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Abstract. We settle two conjectures on domination-search, a game pro-
posed by Fomin et.al. [1], one in affirmative and the other in negative.
The two results presented here are (1) domination search number can be
greater than domination-target number, (2) domination search number
for asteroidal-triple-free graphs is at most 2.

1 Introduction

Domination search is a game proposed by Fomin et.al. [1] which is a variant of
node-search-game, see [2]. It is also a graph variant of polygonal search problem,
[3,4,5,6,7]. It is a problem of sweeping out a mobile fugitive out of a graph (think
of a house where vertices are rooms) with k guards. A guard at a node can check
its node and all nodes adjacent to it. The fugitive can move in zero time from
node x to y if there is a path between the nodes which does not pass through
the nodes under any guard’s watch. In each step one guard can move from its
current node to any other vertex. During the move this guard is absent from the
graph and fugitive can take the advantage. Search is successful if after a finite
number of moves entire graph is cleared of the fugitive.

We present a formal definition of domination-search game differently from the
original but it is equivalent to that. Here N [X ] denotes the closed neighborhood
of the vertex set X . The search algorithm with k guards on a graph G = (V, E)
places k guards on k vertices initially. D(0) denotes these vertices. In each move
one guard is moved from it current position (vertex) to a new position. D(i)
denotes the set of vertices where the guards are placed after i moves. Formally,
the search is a sequence of k-sets: D(0), D(1), . . . , D(M), where D(i−1)∩D(i) is
denoted by S(i) and has cardinality k−1 for all i > 0. A vertex is said to clear if
it was in the neighborhood of some guard in some previous move and since then
no path has been established between this vertex and a contaminated (fugitive
may potentially be on it) vertex without passing through the neighborhood
of a guard in the current position. We define vertex sets Ua(i) (set of clear
vertices after i moves ) for 0 ≤ i ≤ M and Ud(i) (clear set during move-i) for
1 ≤ i ≤ M . These sets are recursively defined by the following equations. Ua(0)
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is the closed neighborhood of D(0), i.e., N [D(0)]. Ua(i) = Ud(i)∪N [D(i)−S(i)],
and Ud(i) is the set {v ∈ Ua(i − 1) : every path from v to any vertex in V −
Ua(i−1) passes through N [S(i)]}. Finally, Ua(M) = V . The domination search
number of a graph G is the smallest k for which such a sequence exists. It is
denoted by ds(G).

Domination-search number is found to be strongly related with another
graph-parameter, dominating-target number denoted by dt(G). A vertex sub-
set, T , of a graph is said to be a dominating-target [8] if every connected sub-
graph which contains T , dominates the entire graph. The cardinality of the
smallest dominating-target is called the dominating-target number, denoted by
dt(G). Fomin et.al. [1] have shown that for arbitrary connected graph ds(G) ≤
2 · dt(G) + 3. But they have found that this is perhaps not a tight bound and
conjectured that ds(G) ≤ dt(G).

In their work Fomin et.al. have also studied ds(G) of graphs of small dominat-
ing-target number. These include cocomparability graphs; AT-free graphs
[9,10,11,12]; and DP graphs [13,14]. These graph classes are defined as follows.
An asteroidal-triple is a set of three vertices such that there is a path between
any two vertices without entering the neighborhood of the third. A graph is said
to be AT-free if it contains no asteroidal-triple. The family of graphs having
dominating target number equal to two is denoted by DP. Their results include
(i) ds(G) ≤ 4 for the DP graphs; (ii) ds(G) of cocomparability graphs is 2; (iii)
ds(G) ≤ 2 for AT-free claw-free graphs; and (iv) ds(G) ≤ 3 for AT-free graphs.
They also conjecture that ds(G) ≤ 2 for AT-free graphs.

In this work we will show that there exists a DP graph for which domination-
search number is greater than 2. This settle the conjecture “ds(G) ≤ dt(G)” in
negative. We also present a domination search algorithm for AT-free graphs
with ds(G) ≤ 2 which settles the second conjecture in affirmative. The paper is
organized as follows. Section 2 presents a DP graph and shows that it cannot
be searched with two guards. Section 3 describes a partial ordering on graphs
which plays an important role in developing the domination-search algorithm
for AT-free graphs, presented in Section 4.

2 Lower Bound for DP Graphs

In this section we will establish that domination search cannot be performed
on all weak dominating pair graphs (family of graphs with dominating target
number being 2) with 2 guards. This will settle the conjecture 23 of [1], “ds(G) ≤
dt(G)”, in negative.

The open neighborhood of a vertex x, N(x), in a graph is the set of vertices
adjacent to x. The closed neighborhood, N [x] is N(x) ∪ {x}. If N [x] is not a
graph separator then x is called an extreme vertex. The set of all extreme vertices
of a graph is denoted by L.

Consider the graph G0 =(V, E) in figure 1. Observe that L={v0, v1, v2, v3, v4,
v8, v9, v10, v11, v12}. Therefore only non-extreme vertices in G0 are v5, v6 and v7.
There are two connected components in the induced subgraph on V − N [v5],
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Fig. 1. A dominating pair graph with ds(G) > 2

denote them Cv5
1 and Cv5

2 . Due to the symmetry in v5, v6 and v7, V − N [v6]
and V − N [v7] also have two components: Cv6

1 , Cv6
2 and Cv7

1 , Cv7
2 respectively.

Cv5
1 = Cv6

1 = Cv7
1 is the single vertex v12. The second components of each case

is given in figure 2 which are indeed isomorphic.
Let us assume that a domination search algorithm for G0 exists which re-

quires two guards. Let it be expressed by the sequence A : D(0) = (p1(0), p2(0)),
D(1) = (p1(1), p2(1)), . . . , D(M) = (p1(M), p2(M)). Pair p1(i), p2(i) denote the
vertices where guards are placed after i moves. {p1(i−1), p2(i−1)}∩{p1(i), p2(i)}
is a singleton denoted by S(i). For notational convenience we will denote the el-
ement in S(i) by S(i) as well without ambiguity. By Ud(i) we denote the set
of vertices which are clear (uncontaminated) in the graph during the i-th move
when there is only one guard on the graph (at S(i)). After the move when there
are two guards on the graph the set of clear vertices is denoted by Ua(i). With-
out loss of generality we assume that this sequence is minimal in the sense that
no step of the algorithm is redundant, i.e., no proper subsequence of A is a
valid domination search. The graph does not have a dominating set of size two
therefore M must be greater than zero.

Proposition 1. S(i) /∈ L for all 1 ≤ i ≤ M .

Proof. Assume S(i) ∈ L. If Ud(i) was equal to V then there would have been no
need for the i-th move. So there is at least one contaminated vertex just before
this move. During this move there is only one guard on the graph, at S(i). Since
the induced graph on V − N [S(i)] is connected, entire set V − N [S(i)] will get
contaminated. So the set of clear vertices after this move will be N [p1(i)] ∪
N [p2(i)]. This state can be achieved at the start of the search by placing the
guards at p1(i) and p2(i). Therefore we can replace A by A′ : (p1(i), p2(i)), (p1(i+
1), p2(i+1)), . . . , (p1(M), p2(M)) which will also perform the domination search.
This violates the minimality condition of A.

Due to symmetry between v5, v6, and v7 we may assume that S(1) = v5
without loss of generality. Suppose S(i) = v5 for 1 ≤ i ≤ i0. During these moves
only one guard is moving to clear the parts of V − N [v5]. No single vertex in
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the graph dominates entire Cv5
2 so a single guard cannot clear it completely.

Therefore during each move upto i0 entire Cv5
2 will be contaminated. In other

words Ud(i) ∩ Cv5
2 = ∅ for 1 ≤ i ≤ i0. As a consequence Ua(i) for 1 ≤ i ≤ i0

cannot be equal to V . This indicates that the search cannot terminate if S(i)
remains unchanged at v5.

Let us suppose S(i0 + 1) �= v5. Then S(i0 + 1) must be either v6 or v7. Due
to symmetry, we can assume S(i0 + 1) = v6 with no loss in generality. In the
move i0 one guard stays fixed at v5 and the the other guard moves to v6. As
discussed above Ud(i0) does not contain any vertex of Cv5

2 . Ua(i0) = Ud(i0) ∪
N [v6] which does not contain v0. So Ua(i0) does not contain v0. Consequently
Cv6

2 will be entirely contaminated during move i0 + 1 when guard at v6 remains
fixed. Suppose S(i) = v6 for i0 + 1 ≤ i ≤ i1. As argued above during all these
moves U(i) ∩ Cv6

2 = ∅ for i0 + 1 ≤ i ≤ i1. So the search cannot terminate with
i1-th move. Once again we may replace v6 by v5 or v7 as the value of S(i) but
repeating the argument we conclude that the search will never end. We have
following result.

Theorem 1. Domination search on graph of figure 1 requires at least 3 guards.

This graph has dominating target number 2 because {v4, v12} is a dominating
pair in it. So we establish that dt(G0) < ds(G0).

Corollary 1. The conjecture ds(G) ≤ dt(G), proposed in [1], for all connected
graphs G is incorrect.

3 A Partial Ordering on Graphs

The domination search algorithm for asteroidal-triple-free graphs proposed in
the following section uses two guards. The selection of the successive positions
to station the guards is determined based on a partial ordering on the vertices
which is described in this section.

Let G = (V, E) be an arbitrary graph and x be any vertex in it. Define relation
�x on V as follows. u �x v if (i) u and v are not adjacent and (ii) every path



32 D. Aggarwal, S.K. Mehta, and J.S. Deogun

from u to x is intercepted by v, i.e., at least one vertex on each path from u to x
belongs to N [v]. Observe that condition (ii) can be equivalently stated as: every
induced path from u to x is intercepted by v. This relation is reflexive. Define an
equivalence relation ∼x on V as follows. u ∼x v if there exist u1, u2, . . . uk such
that u �x u1 �x u2 �x . . . uk �x v and v �x uk �x . . . u1 �x u. The equivalence
classes, x-classes, induced by ∼x will be denoted by [u]x representing the class
containing u. The x-class containing x is obviously a singleton.

Observation 2. Let u1, u2 ∈ [u]x. Then for any induced path from u1 to x:
u1a1a2 . . . am(= x), u2 is adjacent to a1 and to no other ai.

We extend �x to the class, using the same symbol: [u]x �x [v]x if there exists
u′ ∈ [u]x and v′ ∈ [v]x such that u′ �x v′. The above observation leads to the
following result.

Observation 3. [u]x �x [v]x iff for every u′ ∈ [u]x and v′ ∈ [v]x either (u′, v′)
is an edge or u′ �x v′.

Consider two distinct classes [u]x and [v]x such that [u]x �x [v]x. Let u′ ∈ [u]x
and v′ ∈ [v]x such that u′ �x v′. Let u′′ ∈ [u]x such that u′′ �x u′. Assume that
u′′ �x v′ is not true. From the previous result u′′ must be adjacent to v′. Since
[v]x is distinct from [u]x there is a path, P , from v′ to x which misses u′. Now we
have a path P ′ = u′′v′.P . We have u′′ �x u′ and u′ �x v′ so u′ is not adjacent
to u′′ and v′. Thus entire P ′ misses u′. This violates u′′ �x u′. So u′′ �x v′ must
be true. If we have a chain u(k) �x u(k−1) . . . u′′ �x u′ then iterative application
of the above argument will imply that u(k) �x v′. From the definition of the
x-classes we have the following observation.

Observation 4. Let [u]x and [v]x be distinct classes such that [u]x �x [v]x.
Each vertex of [v]x is either adjacent to all vertices of [u]x or to none.

Proposition 2. The relation �x on the equivalence classes is a partial ordering.

Proof. The reflexivity and anti-symmetry are due to the definitions of �x and
∼x. Next we show the transitivity.

Let [u]x �x [v]x and [v]x �x [w]x. Our goal is to show that [u]x �x [w]x. If
the classes [u]x, [v]x, and [w]x are not all distinct, then the claim is true from
reflexivity and anti-symmetry. So assume that all three are distinct.

There are u′ in [u]x, v′ and v′′ in [v]x and w′ ∈ [w]x such that u′ �x v′ and
v′′ �x w′. From Observation 4 we also have v′ �w′. Let P be an arbitrary path
from u′ to x. Since it is intercepted by v′, there is a path P ′ from v′ to x in
which all vertices, except perhaps v′, are from P . w′ intercepts P ′ but it is not
adjacent to v′ so w′ intercepts P . Since P was randomly chosen, w′ intercepts
all paths from u′ to x.

Finally we prove that w′ is not adjacent to u′. From our assumption that
[v]x is distinct from [w]x it follows from anti-symmetry that there is a path P ′′

from w′ to x missing v′. If u′ is adjacent to w′, then we have a path from u′ to
w′ then follow the path P ′′ to x. As v′ is not adjacent to either u′ or w′ so this
path is not intercepted by v′. This contradicts the fact that u′ �x v′.
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Let x be an arbitrary vertex of G and G′ be the induced subgraph on vertex
subset V ′. Any vertex y of V ′ will be called x-minimal in G′ if [y]x is minimal
among all the x-classes which have non-empty intersection with V ′.

4 Domination Search on Asteroidal-Triple-Free Graphs

In this section we present a domination-search algorithm for AT-free graphs. We
begin with some useful properties of this family.

Lemma 1. Let G = (V, E) be a connected AT-free graph and x a vertex in it. C
is a connected component of the induced graph on V −N [x]. Then any x-minimal
vertex in C intercepts all paths from any vertex in C to any vertex outside C.

Proof. Let y ∈ C is x-minimal. It is sufficient to show that any path from any
vertex in C to any vertex in N [x] passes through N [y].

We will first show that any path from any vertex in C to x is intercepted by
y. Let z be an arbitrary vertex in C. If [y]x and [z]x are related, then [z]x �x [y]x
because [y]x is minimal by choice. Then by the definition, y is either adjacent to
z or all paths from z to x pass through N [y].

In the second case [y]x and [z]x are unrelated. So either (i) y and z are
adjacent to each other or (ii) there exists a path from z to x not intercepted by
y and a path from y to x not intercepted by z. Thus in case (ii) {x, y, z} form
an asteroidal triple. This is not possible in AT-free graphs so z must be adjacent
to y. This establishes that all paths from z to x pass through N [y].

Finally we consider arbitrary vertex w in N [x]. Consider arbitrary path, P ,
from z to w. If it passes through x, then we already have seen that it must pass
through the neighborhood N [y]. Assume that P does not contain x. Extend the
path to x: P ′ = P.x. It is a path from z to x. Thus P ′ passes through N [y]. y is
outside N [x] so x is not in N [y]. Therefore some vertex of P must be in N [y].

Corollary 2. Let G = (V, E) be a connected AT-free graph and x a vertex in it.
C is a connected component of the induced graph on V − N [x]. Let y ∈ C is x-
minimal in C. Then each connected component of the induced graph on V −N [y]
is entirely contained either in C or in V − C.

It has been established that connected AT-free graphs have a pair of vertices,
poles, such that every path between them dominates the entire graph, [9,10]. We
shall use labels p1 and p2 for the poles.

Let G = (V, E) be a graph and x be a vertex in it. If y ∈ V − N [x], then
the connected component containing y in the induced graph over V − N [x] will
be denoted by Cx(y) and the open neighborhood N(Cx(y)) will be denoted by
Sx(y). Cx(y) is defined if and only if y is not adjacent to x. A component Cx(y)
will be called deep if at least one vertex of the component is not adjacent to
any vertex of N [x]. If a component is not deep, then it will be termed shallow.
Cx(p1) and Cx(p2) will be called principal components of x, if defined. All other
components of V − N [x] will be termed secondary.
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Lemma 2. Let G = (V, E) be a connected AT-free graph and x ∈ V . Then every
deep component of the induced graph on V −N [x] must contain exactly one pole.

Proof. Suppose Cx(y) contains no polar vertex. Assume that z ∈ Cx(y) such
that N [z] is fully contained in Cx(y). Then there exists a path between p1 and
p2 which does not enter Cx(y). This implies that the path will miss z which is
impossible. Thus Cx(y) must be a shallow component.

In case Cx(y) contains both poles, then there exists a path between the poles
which does not enter N [x]. This path will miss x. Again impossible for an AT-free
graph.

Proposition 3. Let G = (V, E) be a connected AT-free graph with vertex x in
it. Let C be a secondary component in the induced subgraph on V − N [x]. Then
each vertex of C dominates at least one of p1, p2, Sx(p1), and Sx(p2).

Proof. In a connected AT-free graph G = (V, E), x is a vertex such that both
its principal components are defined, i.e., neither pole is in N [x]. Let C be a
secondary component of V − N [x] and z be a vertex in C. Suppose there exists
u ∈ Sx(p1) and v ∈ Sx(p2) such that z is adjacent to neither of these vertices.
We can build a path from p1 to p2: p1 . . . uxv . . . p2 where u, x, and v are the
only vertices of the path from N [x]. z cannot be adjacent to any vertex of this
path other than u, x, and v. But by choice none of the three is adjacent to z so
this path misses z. This is impossible.

If every vertex in a secondary component C dominates Sx(p2) (when p2 is
not adjacent to x) or dominates p2 (when p2 is adjacent to x) then C will be
called a p2-sided component.

Proposition 4. Let G = (V, E) be a connected AT-free graph with non-adjacent
poles. Let x be either p1 or a vertex for which both principal components are
defined. Let y ∈ Cx(p2) be an x-minimal vertex. If z is a vertex of Cx(p2) which
dominates Sy(x), then z is also x-minimal.

Proof. Sy(x) is a graph separator which contains at least one vertex of each
edge connecting Cx(p2) with V −Cx(p2) because all paths between the two pass
through N [y]. Therefore each component of the induced graph on V − Sy(x) is
either completely contained in Cx(p2) or in V − Cx(p2). Thus every path from
Cx(p2) to V − Cx(p2) must touch Sy(x). If N [z] contains Sy(x) then all such
path also touch N [z]. Therefore z also x-minimal.

Let x and y be vertices in a graph. Then by |Cx(y)| we denote the cardinality
of Cx(y) if y is not adjacent to x. If the two vertices are adjacent, then |Cx(y)|
is defined to be zero.

Lemma 3. Let G be a connected AT-free graph and x a vertex which is not
adjacent to p2. Further x is either p1 or not adjacent to p1. Let y be x-minimal
in Cx(p2) but different from p2, |Cy(p2)| ≥ |Cy′

(p2)| for all x-minimal y′, and
p2 does not dominate Sy(p1). Then any secondary component of V −N [y] having
non-empty intersection with Cx(p2), is p2-sided.
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Proof. We consider two cases: p2 /∈ N [y] and p2 ∈ N(y) since y �= p2.

(a) p2 /∈ N [y]. Suppose C is a secondary component of induced graph on
V − N [y] such that C ∩ Cx(p2) is non-empty. Assume that C is not p2-sided.
Therefore there is a vertex z in C such that it does not dominate Sy(p2). From
Corollary 2 we know that entire C is contained in Cx(p2) so z belongs to Cx(p2).
From Proposition 3 z dominates Sy(p1).

Next we show that z does not dominate Sy(x). Assume the contrary. From
Proposition 4 it is an x-minimal vertex of Cx(p2). Since Cy(p2)∩N [z] is empty,
Cz(p2) will contain Cy(p2). In addition, by choice, z does not dominate Sy(p2)
so there is a path from y to p2 not intercepted by z. Thus y is also contained
in Cz(p2). This implies that |Cz(p2)| > |Cy(p2)|. But Due to the choice of y,
|Cz(p2)| can never be larger than |Cy(p2)|.

Now we will show that {x, z, p2} is an asteroidal triple. Since p2 and z belong
to Cx(p2) so there is a path between z and p2 not passing through N [x].

To show that there is path between z and x which misses p2 observe that
p2 does not dominate Sy(p1) so there exists a vertex u in Sy(p1) which is not
adjacent to p2 but adjacent to z since the latter dominates Sy(p1). Consider two
cases. In the first case x ∈ Cy(p1). Consider the path zu.P where P joins u to x
and is confined to Cy(p1). This path misses p2. In case x /∈ Cy(p1) N [x] contains
Sy(p1) since N [x] separates p1 from y. Thus x is adjacent to u and xuz is a path
that misses p2.

Finally it needs to be shown that there is a path between x and p2 not
intercepted by z. We have seen that z does not dominate Sy(x) so there is a
vertex v in it which is not adjacent to z. Also there is a vertex w in Sy(p2) not
adjacent to z since by choice z does not dominate Sy(p2). So there is a path
xvyw.P where P is a path from w to p2 contained in Cy(p2). This path is not
intercepted by z. Consequently the entire path, from x to p2 misses z. Thus
{x, z, p2} form an asteroidal set which is not possible.

(b) p ∈ N(y). Again C is a secondary component of y such that C ∩ Cx(p2) is
non-empty. Assume C is not contained in N [p2]. Therefore there is a vertex z in C
suchthat it isnotadjacenttop2.FromCorollary2weknowthatentireC is contained
in Cx(p2) so z belongs to Cx(p2). From Proposition 3 z dominates Sy(p1).

We will again show that z does not dominate Sy(x). Assume the contrary.
From Proposition 4 it is an x-minimal vertex of Cx(p2). |Cy(p2)| = 0 but Cz(p2)
contains at least p2 so again |Cz(p2)| > |Cy(p2)|. But Due to the choice of y,
|Cz(p2)| can never be larger than |Cy(p2)|.

Similar to the proof of part (a) we can show that {x, z, p2} is an asteroidal
triple.

Lemma 4. G = (V, E) is a connected AT-free graph and y is a vertex in it which
is not adjacent to pole p1. Pole p2 dominates Sy(p1). Then {u, p2} dominates
V − Cy(p1) where u is any vertex in Cy(p1).

Proof. Consider a path p2u.P where P is a path to p1 confined to Cy(p1). Each
vertex of V is dominated by this path. Since vertices of V −(Cy(p1)∪Sy(p1)) are
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not adjacent to any vertex beyond u, {u, p2} dominate them. Further vertices of
Sy(p1) are in the neighborhood of p2. So {u, p2} dominate V − Cy(p1).

Algorithm: Domination search on a connected AT-free graph.
1. If the poles are adjacent (so {p1, p2} is a dominating set) then put the two

guards at the poles and exit;
2. Place a guard at p1;
3. Place the second guard at any vertex in Sp1(p2);
4. Relieve the second guard;

C1: Vertices of V − Cp1(p2) are cleared
5. x = p1;
6. While (p2 is not adjacent to x) Do
7. { Let vertex u in Cx(p2) is x-minimal with maximum |Cu(p2)|;
8. y = u;
9. If p2 dominates Sy(p1) then

10. { Place the free guard at p2 and relieve the guard at x;
C2: Cy(p1) being a subset of V −Cx(p2) remains
clear and N [p2] is also now cleared.

11. Place the free guard at any vertex in Sy(p1);
C3: Entire V is clear.

12. Exit;
}

13. Else
C4: p2 does not dominate Sy(p1) so y �= p2.

14. { Place the free guard at y;
15. Relieve the guard from x;

C5: All the vertices of V − Cx(p2) remain clear.
In addition N [y] is also cleared.

16. if p2 is not adjacent to y
17. { Place the free guard at any vertex of Sy(p2) and relieve

it;}
18. else { Place the free guard at p2 }

C6: if p2 is not adjacent to y, then V − Cy(p2)
is clear else entire V is cleared.

19. x = y;
}

C7: If x is not adjacent to p2 then vertices
of V −Cx(p2) are cleared else all of V is cleared.

}
C8: Entire V is cleared.

20. Exit.

Theorem 5. The domination-search number of AT-free graphs is at most 2.

Proof. The algorithm described above performs domination search for any AT-free
graph with 2 guards. We prove the correctness of the algorithm by justifying the in-
variants mentioned in the comments.

C1: In line-2 N [p1] is cleared. From Proposition 3, line-3 clears all secondary com-
ponents of p1. No recontamination of these components occur in line-4 since the first
guard is still present at p1.
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C2: From Corollary 2 Cy(p1) is either entirely contained in Cx(p2) or in V −Cx(p2).
Due to Lemma 2 p1 cannot be in Cx(p2) so Cy(p1) must be contained in V − Cx(p2).
There is a guard at p2 and p2 dominates Sy(p1) so Cy(p1) remains clear.

C3: Due to Lemma 4.
C4: Self explanatory.
C5: Due to Corollary 2.
C6: Due to Lemma 3.
C7: Trivial.
C8: Trivial.

The algorithm is monotonic (there is no recontamination and at least one more
vertex is cleared in each pass of the loop), due to C5, as long as the condition of line-9
is not true. When the condition is true the algorithm terminates after executing lines
10, 11, and 12. Therefore the algorithm always terminates.
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