If at least one correct player ignores the king then for some v € {0,1}
Dy ¢ Z4 holds for every correct player p by Lemma 9. But since Dy C

Dy, this is the value v = v that is sent by py.

Theorem 3. For any player set P and adversary structure Z satisfying
Q(P, Z), Agreement Protocol 2 (by including the optimizations of this section)
reaches agreement. Let C' be the set of players that actually misbehave in the
protocol (by failing or sending false values), then all correct players terminate
the protocol after at most 3(|C| + 2) communication rounds.

Proof. The theorem follows by Lemma 12 and Optimization IIT of this section.
a

4.6 Comparison with Previous Results

Agreement Protocol 2 (with optimizations) can be applied to the threshold model
in [GP92] as well as to the general active adversary model in [FM98].

The protocols of [GP92] for the threshold model with actively and fail-
corrupted players involve 5(¢ 4+ 1) communication rounds in the worst case. Pro-
vided that only some ¢ < b players are actually corrupted, then only 5(c + 2)
communication rounds are needed (whereas early stopping is not proven for
b < ¢ < t). Our improvement of these protocols is two-fold. First, the worst
case round complexity is only 3(¢ + 1). Second, we achieve early stopping inde-
pendently of any additional constraint on the number ¢ of actually corrupted
players, i.e., provided that some ¢ < t players are actually corrupted, the round
complexity is at most 3(c + 2).

In the general adversary model of [FM98] with only active player corruption
the tight bound for broadcast and agreement to be achievable is that no three
adversary sets A; € Z4 (i € {1,2,3}) cover the player set P. This implies that
there is at least one player set S ¢ Z4 of cardinality |S| < [%] since other-
wise this condition would be violated. According to Optimization I, it therefore
suffices to define the for-loop over the set S since this set contains at least one
correct player. Hence Agreement Protocol 2 involves at most 3[ %] < n+ 2 com-
munication rounds. Provided that c¢ players are actually corrupted then only
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min(3(c + 2),3[%]) communication rounds are needed. In contrast to these re-
sults the protocols of [FM98] need 2n communication rounds in order to achieve

polynomial communication complexity.
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